Chapter 6 Regression

- Best Fit to Discrete Data
- Suppose that n experiments create data set: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Can we find simple relation $y=\psi(x, a)$ (a is a parameter vector) such that $\left|y_{j}-\psi\left(x_{j}, a\right)\right|$ is smallest possible for $j=1,2, \ldots, n$?
- We call it data fitting, or best-fit. What means by "Best Fit"
- There are various definitions of "Best-Fit. Most common are two * L^{p} - fitting : minimize the L^{p} error

$$
e_{p}=\sum_{j=1}^{n}\left|y_{j}-\psi\left(x_{j}, a\right)\right|^{p}
$$

* L^{∞} - fitting : minimize the L^{∞} error

$$
e_{\infty}=\max _{j=1,2, \ldots, n}\left|y_{j}-\psi\left(x_{j}, a\right)\right|
$$

- When $p=2$, it is called least squares fitting. We shall focus on least squares fitting.
- Example 2: Linear Regression. We look for a linear function (parameter vector $a=(b, m)$)

$$
y=\psi(x, a)=m x+b
$$

to fit data $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$. The square error is

$$
\begin{aligned}
e(m, b) & =\sum_{j=1}^{n}\left|y_{j}-\psi\left(x_{j}, a\right)\right|^{2} \\
& =\sum_{j=1}^{n}\left|y_{j}-m x_{j}-b\right|^{2}
\end{aligned}
$$

* To find b, m that would minimizer the above error, we need to have

$$
\begin{aligned}
& \frac{\partial e(m, b)}{\partial m}=\sum_{j=1}^{n}-2 x_{j}\left(y_{j}-m x_{j}-b\right)=0 \\
& \frac{\partial e(m, b)}{\partial b}=\sum_{j=1}^{n}-2\left(y_{j}-m x_{j}-b\right)=0
\end{aligned}
$$

* This leads to linear system for m, b

$$
\begin{aligned}
m\left(\sum_{j=1}^{n} x_{j}^{2}\right)+b\left(\sum_{j=1}^{n} x_{j}\right) & =\sum_{j=1}^{n} x_{j} y_{j} \\
m\left(\sum_{j=1}^{n} x_{j}\right)+b n & =\left(\sum_{j=1}^{n} y_{j}\right)
\end{aligned}
$$

- In general, the optimal parameter $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ for the square error

$$
e(a)=\sum_{j=1}^{n}\left|y_{j}-\psi\left(x_{j}, a\right)\right|^{2}
$$

is when for all $k-1,2, \ldots, m$,

$$
\begin{equation*}
\frac{\partial e(a)}{\partial a_{k}}=-2 \sum_{j=1}^{n}\left(y_{j}-\psi\left(x_{j}, a\right)\right) \frac{\partial \psi\left(x_{j}, a\right)}{\partial a_{k}}=0 \tag{1}
\end{equation*}
$$

This could be a very complex system for a.

- Example 3 We look for exponential curve $y=\psi(x, c, r)=c e^{r x}$ to best fit the data. Then

$$
\frac{\partial \psi(x, c, r)}{\partial c}=e^{r x}, \quad \frac{\partial \psi(x, c, r)}{\partial r}=c x e^{r x}
$$

so, with $a_{1}=c, a_{2}=r$,

$$
\begin{aligned}
\sum_{j=1}^{n}\left(y_{j}-c e^{r x_{j}}\right) e^{r x_{j}} & =0 \\
c \sum_{j=1}^{n}\left(y_{j}-c e^{r x_{j}}\right) x_{j} e^{r x_{j}} & =0
\end{aligned}
$$

It is impossible to analytically solve c, r. (homework) One alternative is to consider linear regression for the logarithm data: $\left(x_{1}, \ln y_{1}\right),\left(x_{2}, \ln y_{2}\right), \ldots,\left(x_{n}, \ln y_{n}\right)$.

