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Chapter 6 Regression

• Best Fit to Discrete Data

– Suppose that n experiments create data set: (x1, y1) , (x2, y2) , ..., (xn, yn).

– Can we find simple relation y = ψ (x, a) (a is a parameter vector) such that |yj − ψ (xj, a)| is
smallest possible for j = 1, 2, ..., n?

– We call it data fitting, or best-fit. What means by "Best Fit"

– There are various definitions of "Best-Fit. Most common are two

∗ Lp − fitting : minimize the Lp error

ep =

n∑
j=1

|yj − ψ (xj, a)|p

∗ L∞ − fitting : minimize the L∞ error

e∞ = max
j=1,2,...,n

|yj − ψ (xj, a)|

– When p = 2, it is called least squares fitting. We shall focus on least squares fitting.

– Example 2: Linear Regression. We look for a linear function (parameter vector a = (b,m) )

y = ψ (x, a) = mx + b
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to fit data {(x1, y1) , (x2, y2) , ..., (xn, yn)} . The square error is

e (m, b) =

n∑
j=1

|yj − ψ (xj, a)|2

=

n∑
j=1

|yj −mxj − b |2

∗ To find b,m that would minimizer the above error, we need to have

∂e (m, b)

∂m
=

n∑
j=1

−2xj (yj −mxj − b) = 0

∂e (m, b)

∂b
=

n∑
j=1

−2 (yj −mxj − b) = 0

∗ This leads to linear system for m, b

m

 n∑
j=1

x2
j

 + b

 n∑
j=1

xj

 =

n∑
j=1

xjyj

m

 n∑
j=1

xj

 + bn =

 n∑
j=1

yj


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– In general, the optimal parameter a = (a1, a2, ..., am) for the square error

e (a) =

n∑
j=1

|yj − ψ (xj, a)|2

is when for all k − 1, 2, ...,m,

∂e (a)

∂ak
= −2

n∑
j=1

(yj − ψ (xj, a))
∂ ψ (xj, a)

∂ak
= 0 (1)

This could be a very complex system for a.

– Example 3 We look for exponential curve y = ψ (x, c, r) = cerx to best fit the data. Then

∂ψ (x, c, r)

∂c
= erx,

∂ψ (x, c, r)

∂r
= cxerx

so, with a1 = c, a2 = r,

n∑
j=1

(yj − cerxj) erxj = 0

c
n∑
j=1

(yj − cerxj)xje
rxj = 0
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It is impossible to analytically solve c, r. (homework) One alternative is to consider linear regres-

sion for the logarithm data: (x1, ln y1) , (x2, ln y2) , ..., (xn, ln yn) .

– Let y = mx + b be the best fitting for above log data. Then (m, b) minimizes

e (m, b) =

n∑
j=1

(ln yj −mxj − b)2

=

n∑
j=1

(
ln yj − ln e(mxj+b)

)2

=

n∑
j=1

(
ln
[
yj e

−(mxj+b)
])2

=

n∑
j=1

(
ln
[
yj e

−mxje−b
])2

Recall Taylor series for ln (x) = ln (1− (1− x)) = x− 1 +O
(

(x− 1)2
)
.So using linear approxima-
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tion for lnx,we see

e (m, b) =

n∑
j=1

(
ln
[
yj e

−mxje−b
])2

≈
n∑
j=1

(
yj e

−mxje−b − 1
)2

=

n∑
j=1

e−2mxje−2b (yj − cerxj)2 , c = eb, r = m,

∼
n∑
j=1

(yj − cerxj)2 ,

if xj is bounded.

– Conclusion: linear regression of log data in its first order approximation is equivalent to least

square for exponential fitting.

– Example 4 Consider using the following curve to best fit the data:

ψ (x, a) = a1φ1 (x) + a2φ2 (x) + ... + amφm (x)
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where φ1, ..., φm are given function. By (1), since
∂ ψ (x, a)

∂ai
= φi (x) ,

n∑
j=1

(
yj −

m∑
l=1

alφl (xj)

)
φi (xj) = 0, i = 1, 2, ...,m

or

n∑
j=1

(
m∑
l=1

φl (xj) al

)
φi (xj) =

n∑
j=1

yjφi (xj) .

