Chapter 6 Regression

e Best Fit to Discrete Data
— Suppose that n experiments create data set: (x1,y1), (z2,%2), -, (Tn, Yn)-

— Can we find simple relation y = ¢ (x,a) (e is a parameter vector) such that |y, — ¢ (x;,a)| is
smallest possible for j =1,2,...,n?

— We call it data fitting, or best-fit. What means by "Best Fit"

— There are various definitions of "Best-Fit. Most common are two
x LP — fitting : minimize the L? error

ep = Z lyj — ¥ (zj,a)l"
=1

x L — fitting : minimize the L™ error

o = max |y; — ¢ (z;,a)|
7=12,...n

— When p = 2, it is called least squares fitting. We shall focus on least squares fitting.

— Example 2: Linear Regression. We look for a linear function (parameter vector a = (b, m) )

y=1v(x,a)=mzx+0b



to fit data {(x1,41), (z2,%2), ..., (zs, yn)} . The square error is

b):Z\yj — ¢ (zj,a)f
—Z\y] —mm—b[z

x To find b, m that would minimizer the above error, we need to have

de (m, b -

om ,
7=1
Oe (m,b)
ab — = _2 (y] T b) O

x This leads to linear system for m, b

n
27
j=1

N \)



— In general, the optimal parameter a = (a1, as, ..., a,,) for the square error

:Z’yj — Y (zj,a)
=1

iswhenforall K —1,2,....m,

:_22 Ij, ))aw(xﬁ@:o

8ak day,

This could be a very complex system for a.

— Example 3 We look for exponential curve y = v (x, ¢, r) = ce’™ to best fit the data. Then

oY (x,c,r) e O0U(x,c )

—e = cxe'”

oc ’ or

SO, Witha; = ¢, ay =,

(1)
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It is impossible to analytically solve ¢, r. (homework) One alternative is to consider linear regres-
sion for the logarithm data: (zq,Iny), (22, Inys), ..., (xs, Iny,) .

— Let y = mx + b be the best fitting for above log data. Then (m, b) minimizes

e(m,b) = (Iny; —max; —b)
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Recall Taylor seriesforIn(z) =In(l—(1—xz))=2—1+0 <(a: — 1)2) .So using linear approxima-



tion for In z,we see

n

e(m,b) = Z (In [y; e_m‘”je_b])2

j=1

oS yi e et — 1 ’
> )
j=1

n
_ o 9
= g e e (i —ce™), c=¢€" r=m,
j=1

n
~ Ny ™),
j=1

if ; is bounded.

— Conclusion: linear regression of log data in its first order approximation is equivalent to least
square for exponential fitting.

— Example 4 Consider using the following curve to best fit the data:

Y (1,a) = a1, () + asdy (z) + ... + Ay, (1)



where ¢4, ..., ¢,, are given function. By (1), since 5 = @,
a;

j=1 =1

or

Z <Z¢z T az) Zyﬂﬁ z5).

J=1

This can also be written as, for: =1,2, ..., m,

Z i () &y (x)) ar = Zyj¢z ()
j=1 =1 J=1
— Introduce m x n matrix ¢ = [¢; (z;)] .
¢1 (1) &1 (22) @ (3) o1 ()
Gg (21)  Po(72) @9 (3) P (1)
D=1 ¢ (371) 0% (372) Ps (373) 0% (ﬂfn)
G (21) By (23) Dy (33) - Gy (2]

Z (yj - Zal¢l (%)) ®; (33’]) =0,:=1,2,...