- Let $y=m x+b$ be the best fitting for above log data. Then (m, b) minimizes

$$
\begin{aligned}
e(m, b) & =\sum_{j=1}^{n}\left(\ln y_{j}-m x_{j}-b\right)^{2} \\
& =\sum_{j=1}^{n}\left(\ln y_{j}-\ln e^{\left(m x_{j}+b\right)}\right)^{2} \\
& =\sum_{j=1}^{n}\left(\ln \left[y_{j} e^{-\left(m x_{j}+b\right)}\right]\right)^{2} \\
& =\sum_{j=1}^{n}\left(\ln \left[y_{j} e^{-m x_{j}} e^{-b}\right]\right)^{2}
\end{aligned}
$$

Recall Taylor series for $\ln (x)=\ln (1-(1-x))=x-1+O\left((x-1)^{2}\right)$.So using linear approxima-
tion for $\ln x$, we see

$$
\begin{aligned}
e(m, b) & =\sum_{j=1}^{n}\left(\ln \left[y_{j} e^{-m x_{j}} e^{-b}\right]\right)^{2} \\
& \approx \sum_{j=1}^{n}\left(y_{j} e^{-m x_{j}} e^{-b}-1\right)^{2} \\
& =\sum_{j=1}^{n} e^{-2 m x_{j}} e^{-2 b}\left(y_{j}-c e^{r x_{j}}\right)^{2}, \quad c=e^{b}, r=m, \\
& \sim \sum_{j=1}^{n}\left(y_{j}-c e^{r x_{j}}\right)^{2},
\end{aligned}
$$

if x_{j} is bounded.

- Conclusion: linear regression of log data in its first order approximation is equivalent to least square for exponential fitting.
- Example 4 Consider using the following curve to best fit the data:

$$
\psi(x, a)=a_{1} \phi_{1}(x)+a_{2} \phi_{2}(x)+\ldots+a_{m} \phi_{m}(x)
$$

where $\phi_{1}, \ldots, \phi_{m}$ are given function. By (1), since $\frac{\partial \psi(x, a)}{\partial a_{i}}=\phi_{i}(x)$,

$$
\sum_{j=1}^{n}\left(y_{j}-\sum_{l=1}^{m} a_{l} \phi_{l}\left(x_{j}\right)\right) \phi_{i}\left(x_{j}\right)=0, i=1,2, \ldots, m
$$

or

$$
\sum_{j=1}^{n}\left(\sum_{l=1}^{m} \phi_{l}\left(x_{j}\right) a_{l}\right) \phi_{i}\left(x_{j}\right)=\sum_{j=1}^{n} y_{j} \phi_{i}\left(x_{j}\right) .
$$

This can also be written as, for $i=1,2, \ldots, m$,

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{l=1}^{m} \phi_{i}\left(x_{j}\right) \phi_{l}\left(x_{j}\right) a_{l}=\sum_{j=1}^{n} y_{j} \phi_{i}\left(x_{j}\right) \tag{2}
\end{equation*}
$$

- Introduce $m \times n$ matrix $\Phi=\left[\phi_{l}\left(x_{j}\right)\right]_{m \times n}$:

$$
\Phi=\left[\begin{array}{ccccc}
\phi_{1}\left(x_{1}\right) & \phi_{1}\left(x_{2}\right) & \phi_{1}\left(x_{3}\right) & \cdots & \phi_{1}\left(x_{n}\right) \\
\phi_{2}\left(x_{1}\right) & \phi_{2}\left(x_{2}\right) & \phi_{2}\left(x_{3}\right) & \cdots & \phi_{2}\left(x_{n}\right) \\
\phi_{3}\left(x_{1}\right) & \phi_{3}\left(x_{2}\right) & \phi_{3}\left(x_{3}\right) & \cdots & \phi_{3}\left(x_{n}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_{m}\left(x_{1}\right) & \phi_{m}\left(x_{2}\right) & \phi_{m}\left(x_{3}\right) & \cdots & \phi_{m}\left(x_{n}\right)
\end{array}\right]_{m \times n},
$$