This can also be written as, for i = 1, 2, ...,m,

n∑
j=1

m∑
l=1

φi (xj)φl (xj) al =

n∑
j=1

yjφi (xj) (2)

– Introduce m× n matrix Φ = [φl (xj)]m×n :

Φ =


φ1 (x1) φ1 (x2) φ1 (x3) · · · φ1 (xn)

φ2 (x1) φ2 (x2) φ2 (x3) · · · φ2 (xn)

φ3 (x1) φ3 (x2) φ3 (x3) · · · φ3 (xn)
...

...
... . . . ...

φm (x1) φm (x2) φm (x3) · · · φm (xn)


m×n

,
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Then ΦΦT is m×m

~a =


a1

a2

a3
...

am

 , ~y =


y1

y2

y3
...

yn


So Equation (2) can be written in matrix equation form

ΦΦTa = Φy. (3)

– To see (3), we notice that matrix multiplication rules: B = (bij)m×p , C = (cij)p×q , D = (dij)q×r , then

BCD = (eij)m×r :

eij =

q∑
l=1

p∑
k=1

bikckldlj

Now on the left-hand side of (3), B = Φ (p = n, bij = φi (xj)), C = ΦT (q = m, cij = φj (xi)), a =

D (r = 1, di,1 = ai), and

ei,1 =

q∑
l=1

p∑
k=1

bikckldl1 =

n∑
k=1

m∑
l=1

φi (xk)φl (xk) al
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which is the right-hand side of (3), and Φy = (gi,1)n×1

gi,1 =

n∑
k=1

φi (xk) yk

So (3) is exactly (2).

– For linear regression, φ1 (x) = x, φ2 (x) = 1. So m = 2, and Φ is 2× n matrix

Φ =

[
x1 x2 x3 · · · xn
1 1 1 · · · 1

]
and

ΦΦT =

[
x1 x2 x3 · · · xn
1 1 1 · · · 1

]

x1 1

x2 1

x3 1

· · · · · ·
xn 1

 =


n∑
j=1

x2
j

n∑
j=1

xj

n∑
j=1

xj n


– So linear regression is to solve ΦΦTa = Φy with a = (m, b) .

– Example 5 Polynomial Regression: ψ = a0+a1x+a2x
2+...+amx

m. In this case, a = (a0, a1, ..., am)T , φk =
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xk for k = 0, 1, ...,m, and

Φ =


φ0 (x1) φ0 (x2) φ0 (x3) · · · φ0 (xn)

φ1 (x1) φ1 (x2) φ1 (x3) · · · φ1 (xn)

φ2 (x1) φ2 (x2) φ2 (x3) · · · φ2 (xn)
...

...
... . . . ...

φm (x1) φm (x2) φm (x3) · · · φm (xn)


(m+1)×n

=


1 1 1 · · · 1

x1 x2 x3 · · · xn
x2

1 x2
2 x2

3 · · · x2
n

...
...

... . . . ...

xm1 xm2 xm3 · · · xmn


(m+1)×n

So

ΦΦT =


1 1 1 · · · 1

x1 x2 x3 · · · xn
x2

1 x2
2 x2

3 · · · x2
n

...
...

... . . . ...

xm1 xm2 xm3 · · · xmn




1 x1 x2

1
... xm1

1 x2 x2
2

... xm2
1 x3 x2

3
... xm3

· · · · · · · · · . . . · · ·
1 xn x2

n
... xmn


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=



n

n∑
j=1

xj

n∑
j=1

x2
j · · ·

n∑
j=1

xmj

n∑
j=1

xj

n∑
j=1

x2
j

n∑
j=1

x3
j · · ·

n∑
j=1

xm+1
j

n∑
j=1

x2
1j

n∑
j=1

x3
j

n∑
j=1

x4
j · · ·

n∑
j=1

xm+2
j

...
...