4 mXn

(2)



Then &dT ism x m

ai (931
ag Y2
a = as y Y= Y3
(079 Yn

So Equation (2) can be written in matrix equation form
dPlq = Py (3)

— To see (3), we notice that matrix multiplication rules: B = (b;;) C = (cj)

BCD = (€ij)

mxp’ pxq’ D — (dij)qxr7 then

mXxr :
q p
€ij = E E bz’k:ckldlj
=1 k=1

Now on the left-hand side of (3), B = @ (p = n, b; = ¢;(2;)),C = @7 (¢ =m, ¢;j = ¢, (x;)),a =
D (r=1, di; = a;), and

3

q
€1 —
=

> bicwdn =YY ¢y (k) &y (ar) ay
=1

1 k=1 [=1



which is the right-hand side of (3), and ¢y = (g,1)

nx1

n
9i1 = Z ¢i (k) Yn
k=1

So (3) is exactly (2).

— For linear regression, ¢, (x) =z, ¢, (x) =1. Som = 2, and ® is 2 x n matrix

b [xl Ty T3 :En]

1 1 1 --- 1
and
:Ul - N n ]
2

€T $j

T Iy T X3 -+ Tp "2 jzl j;

(I)(I) = 1 1 1 ... 1 I3 1 = n

o

Tn 1 | j=1 1

— So linear regression is to solve ®®%a = oy with a = (m, b) .

— Example 5 Polynomial Regression: ¢ = ayg+a;z+asz?+...4a,,2™. Inthis case, a = (ag, a1, ..., am)T, O =



¥ fork=0,1,...,m, and
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Do DAt p e ) at
=1 = j=1 j=1

— This matrix is invertible for n > m (Exercise 6.8)

1 (m+1)x(m+1)

e General setting of best-fitting:
— For linear regression,

_|T1 X2 X3 o Ip
(D_[l 11 - 1]

10



minimizing

e(m,b) ="y — ¥ (@,a) =D | y; — (ma+)bf
j=1 j=1

712

_yl — (b + ma:l) )

_ yg—(b.+m$2) :Hy—q)T[b]
: m
Yn — (b+ mxy)
is equivalent to find distance from y to the range of &'
b 2
. T _ . AT

dist (y, R (<I> )) rgl}]? y— [m]
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— For general regression by ¢ (v, a) = a1¢; () + asgy () + ... + ano,, (x), minimizeing

m 2

e(a) = Z|yj — 4 (xj,a)|’
i — Y ardy (x;)

n
j=1 k=1

=y — @l

is again equivalent to find the distance from y to the range of the n x m matrix ¢
1/2
dist (y, R(®")) = (min |y — (I)TCLH2)
— Range of a matrix is a subspace of R". So square best-fitting problem is basically the problem of
find distance to a subspace with square norm. What about other norms?

e Section 6.2 Norms in R"

e A norm on a vector space V' is a non-negative mapping/function = — ||z|| for any = € Vsatisfying
(@) ||z]| > 0,and ||z|| =0 iffx =0

(0) [[Az][ = [Al ][]
© llz +yll < llzll + [ly|| (triangle inequality)
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— Example of norms in R" : for x = (x1, xa, ..., z,)
0 =]l = max |z;|  (maximum norm)
=12 n
1/p

n
@) flzll, = { Y |=l”] . p>1 (L normor p — norm)
=1
p=1 lzfl; = 3 |zl

n

Z z2. This is the familiar distance norm.
=1

p=2, |[zfly =

e A vector space with a norm is called a normed vector space, or simply normed space.

e Any normed defines a metric (distance): dist(z,y) = ||z — y|| .Therefore, it defines a concept of
convergence: x; — x iff ||z; — z|| — 0. From there we may define concepts of open sets, boundary
of a set, closed set, etc. In other words, it defines a topology on R".

e Theorem In R", all norms are topologically equivalent, i.e., they define the same convergence.
Moreover, for any two norms ||| and ||||", there exist two positive constants ¢; and ¢, such that

a x| < ||zl < e ||z]| forallz € R

— Proof: Exercise 6.15
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e Thus L? best fit or exponential fit are all equivalent to square fit.
® Section 6.3 Hilbert Space
e Recall a vector space V is a set equipped with addition "+” and scalar multiplication ” - 7 satisfying

8 properties (vector space axioms)
— Let u, v and « be three vectors in V, A and ¢ be two real numbers. Then