Then $\Phi \Phi^{T}$ is $m \times m$

$$
\vec{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{m}
\end{array}\right], \vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right]
$$

So Equation (2) can be written in matrix equation form

$$
\begin{equation*}
\Phi \Phi^{T} a=\Phi y . \tag{3}
\end{equation*}
$$

- To see (3), we notice that matrix multiplication rules: $B=\left(b_{i j}\right)_{m \times p}, C=\left(c_{i j}\right)_{p \times q}, D=\left(d_{i j}\right)_{q \times r}$, then $B C D=\left(e_{i j}\right)_{m \times r}$:

$$
e_{i j}=\sum_{l=1}^{q} \sum_{k=1}^{p} b_{i k} c_{k l} d_{l j}
$$

Now on the left-hand side of (3), $B=\Phi\left(p=n, b_{i j}=\phi_{i}\left(x_{j}\right)\right), C=\Phi^{T}\left(q=m, c_{i j}=\phi_{j}\left(x_{i}\right)\right), a=$ $D\left(r=1, d_{i, 1}=a_{i}\right)$, and

$$
e_{i, 1}=\sum_{l=1}^{q} \sum_{k=1}^{p} b_{i k} c_{k l} d_{l 1}=\sum_{k=1}^{n} \sum_{l=1}^{m} \phi_{i}\left(x_{k}\right) \phi_{l}\left(x_{k}\right) a_{l}
$$

which is the right-hand side of (3), and $\Phi y=\left(g_{i, 1}\right)_{n \times 1}$

$$
g_{i, 1}=\sum_{k=1}^{n} \phi_{i}\left(x_{k}\right) y_{k}
$$

So (3) is exactly (2).

- For linear regression, $\phi_{1}(x)=x, \phi_{2}(x)=1$. So $m=2$, and Φ is $2 \times n$ matrix

$$
\Phi=\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

and

$$
\Phi \Phi^{T}=\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
1 & 1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
x_{3} & 1 \\
\cdots & \cdots \\
x_{n} & 1
\end{array}\right]=\left[\begin{array}{ll}
\sum_{j=1}^{n} x_{j}^{2} & \sum_{j=1}^{n} x_{j} \\
\sum_{j=1}^{n} x_{j} & n
\end{array}\right]
$$

- So linear regression is to solve $\Phi \Phi^{T} a=\Phi y$ with $a=(m, b)$.
- Example 5 Polynomial Regression: $\psi=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}$. In this case, $a=\left(a_{0}, a_{1}, \ldots, a_{m}\right)^{T}, \phi_{k}=$
x^{k} for $k=0,1, \ldots, m$, and

$$
\begin{aligned}
\Phi & =\left[\begin{array}{ccccc}
\phi_{0}\left(x_{1}\right) & \phi_{0}\left(x_{2}\right) & \phi_{0}\left(x_{3}\right) & \cdots & \phi_{0}\left(x_{n}\right) \\
\phi_{1}\left(x_{1}\right) & \phi_{1}\left(x_{2}\right) & \phi_{1}\left(x_{3}\right) & \cdots & \phi_{1}\left(x_{n}\right) \\
\phi_{2}\left(x_{1}\right) & \phi_{2}\left(x_{2}\right) & \phi_{2}\left(x_{3}\right) & \cdots & \phi_{2}\left(x_{n}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_{m}\left(x_{1}\right) & \phi_{m}\left(x_{2}\right) & \phi_{m}\left(x_{3}\right) & \cdots & \phi_{m}\left(x_{n}\right)
\end{array}\right]_{(m+1) \times n} \\
& =\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{m} & x_{2}^{m} & x_{3}^{m} & \cdots & x_{n}^{m}
\end{array}\right]_{(m+1) \times n}
\end{aligned}
$$

