Chapter 4 The Discrete Fourier Transform

Recall The Fourier Transform of a function $f(t)$ is

$$
F(t)=\int_{-\infty}^{\infty} f(s) e^{-2 \pi t s i} d s
$$

and Fourier series

$$
f(t) \sim \sum_{k=0}^{\infty}\left(a_{k} \cos (2 k \pi t)+b_{k} \sin (2 k \pi t)\right)
$$

The Fourier Series transform infinitely discrete signal stream $\left\{a_{n}, b_{n}\right\}$ to a continuous function in socalled the frequency domain. We also recall that Z-transform of x_{n} at $z=e^{-2 \pi t}$ is

$$
\sum_{k=0}^{\infty} x_{k} z^{-k}=\sum_{k=0}^{\infty} x_{k}\left(e^{-2 \pi t}\right)^{-k}=\sum_{k=0}^{\infty} x_{k} e^{2 \pi t k}=\sum_{k=0}^{\infty} x_{k}(\cos (2 k \pi t)+i \sin (2 k \pi t))
$$

- Section 4. . $^{k=0}$ Real-time ${ }^{k=0}$ Processing
- Consider finite data set $x=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
- In Chap 3, we learned that a causal filter F is basically a convolution $y=h * x$. In many applications, the original signal x is transmitted through a channel (noise). At the other end a distorted signal y is received. The question is how to recover x from y if we have knowledge about the noise. In other words, we want to solve x from equation $y=h * x$ with given h. This can be
achieved by applying Z - transform : $Z(y)=Z(h) Z(x)$. So $x=Z^{-1}(Z(y) / Z(h))$. But this process is very time consuming. It is difficult, if not impossible, to process in real time.
- Here we introduce another tool called "Discrete Fourier Transform" DFT that can be done in real time
- DFT of a finite signal stream x is a sequence of the frequency-domain objects

$$
\begin{aligned}
\hat{x} & \left.=F(x)=\left\{\hat{x}_{0}, \hat{x}_{1}, \ldots, \hat{x}_{n-1}\right\}, \quad \xi=e^{\frac{2 \pi}{n} i} \quad \text { (n-th complex root of } 1\right) \\
\hat{x}_{k} & =\sum_{j=0}^{n-1} x_{j} \xi^{-j k}=\sum_{j=0}^{n-1} x_{j} e^{-\frac{2 \pi j k}{n} i} \\
& =\sum_{j=0}^{n-1} x_{j}\left(\cos \left(\frac{2 \pi j k}{n}\right)-i \sin \left(\frac{2 \pi j k}{n}\right)\right)
\end{aligned}
$$

- Recall that matrix multiplication: for $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{n \times p}, A B=\left(c_{i j}\right)_{m \times p}$, where

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

- Using matrix form, let F be the $n \times n$ symmetric matrix

$$
F=\left[f_{i j}\right]_{i j}, f_{i j}=\xi^{-(i-1)(j-1)}
$$

$$
F=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi^{-1} & \xi^{-2} & \cdots & \xi^{-(n-1)} \\
1 & \xi^{-2} & \xi^{-4} & \cdots & \xi^{-2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{-(n-1)} & \xi^{-2(n-1)} & \cdots & \xi^{-(n-1)^{2}}
\end{array}\right], \hat{y}=\left[\begin{array}{c}
\hat{y}_{1} \\
\hat{y}_{2} \\
\hat{y}_{3} \\
\vdots \\
\hat{y}_{n}
\end{array}\right], x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right]
$$

and consider the matrix equation

$$
\hat{y}=F y
$$

- One can verify that, for $k=0,1, \ldots, n-1$, (note that the k -th component of vector x is $(x)_{k}=x_{k-1}$

$$
\hat{y}_{k+1}=\sum_{l=1}^{n} f_{k+1, l} y_{l}=\sum_{l=1}^{n} \xi^{-k(l-1)} y_{l} \stackrel{l-1=j}{=} \sum_{j=0}^{n-1} \xi^{-k j} x_{j}=\hat{x}_{k}
$$

- The DFT may be written in matrix form $\hat{x}=F x$

$$
\left[\begin{array}{c}
\hat{x}_{0} \\
\hat{x}_{1} \\
\hat{x}_{2} \\
\vdots \\
\hat{x}_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi^{-1} & \xi^{-2} & \cdots & \xi^{-(n-1)} \\
1 & \xi^{-2} & \xi^{-4} & \cdots & \xi^{-2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{-(n-1)} & \xi^{-2(n-1)} & \cdots & \xi^{-(n-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right]
$$

- Note if $\xi^{\alpha} \neq 1$

$$
\sum_{j=0}^{n-1} \xi^{j a}=\sum_{j=0}^{n-1}\left(\xi^{a}\right)^{j}=\frac{1-\xi^{n a}}{1-\xi^{\alpha}}=0 \quad\left(\xi^{n}=1\right)
$$