... . . . ...
n∑
j=1

xmj

n∑
j=1

xm+1
j

n∑
j=1

xm+2
j · · ·

n∑
j=1

x2m
j


(m+1)×(m+1)

=

 n∑
j=1

xk+l
j



– This matrix is invertible for n > m (Exercise 6.8 )

• General setting of best-fitting:

– For linear regression,

Φ =

[
x1 x2 x3 · · · xn
1 1 1 · · · 1

]
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minimizing

e (m, b) =

n∑
j=1

|yj − ψ (xj, a)|2 =

n∑
j=1

| yj − (mxj+) b|2

=

∥∥∥∥∥∥∥∥∥


y1 − (b + mx1)

y2 − (b + mx2)
...

yn − (b + mxn)


∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥y − ΦT

[
b

m

]∥∥∥∥2

is equivalent to find distance from y to the range of ΦT

dist
(
y,R

(
ΦT
))

=

√
min
b,m

∥∥∥∥y − ΦT

[
b

m

]∥∥∥∥2
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– For general regression by ψ (x, a) = a1φ1 (x) + a2φ2 (x) + ... + amφm (x) , minimizeing

e (a) =

n∑
j=1

|yj − ψ (xj, a)|2

=

n∑
j=1

∣∣∣∣∣yj −
m∑
k=1

akφk (xj)

∣∣∣∣∣
2

=
∥∥y − ΦTa

∥∥2

is again equivalent to find the distance from y to the range of the n×m matrix ΦT

dist
(
y, R

(
ΦT
))

=
(

min
a

∥∥y − ΦTa
∥∥2
)1/2

– Range of a matrix is a subspace of Rn. So square best-fitting problem is basically the problem of

find distance to a subspace with square norm. What about other norms?

• Section 6.2 Norms in Rn

• A norm on a vector space V is a non-negative mapping/function x 7−→ ‖x‖ for any x ∈ V satisfying

(a) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0

(b) ‖λx‖ = |λ| ‖x‖
(c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)
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– Example of norms in Rn : for x = (x1, x2, ..., xn)

(i) ‖x‖∞ = max
j=1,2,...,n

|xj| (maximum norm)

(ii) ‖x‖p =

 n∑
j=1

|xj|p
1/p

, p ≥ 1 (Lp norm or p− norm)

· p = 1, ‖x‖1 =

n∑
j=1

|xj|

· p = 2, ‖x‖2 =

√√√√ n∑
j=1

x2
j . This is the familiar distance norm.

• A vector space with a norm is called a normed vector space, or simply normed space.

• Any normed defines a metric (distance): dist (x, y) = ‖x− y‖ .Therefore, it defines a concept of

convergence: xj → x iff ‖xj − x‖ → 0. From there we may define concepts of open sets, boundary

of a set, closed set, etc. In other words, it defines a topology on Rn.

• Theorem In Rn, all norms are topologically equivalent, i.e., they define the same convergence.

Moreover, for any two norms ‖‖ and ‖‖′ , there exist two positive constants c1 and c2 such that

c1 ‖x‖ ≤ ‖x‖′ ≤ c2 ‖x‖ for all x ∈ Rn

– Proof: Exercise 6.15
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• Thus Lp best fit or exponential fit are all equivalent to square fit.

• Section 6.3 Hilbert Space

• Recall a vector space V is a set equipped with addition "+” and scalar multiplication ” · ” satisfying

8 properties (vector space axioms)

– Let ~u, ~v and ~w be three vectors in V , λ and δ be two real numbers. Then

(i) ~u + ~v = ~v + ~u

(ii) ~u + (~v + ~w) = (~u + ~v) + ~w

(iii) ~u +~0 = ~u

(iv) ~u + (−~u) = ~0

(v) λ (~u + ~v) = λ~u + λ~v

(vi) (λ + δ) ~u = λ~u + δ~u

(vii) (λδ) ~u = λ (δ~u)

(viii) 1 · ~u = ~u

– Example of finite dimensional vector space: Rn

– Example of infinite dimensional vector space: Cn [0, 1] , Pn =polynomials with degree ≤ n.

• Definition: Consider V be a vector space of finite or infinite dimension. An inner product on V is a

symmetric, positive definite bilinear mapping 〈·, ·〉 : V × V → R, satisfyibg

(a) 〈x, y〉 = 〈y, x〉



15

(b) 〈x, x〉 ≥ 0 with equality exactly when x = 0

(c) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
(d) 〈λx, y〉 = λ 〈x, y〉

• For inner product, we define the norm ‖·‖ induced by the inner product as

‖x‖ =
√
〈x, x〉 (4)

Exercise: use inequality (5) below to prove (40 is a norm.