So

$$
\Phi \Phi^{T}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{m} & x_{2}^{m} & x_{3}^{m} & \cdots & x_{n}^{m}
\end{array}\right]\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \vdots & x_{1}^{m} \\
1 & x_{2} & x_{2}^{2} & \vdots & x_{2}^{m} \\
1 & x_{3} & x_{3}^{2} & \vdots & x_{3}^{m} \\
\cdots & \cdots & \cdots & \ddots & \cdots \\
1 & x_{n} & x_{n}^{2} & \vdots & x_{n}^{m}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccccc}
n & \sum_{j=1}^{n} x_{j} & \sum_{j=1}^{n} x_{j}^{2} & \cdots & \sum_{j=1}^{n} x_{j}^{m} \\
\sum_{j=1}^{n} x_{j} & \sum_{j=1}^{n} x_{j}^{2} & \sum_{j=1}^{n} x_{j}^{3} & \cdots & \sum_{j=1}^{n} x_{j}^{m+1} \\
\sum_{j=1}^{n} x_{1 j}^{2} & \sum_{j=1}^{n} x_{j}^{3} & \sum_{j=1}^{n} x_{j}^{4} & \cdots & \sum_{j=1}^{n} x_{j}^{m+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sum_{j=1}^{n} x_{j}^{m} & \sum_{j=1}^{n} x_{j}^{m+1} & \sum_{j=1}^{n} x_{j}^{m+2} & \cdots & \sum_{j=1}^{n} x_{j}^{2 m}
\end{array}\right]_{(m+1) \times(m+1)}=\left[\sum_{j=1}^{n} x_{j}^{k+l}\right]
$$

- This matrix is invertible for $n>m$ (Exercise 6.8)
- General setting of best-fitting:
- For linear regression,

$$
\Phi=\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

minimizing

$$
\begin{aligned}
e(m, b) & =\sum_{j=1}^{n}\left|y_{j}-\psi\left(x_{j}, a\right)\right|^{2}=\sum_{j=1}^{n}\left|y_{j}-\left(m x_{j}+\right) b\right|^{2} \\
& =\left\|\left[\begin{array}{c}
y_{1}-\left(b+m x_{1}\right) \\
y_{2}-\left(b+m x_{2}\right) \\
\vdots \\
y_{n}-\left(b+m x_{n}\right)
\end{array}\right]\right\|^{2}=\left\|y-\Phi^{T}\left[\begin{array}{c}
b \\
m
\end{array}\right]\right\|^{2}
\end{aligned}
$$

is equivalent to find distance from y to the range of Φ^{T}

$$
\operatorname{dist}\left(y, R\left(\Phi^{T}\right)\right)=\sqrt{\min _{b, m}\left\|y-\Phi^{T}\left[\begin{array}{c}
b \\
m
\end{array}\right]\right\|^{2}}
$$

- For general regression by $\psi(x, a)=a_{1} \phi_{1}(x)+a_{2} \phi_{2}(x)+\ldots+a_{m} \phi_{m}(x)$, minimizeing

$$
\begin{aligned}
e(a) & =\sum_{j=1}^{n}\left|y_{j}-\psi\left(x_{j}, a\right)\right|^{2} \\
& =\sum_{j=1}^{n}\left|y_{j}-\sum_{k=1}^{m} a_{k} \phi_{k}\left(x_{j}\right)\right|^{2} \\
& =\left\|y-\Phi^{T} a\right\|^{2}
\end{aligned}
$$

is again equivalent to find the distance from y to the range of the $n \times m$ matrix Φ^{T}

$$
\operatorname{dist}\left(y, R\left(\Phi^{T}\right)\right)=\left(\min _{a}\left\|y-\Phi^{T} a\right\|^{2}\right)^{1 / 2}
$$