—

u+v=v+

(i) u+ (0+w) = (u+9) +
(i) @+ 0 =

(iv) @+ (=) =0

(V) AU+ 0) = Ad+ AU

(Vi) (A +0)u = \i+ du

(vii) (M) u = A\ (0u)

(vii) 1-d =14

— Example of finite dimensional vector space: R"
— Example of infinite dimensional vector space: C" [0, 1], P, =polynomials with degree < n.

e Definition: Consider V' be a vector space of finite or infinite dimension. An inner product on V' is a
symmetric, positive definite bilinear mapping (-,-) : V xV — R, satisfyibg

@ (z,y) = (y,7)
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(b) (z,z) > 0 with equality exactly when z =0
©) (z+y,2) = (x,2) + (y, 2)
(d) (Az,y) = Az, y)
e For inner product, we define the norm ||-|| induced by the inner product as
|l = /{z, ) (4)
Exercise: use inequality (5) below to prove (40 is a norm.

e The Cauchy-Schwarz Inequality:

[z, ) < =] lyll (5)

Proof: Exercise 6.16. Hint: expand out (z — cy,x — cy), c=z/ ||y|| .

e S0 an inner product induces a normed space, and thus induces the concept of convergence and a
topology
e An infinite sequence {z,}, -, in a normed space V is called a Cauchy sequence if

|tn —xm|]| — 0 as n,m — oo

e A normed space is called complete if any Cauchy sequence converges.

e Definition: A vector space equipped with an inner product that induces a complete normed space
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is called a Hilbert Space.
e Orthogonal sequence xi, s, ... : (v, ;) =0 ifi # j
e Orthonormal sequence x4, xo, ... : it is an orthogonal sequence with unit vector, i.e., (z;, ;) = 1

e Orthonormal basis is an orthonormal set {¢,,}. ., such that for any vector f € V' can be expressed
as

f=) cup,, Qisasetofindex

nef)

e A Hilbert space with a countably infinite Orthonormal basis (i.e., {2 is a set of countably many
elements) is called a separable Hilbert space. In this case, the above expression becomes

f=Y cuby cn=1{(f ¢, iscalled the n-th coordinate
n=1

e Example 7: [? consists of all infinite sequences {z,}.-, of real numbers z,, satisfying

xXO
2 <
T, < 00
n=1



17

— A standard basis in 2 is

o, = (1,0,0,0,...)"
¢, = (0,1,0,0,...)"

— almost all properties holds in R" hold in /2.
e All separable Hilbert space may be viewed as I2.

e Example 8: L? [a,b] : p = 2 is Hilbert space, but for p # 2, it is not.
— L?[a,b] is separable: any square-integrable function is L?limit of continuous functions which are
also limits of polynomials.

—1,z,2%, ... form a basis for L?.
— Legendre polynomials form an orthogonal baisis for L? [-1, 1] :

Pg = 1, P1 =T
(n+1)Pr1=02n+1)2P,(z) —nP,—1 (x)

P
2
/1 P, (x) P, (x)dx = ot 15mn
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— L?[—n, w] has orthornormal basis

11 (na) 1 (n) >
——,——=smn(nxr), —=cos(nx), n =12, ...
Vo T VT
Section 6.4 Gram’s Theorem on Regression
e Gram’s Theorem: Let X be a Hilbert space, and f, ¢, ®,,...,¢, are in X.Then the best square
approximation of f in the form of

n

=1y + oyt by = Y i (6)

j=1

occurs when ¢y, ¢o, ..., ¢, solves
j=1

e The matrix form of (7) is AC' = F, where A = [(¢,, ;)] is a symmetric metrix, C = (ci, ...,c,)’ , F =
(<¢1> f> ) <¢27 f> AR <¢n7 f>)T
e Proof: Lete(cy,...,c,) = || — f|I° = (& — f,9 — f) .Note that

oW—f) % _,
aCZ‘ B (902' BRE
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Then

de(cyy ...y Cp) _ 5 <(3(¢ — f)