• The Cauchy-Schwarz Inequality:

|〈x, y〉| ≤ ‖x‖ ‖y‖ (5)

Proof: Exercise 6.16. Hint: expand out 〈x− cy, x− cy〉 , c = x/ ‖y‖ .

• So an inner product induces a normed space, and thus induces the concept of convergence and a

topology

• An infinite sequence {xn}∞n=1 in a normed space V is called a Cauchy sequence if

‖xn − xm‖ −→ 0 as n,m −→∞

• A normed space is called complete if any Cauchy sequence converges.

• Definition: A vector space equipped with an inner product that induces a complete normed space



16

is called a Hilbert Space.

• Orthogonal sequence x1, x2, ... : 〈xi, xj〉 = 0 if i 6= j

• Orthonormal sequence x1, x2, ... : it is an orthogonal sequence with unit vector, i.e., 〈xi, xi〉 = 1

• Orthonormal basis is an orthonormal set {φn}n∈Ω such that for any vector f ∈ V can be expressed

as

f =
∑
n∈Ω

cnφn, Ω is a set of index

• A Hilbert space with a countably infinite Orthonormal basis (i.e., Ω is a set of countably many

elements) is called a separable Hilbert space. In this case, the above expression becomes

f =

∞∑
n=1

cnφn, cn = 〈f, φn〉 is called the n-th coordinate

• Example 7: l2 consists of all infinite sequences {xn}∞n=1 of real numbers xn satisfying

∞∑
n=1

x2
n <∞
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– A standard basis in l2 is

φ1 = (1, 0, 0, 0, ...)T

φ2 = (0, 1, 0, 0, ...)T

...

– almost all properties holds in Rn hold in l2.

• All separable Hilbert space may be viewed as l2.

• Example 8: Lp [a, b] : p = 2 is Hilbert space, but for p 6= 2, it is not.

– L2 [a, b] is separable: any square-integrable function is L2limit of continuous functions which are

also limits of polynomials.

– 1, x, x2, ... form a basis for L2.

– Legendre polynomials form an orthogonal baisis for L2 [−1, 1] :

P0 = 1, P1 = x

(n + 1)Pn+1 = (2n + 1) xPn (x)− nPn−1 (x)∫ 2

−1

Pm (x)Pn (x) dx =
2

2n + 1
δmn
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– L2 [−π, π] has orthornormal basis

1√
2π
,

1√
π

sin (nx) ,
1√
π

cos (nx) , n = 1, 2, ...

Section 6.4 Gram’s Theorem on Regression

• Gram’s Theorem: Let X be a Hilbert space, and f, φ1, φ2, ..., φn are in X.Then the best square

approximation of f in the form of

ψ = c1φ1 + c2φ2 + ... + cnφn =

n∑
j=1

cjφj (6)

occurs when c1, c2, ..., cn solves

n∑
j=1

cj
〈
φi, φj

〉
= 〈φi, f〉 for i = 1, 2, ..., n (7)

• The matrix form of (7) is AC = F, where A =
[〈
φi, φj

〉]
is a symmetric metrix, C = (c1, ..., cn)T , F =

(〈φ1, f〉 , 〈φ2, f〉 , ..., 〈φn, f〉)
T .

• Proof: Let e (c1, ..., cn) = ‖ψ − f‖2 = 〈ψ − f, ψ − f〉 .Note that

∂ (ψ − f )

∂ci
=
∂ψ

∂ci
= φi



19

Then

∂e (c1, ..., cn)

∂ci
= 2

〈
∂ (ψ − f )

∂ci
, ψ − f

〉
= 2 〈φi, ψ − f〉 = 0

or

〈φi, ψ〉 = 〈φi, f〉 (8)

Expanding out equation (8)

〈φi, ψ〉 =

〈
φi,

n∑
j=1

cjφj

〉
=

n∑
j=1

cj
〈
φi, φj

〉
leads to (7)

• Geometrically, let S = span {φ1, φ2, ..., φn} , and ψ0 be the best approximation. Then ‖f − ψ0‖ =

dist (f, S) , and (f − ψ0) ⊥ S.To see this, we pick any φ ∈ S and consider

h (t) = ‖f − (ψ0 − tφ)‖2 = 〈f − ψ0 + tφ, f − ψ0 + tφ〉 .