- Range of a matrix is a subspace of R^{n}. So square best-fitting problem is basically the problem of find distance to a subspace with square norm. What about other norms?
- Section 6.2 Norms in R^{n}
- A norm on a vector space V is a non-negative mapping/function $x \longmapsto\|x\|$ for any $x \in V$ satisfying
(a) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$
(b) $\|\lambda x\|=|\lambda|\|x\|$
(c) $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)
- Example of norms in $R^{n}:$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
(i) $\|x\|_{\infty}=\max _{j=1,2, \ldots, n}\left|x_{j}\right| \quad$ (maximum norm)
(ii) $\begin{aligned} &\|x\|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}, p \geq 1 \quad\left(L^{p} \text { norm or } p-\text { norm }\right) \\ & \cdot p=1,\|x\|_{1}=\sum_{j=1}^{n}\left|x_{j}\right|\end{aligned}$
- $p=2,\|x\|_{2}=\sqrt{\sum_{j=1}^{n} x_{j}^{2}}$. This is the familiar distance norm.
- A vector space with a norm is called a normed vector space, or simply normed space.
- Any normed defines a metric (distance): $\operatorname{dist}(x, y)=\|x-y\|$.Therefore, it defines a concept of convergence: $x_{j} \rightarrow x$ iff $\left\|x_{j}-x\right\| \rightarrow 0$. From there we may define concepts of open sets, boundary of a set, closed set, etc. In other words, it defines a topology on R^{n}.
- Theorem $\ln R^{n}$, all norms are topologically equivalent, i.e., they define the same convergence. Moreover, for any two norms $\|\|\| \text { and }\|\|^{\prime}$, there exist two positive constants c_{1} and c_{2} such that

$$
c_{1}\|x\| \leq\|x\|^{\prime} \leq c_{2}\|x\| \quad \text { for all } x \in R^{n}
$$

- Proof: Exercise 6.15
- Thus L^{p} best fit or exponential fit are all equivalent to square fit.
- Section 6.3 Hilbert Space
- Recall a vector space V is a set equipped with addition "+" and scalar multiplication " . "satisfying 8 properties (vector space axioms)
- Let \vec{u}, \vec{v} and \vec{w} be three vectors in V, λ and δ be two real numbers. Then
(i) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(ii) $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$
(iii) $\vec{u}+\overrightarrow{0}=\vec{u}$
(iv) $\vec{u}+(-\vec{u})=\overrightarrow{0}$
(v) $\lambda(\vec{u}+\vec{v})=\lambda \vec{u}+\lambda \vec{v}$
(vi) $(\lambda+\delta) \vec{u}=\lambda \vec{u}+\delta \vec{u}$
(vii) $(\lambda \delta) \vec{u}=\lambda(\delta \vec{u})$
(viii) $1 \cdot \vec{u}=\vec{u}$
- Example of finite dimensional vector space: R^{n}
- Example of infinite dimensional vector space: $C^{n}[0,1], P_{n}=$ polynomials with degree $\leq n$.
- Definition: Consider V be a vector space of finite or infinite dimension. An inner product on V is a symmetric, positive definite bilinear mapping $\langle\cdot, \cdot\rangle: V \times V \rightarrow R$, satisfyibg
(a) $\langle x, y\rangle=\langle y, x\rangle$
(b) $\langle x, x\rangle \geq 0$ with equality exactly when $x=0$
(c) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
(d) $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$
- For inner product, we define the norm $\|\cdot\|$ induced by the inner product as

$$
\begin{equation*}
\|x\|=\sqrt{\langle x, x\rangle} \tag{4}
\end{equation*}
$$

Exercise: use inequality (5) below to prove (40 is a norm.

- The Cauchy-Schwarz Inequality:

$$
\begin{equation*}
|\langle x, y\rangle| \leq\|x\|\|y\| \tag{5}
\end{equation*}
$$

Proof: Exercise 6.16. Hint: expand out $\langle x-c y, x-c y\rangle, c=x /\|y\|$.