3@ 8@ ’¢'_f>'_2<¢w¢‘—f>—()

or

<¢if¢0 ::<¢%7f> (8)
Expanding out equation (8)

<¢%f¢>:: <Q%7§£:CU¢j>'::EZ:CV<¢%’¢j>
j=1 j=1

leads to (7)

e Geometrically, let S = span {¢, ¢, ..., 0, } , and 1, be the best approximation. Then ||f — 1| =
dist (f,S),and (f —,) L S.To see this, we pick any ¢ € S and consider

h(t)=|If — (g —td)||* = (f — o+ 1, f — by + te) .

Since (v, — to) € S, this function reaches min at ¢t = 0. Now we write e = f — 1,,then

ht)=(e+tp,e+td) = (e,e) +2(p,e) +t*{(p, ).
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Sinceithasaminatt =0, ' (0) =0, i.e.,

W (0)=(¢,e) =0 = (f —1hy) L ¢

Corollary: Gram’s Theorem can be extended to n = oo. In other words, let X be a Hilbert space, and
f, &1, @q, ..., are in X. Assume that

0

> o))" < o0

J=1

Then the best square approximation of f in the form of

(0.9]

UV =c19;+ oy + ... = chgbj, for Zc? < 00

J=1 J=1

occurs when ¢y, ¢, ... solves

ch <¢i7¢j> = (¢;, f) fori=1,2,...
j=1

e Bessel’s Theorem on Regression: If ¢, ¢,, ..., IS an orthogonal sequence, then the best square



fit by (6) occurs when

c; = <f7 qb12>
4]
and the best approximation is
<f7¢1> <f7¢2> <f7¢ >
Y = o1+ 5P+ 5 Pus
A T EACTPYTE

and the inequality holds

(.67
; o <M1

If moreover, ¢, ¢, ..., IS an orthonormal sequence, then

0

= (f,01) b1+ (f,da) o+ .. = Y _(f. ) &

1=1

> (f0) < fIP
1=1

e Proof: Since (¢;, ¢;) = d;;, the results follow directly from (7).
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e Example 10: Find the best square fit in L? [, 7] of f (¢) by

o0
fo= %+Z(ancosnt+bnsinnt).

n=1

Sol: According to Example 8,

——, —=sin(nz), —=cos(nz), n=1,2, ...

\/E

form orthonormal basis. So the best fit can be written as

Co - cosnt sin nt
= + Cn +d,
o V2 2 ( VT VT )

n=1

where

_ [T f@) 1
Co) — _W\/—Q?dt’ SOCL(]—ﬂ_/WfOS)dt

Tt t 1 [
Cp = / f 1) cosn dt, SO a, = —/ f (t) cosntdt
VT T

22
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T F(t)sinnt T
dn=/ f{ysinnt sobnz—/ f (t) sinntdt
U

T —Tr
This is exactly the Fourier series of f

e In particular, for
f(t) = sgn(sint)

1+ (=1)"
ni

a, =0, b, =2

—_ [1+(=D"\ .
E 2( ——— t
f— — ( o ) smn
e Example: Reconsider Example 4: using the following curve to best fit the data (x;,y;), i = 1,2,...,n:

Y (z,a) = c1¢y () + ¢y () + ... + @, (T)

Sol: Recall that best-fit is to find a = (¢1, ¢o, ..., ¢;,) t0 Minimize

> (i = (w,0))
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LetV = R",

Y1 ¢y, (1)
Y = , P = 5
@D (331, CL)

Then
D (i = (wia) =y — V|

The the problem of best fit data (x;, y;) by ¥ (z, a) is to best-fit of f is by W in Hilbert space V. So we
can now use Gram’s Theorem,

moo

ch <(I)Z,(I)j> = <(I)27f> fOT 1= 1,2, R’

j=1
This is exactly (2).
e Homework: textbook - #6.3, 6.4, 6.8, 6.22, 6.31, 6.34