Since (ψ0 − tφ) ∈ S, this function reaches min at t = 0. Now we write e = f − ψ0,then

h (t) = 〈e + tφ, e + tφ〉 = 〈e, e〉 + 2 〈φ, e〉 + t2 〈φ, φ〉 .
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Since it has a min at t = 0, h′ (0) = 0, i.e.,

h′ (0) = 〈φ, e〉 = 0 =⇒ (f − ψ0) ⊥ φ

Corollary: Gram’s Theorem can be extended to n = ∞. In other words, let X be a Hilbert space, and

f, φ1, φ2, ..., are in X. Assume that

∞∑
j=1

∥∥φj∥∥2
<∞

Then the best square approximation of f in the form of

ψ = c1φ1 + c2φ2 + ... =

∞∑
j=1

cjφj, for

∞∑
j=1

c2
j <∞

occurs when c1, c2, ... solves

∞∑
j=1

cj
〈
φi, φj

〉
= 〈φi, f〉 for i = 1, 2, ...

• Bessel’s Theorem on Regression: If φ1, φ2, ..., is an orthogonal sequence, then the best square
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fit by (6) occurs when

ci =
〈f, φi〉
‖φi‖

2

and the best approximation is

ψ =
〈f, φ1〉
‖φ1‖

2 φ1 +
〈f, φ2〉
‖φ2‖

2 φ2 + ... +
〈f, φn〉
‖φn‖

2 φn,

and the inequality holds

∞∑
i=1

〈f, φi〉
2

‖φi‖
2 ≤ ‖f‖

2
(9)

If moreover, φ1, φ2, ..., is an orthonormal sequence, then

ψ = 〈f, φ1〉φ1 + 〈f, φ2〉φ2 + ... =

∞∑
i=1

〈f, φi〉φi.

∞∑
i=1

〈f, φi〉
2 ≤ ‖f‖2

• Proof: Since
〈
φi, φj

〉
= δij, the results follow directly from (7).
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• Example 10: Find the best square fit in L2 [−π, π] of f (t) by

f0 =
a0

2
+

∞∑
n=1

(an cosnt + bn sinnt) .

Sol: According to Example 8,

1√
2π
,

1√
π

sin (nx) ,
1√
π

cos (nx) , n = 1, 2, ...

form orthonormal basis. So the best fit can be written as

f0 =
c0√
2π

+

∞∑
n=1

(
cn

cosnt√
π

+ dn
sinnt√
π

)
where

c0 =

∫ π

−π

f (t)√
2π
dt, so a0 =

1

π

∫ π

−π
f (t) dt

cn =

∫ π

−π

f (t) cosnt√
π

dt, so an =
1

π

∫ π

−π
f (t) cosntdt
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dn =

∫ π

−π

f (t) sinnt√
π

dt, so bn =
1

π

∫ π

−π
f (t) sinntdt

This is exactly the Fourier series of f

• In particular, for

f (t) = sgn (sin t)

an = 0, bn = 2
1 + (−1)n

nπ

f →
∞∑
n=1

2

(
1 + (−1)n

nπ

)
sinnt

• Example: Reconsider Example 4: using the following curve to best fit the data (xi, yi) , i = 1, 2, ..., n :

ψ (x, a) = c1φ1 (x) + c2φ2 (x) + ... + cmφm (x)

Sol: Recall that best-fit is to find a = (c1, c2, ..., cm) to minimize∑
(yi − ψ (xi, a))2
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Let V = Rn,

y =

y1
...

yn

 , Φk =

φk (x1)
...

φk (xn)



Ψ = c1Φ1 + c2Φ2 + ... + cmΦm =

ψ (x1, a)
...

ψ (xn, a)

 .
Then ∑

(yi − ψ (xi, a))2 = ‖y − Ψ‖

The the problem of best fit data (xi, yi) by ψ (x, a) is to best-fit of f is by Ψ in Hilbert space V. So we

can now use Gram’s Theorem,

m∞∑
j=1

cj 〈Φi,Φj〉 = 〈Φi, f〉 for i = 1, 2, ...,m

This is exactly (2).

• Homework: textbook - #6.3, 6.4, 6.8, 6.22, 6.31, 6.34