- So an inner product induces a normed space, and thus induces the concept of convergence and a topology
- An infinite sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in a normed space V is called a Cauchy sequence if

$$
\left\|x_{n}-x_{m}\right\| \longrightarrow 0 \text { as } n, m \longrightarrow \infty
$$

- A normed space is called complete if any Cauchy sequence converges.
- Definition: A vector space equipped with an inner product that induces a complete normed space
is called a Hilbert Space.
- Orthogonal sequence $x_{1}, x_{2}, \ldots:\left\langle x_{i}, x_{j}\right\rangle=0$ if $i \neq j$
- Orthonormal sequence x_{1}, x_{2}, \ldots : it is an orthogonal sequence with unit vector, i.e., $\left\langle x_{i}, x_{i}\right\rangle=1$
- Orthonormal basis is an orthonormal set $\left\{\phi_{n}\right\}_{n \in \Omega}$ such that for any vector $f \in V$ can be expressed as

$$
f=\sum_{n \in \Omega} c_{n} \phi_{n}, \quad \Omega \text { is a set of index }
$$

- A Hilbert space with a countably infinite Orthonormal basis (i.e., Ω is a set of countably many elements) is called a separable Hilbert space. In this case, the above expression becomes

$$
f=\sum_{n=1}^{\infty} c_{n} \phi_{n}, \quad c_{n}=\left\langle f, \phi_{n}\right\rangle \text { is called the n-th coordinate }
$$

- Example 7: l^{2} consists of all infinite sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ of real numbers x_{n} satisfying

$$
\sum_{n=1}^{\infty} x_{n}^{2}<\infty
$$

- A standard basis in l^{2} is

$$
\begin{aligned}
\phi_{1} & =(1,0,0,0, \ldots)^{T} \\
\phi_{2} & =(0,1,0,0, \ldots)^{T}
\end{aligned}
$$

- almost all properties holds in R^{n} hold in l^{2}.
- All separable Hilbert space may be viewed as l^{2}.
- Example 8: $L^{p}[a, b]: p=2$ is Hilbert space, but for $p \neq 2$, it is not.
- $L^{2}[a, b]$ is separable: any square-integrable function is L^{2} limit of continuous functions which are also limits of polynomials.
$-1, x, x^{2}, \ldots$ form a basis for L^{2}.
- Legendre polynomials form an orthogonal baisis for $L^{2}[-1,1]$:

$$
\begin{aligned}
P_{0} & =1, P_{1}=x \\
(n+1) P_{n+1} & =(2 n+1) x P_{n}(x)-n P_{n-1}(x) \\
\int_{-1}^{2} P_{m}(x) P_{n}(x) d x & =\frac{2}{2 n+1} \delta_{m n}
\end{aligned}
$$

$-L^{2}[-\pi, \pi]$ has orthornormal basis

$$
\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \sin (n x), \frac{1}{\sqrt{\pi}} \cos (n x), n=1,2, \ldots
$$

Section 6.4 Gram's Theorem on Regression

- Gram's Theorem: Let X be a Hilbert space, and $f, \phi_{1}, \phi_{2}, \ldots, \phi_{n}$ are in X.Then the best square approximation of f in the form of

$$
\begin{equation*}
\psi=c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n}=\sum_{j=1}^{n} c_{j} \phi_{j} \tag{6}
\end{equation*}
$$

occurs when $c_{1}, c_{2}, \ldots, c_{n}$ solves

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j}\left\langle\phi_{i}, \phi_{j}\right\rangle=\left\langle\phi_{i}, f\right\rangle \text { for } i=1,2, \ldots, n \tag{7}
\end{equation*}
$$

- The matrix form of (7) is $A C=F$, where $A=\left[\left\langle\phi_{i}, \phi_{j}\right\rangle\right]$ is a symmetric metrix, $C=\left(c_{1}, \ldots, c_{n}\right)^{T}, F=$ $\left(\left\langle\phi_{1}, f\right\rangle,\left\langle\phi_{2}, f\right\rangle, \ldots,\left\langle\phi_{n}, f\right\rangle\right)^{T}$.
- Proof: Let $e\left(c_{1}, \ldots, c_{n}\right)=\|\psi-f\|^{2}=\langle\psi-f, \psi-f\rangle$. Note that

$$
\frac{\partial(\psi-f)}{\partial c_{i}}=\frac{\partial \psi}{\partial c_{i}}=\phi_{i}
$$

Then

$$
\frac{\partial e\left(c_{1}, \ldots, c_{n}\right)}{\partial c_{i}}=2\left\langle\frac{\partial(\psi-f)}{\partial c_{i}}, \psi-f\right\rangle=2\left\langle\phi_{i}, \psi-f\right\rangle=0
$$

or

$$
\begin{equation*}
\left\langle\phi_{i}, \psi\right\rangle=\left\langle\phi_{i}, f\right\rangle \tag{8}
\end{equation*}
$$

Expanding out equation (8)

$$
\left\langle\phi_{i}, \psi\right\rangle=\left\langle\phi_{i}, \sum_{j=1}^{n} c_{j} \phi_{j}\right\rangle=\sum_{j=1}^{n} c_{j}\left\langle\phi_{i}, \phi_{j}\right\rangle
$$

leads to (7)

- Geometrically, let $S=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$, and ψ_{0} be the best approximation. Then $\left\|f-\psi_{0}\right\|=$ $\operatorname{dist}(f, S)$, and $\left(f-\psi_{0}\right) \perp S$. To see this, we pick any $\phi \in S$ and consider

$$
h(t)=\left\|f-\left(\psi_{0}-t \phi\right)\right\|^{2}=\left\langle f-\psi_{0}+t \phi, f-\psi_{0}+t \phi\right\rangle .
$$

Since $\left(\psi_{0}-t \phi\right) \in S$, this function reaches min at $t=0$. Now we write $e=f-\psi_{0}$, then

$$
h(t)=\langle e+t \phi, e+t \phi\rangle=\langle e, e\rangle+2\langle\phi, e\rangle+t^{2}\langle\phi, \phi\rangle .
$$

Since it has a min at $t=0, h^{\prime}(0)=0$, i.e.,

$$
h^{\prime}(0)=\langle\phi, e\rangle=0 \Longrightarrow\left(f-\psi_{0}\right) \perp \phi
$$

Corollary: Gram's Theorem can be extended to $n=\infty$. In other words, let X be a Hilbert space, and $f, \phi_{1}, \phi_{2}, \ldots$, are in X. Assume that

$$
\sum_{j=1}^{\infty}\left\|\phi_{j}\right\|^{2}<\infty
$$

Then the best square approximation of f in the form of

$$
\psi=c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots=\sum_{j=1}^{\infty} c_{j} \phi_{j}, \text { for } \sum_{j=1}^{\infty} c_{j}^{2}<\infty
$$

occurs when c_{1}, c_{2}, \ldots solves

$$
\sum_{j=1}^{\infty} c_{j}\left\langle\phi_{i}, \phi_{j}\right\rangle=\left\langle\phi_{i}, f\right\rangle \text { for } i=1,2, \ldots
$$

- Bessel's Theorem on Regression: If $\phi_{1}, \phi_{2}, \ldots$, is an orthogonal sequence, then the best square
fit by (6) occurs when

$$
c_{i}=\frac{\left\langle f, \phi_{i}\right\rangle}{\left\|\phi_{i}\right\|^{2}}
$$

and the best approximation is

$$
\psi=\frac{\left\langle f, \phi_{1}\right\rangle}{\left\|\phi_{1}\right\|^{2}} \phi_{1}+\frac{\left\langle f, \phi_{2}\right\rangle}{\left\|\phi_{2}\right\|^{2}} \phi_{2}+\ldots+\frac{\left\langle f, \phi_{n}\right\rangle}{\left\|\phi_{n}\right\|^{2}} \phi_{n}
$$

and the inequality holds

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{\left\langle f, \phi_{i}\right\rangle^{2}}{\left\|\phi_{i}\right\|^{2}} \leq\|f\|^{2} \tag{9}
\end{equation*}
$$

If moreover, $\phi_{1}, \phi_{2}, \ldots$, is an orthonormal sequence, then

$$
\begin{gathered}
\psi=\left\langle f, \phi_{1}\right\rangle \phi_{1}+\left\langle f, \phi_{2}\right\rangle \phi_{2}+\ldots=\sum_{i=1}^{\infty}\left\langle f, \phi_{i}\right\rangle \phi_{i} . \\
\sum_{i=1}^{\infty}\left\langle f, \phi_{i}\right\rangle^{2} \leq\|f\|^{2}
\end{gathered}
$$

- Proof: Since $\left\langle\phi_{i}, \phi_{j}\right\rangle=\delta_{i j}$, the results follow directly from (7).
- Example 10: Find the best square fit in $L^{2}[-\pi, \pi]$ of $f(t)$ by

$$
f_{0}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

Sol: According to Example 8,

$$
\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \sin (n x), \frac{1}{\sqrt{\pi}} \cos (n x), n=1,2, \ldots
$$

form orthonormal basis. So the best fit can be written as

$$
f_{0}=\frac{c_{0}}{\sqrt{2 \pi}}+\sum_{n=1}^{\infty}\left(c_{n} \frac{\cos n t}{\sqrt{\pi}}+d_{n} \frac{\sin n t}{\sqrt{\pi}}\right)
$$

where

$$
\begin{gathered}
c_{0}=\int_{-\pi}^{\pi} \frac{f(t)}{\sqrt{2 \pi}} d t, \text { so } a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t \\
c_{n}=\int_{-\pi}^{\pi} \frac{f(t) \cos n t}{\sqrt{\pi}} d t, \quad \text { so } a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t
\end{gathered}
$$

$$
d_{n}=\int_{-\pi}^{\pi} \frac{f(t) \sin n t}{\sqrt{\pi}} d t, \quad \text { so } b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t
$$

This is exactly the Fourier series of f

- In particular, for

$$
\begin{gathered}
f(t)=\operatorname{sgn}(\sin t) \\
a_{n}=0, b_{n}=2 \frac{1+(-1)^{n}}{n \pi} \\
f \rightarrow \sum_{n=1}^{\infty} 2\left(\frac{1+(-1)^{n}}{n \pi}\right) \sin n t
\end{gathered}
$$

- Example: Reconsider Example 4: using the following curve to best fit the data $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$:

$$
\psi(x, a)=c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+\ldots+c_{m} \phi_{m}(x)
$$

Sol: Recall that best-fit is to find $a=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ to minimize

$$
\sum\left(y_{i}-\psi\left(x_{i}, a\right)\right)^{2}
$$

Let $V=R^{n}$,

$$
\begin{gathered}
y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \Phi_{k}=\left[\begin{array}{c}
\phi_{k}\left(x_{1}\right) \\
\vdots \\
\phi_{k}\left(x_{n}\right)
\end{array}\right] \\
\Psi=c_{1} \Phi_{1}+c_{2} \Phi_{2}+\ldots+c_{m} \Phi_{m}=\left[\begin{array}{c}
\psi\left(x_{1}, a\right) \\
\vdots \\
\psi\left(x_{n}, a\right)
\end{array}\right] .
\end{gathered}
$$

Then

$$
\sum\left(y_{i}-\psi\left(x_{i}, a\right)\right)^{2}=\|y-\Psi\|
$$

The the problem of best fit data $\left(x_{i}, y_{i}\right)$ by $\psi(x, a)$ is to best-fit of f is by Ψ in Hilbert space V. So we can now use Gram's Theorem,

$$
\sum_{j=1}^{m \infty} c_{j}\left\langle\Phi_{i}, \Phi_{j}\right\rangle=\left\langle\Phi_{i}, f\right\rangle \quad \text { for } i=1,2, \ldots, m
$$

This is exactly (2).

- Homework: textbook - \#6.3, 6.4, 6.8, 6.22, 6.31, 6.34