Note that $\xi^{\alpha} \neq 1$ for $0<\alpha<n$. So

$$
\sum_{j=0}^{n-1} \xi^{j a}=\left\{\begin{array}{cc}
n & \text { if } \xi^{a}=1(\text { or } a=k n) \\
0 & \text { otherwise }
\end{array}\right.
$$

- Note that $\bar{\xi}=e^{-\frac{2 \pi}{n} i}$. Now the (i, j)-entry if $F \bar{F}$ is

$$
\begin{aligned}
(F \bar{F})_{i j} & =\sum_{k=1}^{n} f_{i k} \bar{f}_{k j}=\sum_{k=1}^{n} \xi^{-(i-1)(k-1)} \xi^{(k-1)(j-1)} \\
& =\sum_{k=1}^{n} \xi^{(j-i)(k-1)}=\left\{\begin{array}{cc}
n & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

So $F \bar{F}=n I$, or $F^{-1}=\bar{F} / n$,

$$
x=\frac{1}{n} \bar{F} \hat{x}=\frac{1}{n} \bar{F} \hat{x}=\frac{1}{n} \sum_{j=0}^{n-1} \hat{x}_{j} \xi^{j k}
$$

- Section 4.2 Properties of DFT

- DFT is linear bijective maps from C^{n} to itself
- Circular convolution of two n-tuples h and $x: z=h * x=\left\{z_{0}, z_{1}, \ldots, z_{n-1}\right\}$

$$
\begin{aligned}
z_{k} & =\sum_{j=0}^{n-1} h_{j} x_{k-j}=h_{0} x_{k}+h_{1} x_{k-1}+\ldots+h_{k} x_{0}+h_{k+1} x_{n-1}+\ldots+h_{n-1} x_{k+1} \\
& =\left(h_{0}, h_{1}, \ldots, h_{n-1}\right) \circ\left(x_{k}, x_{k-1}, x_{k-2, \cdots}, x_{0}, x_{n-1}, x_{n-2, \cdots,} x_{k+1}\right)
\end{aligned}
$$

where the subscripts are calculated module n (i.e., $x_{-1}=x_{n-1}, x_{-2}=x_{n-2}, \ldots$).

- Note that for $w=x * h$

$$
w_{k}=\sum_{j=0}^{n-1} x_{j} h_{k-j}=x_{0} h_{k}+x_{1} h_{k-1}+\ldots+x_{k} h_{0}+x_{k+1} h_{n-1}+\ldots+x_{n-1} h_{k+1}
$$

So

$$
h * x=x * h .
$$

- Another way to look at $z=h * x: z_{k}=h_{0} x_{k}+\ldots+h_{k} x_{0}+h_{k+1} x_{n-1}+\ldots+h_{n-1} x_{k+1}$

$$
\begin{array}{r}
\left\{h_{0}, h_{1}, \ldots, h_{k}, h_{k+1}, \ldots, h_{n-1}\right\} \\
\left\{x_{0}, x_{1}, \ldots, x_{k},: x_{k+1}, \ldots, x_{n-1}\right\}
\end{array}
$$

- Example: Given $x=\{1,1,2\}, y=\{-1,3,4\}$.

$$
\begin{aligned}
\{1,: 1,2\}, & \{1,1,: 2\},\{1,1,2\} \\
\{-1,: 3,4\}, & \{-1,3,: 4\},
\end{aligned}
$$

So $x * y=\{9,10,5\}$

- One may extend x periodically to all integer $m: x_{m}=x_{m+k n}$, and extend h_{k} by 0 for $m \geq n$. With this extension, circular convolution is the same as the discrete convolution defined in Chapter 3. To see this, we write

$$
\begin{aligned}
\tilde{h} & =\left\{h_{0}, h_{1}, \ldots, h_{n-1}, 0,0, \ldots\right\}, \\
\tilde{x} & =\left\{\tilde{x}_{0}, \tilde{x}_{1} . \tilde{x}_{2}, \ldots\right\} \\
& =\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{0}, x_{1}, \ldots, x_{n-1}, x_{0}, x_{1}, \ldots, x_{n-1}, \ldots\right\} \\
\tilde{x}_{k} & =x_{k-j n} \text { for } k>n
\end{aligned}
$$

Let $\tilde{h} * \tilde{x}=\left\{u_{0}, u_{1}, u_{2}, \ldots u_{n-1}, \ldots\right\}$.Then

$$
u_{n+k}=\sum_{j=0}^{n+k} h_{j} \tilde{x}_{n+k-j}=\sum_{j=0}^{n-1} h_{j} \tilde{x}_{n+k-j}=\sum_{j=0}^{n-1} h_{j} x_{k-j}=z_{k}
$$

So in that sense

$$
h * x=\tilde{h} * \tilde{x}
$$

- Example: We know that for $x=\{1,1,2\}, y=(-1,3,4), x * y=(9,10,5)$. One can also use the discrete convolution to compute the circular convolution:

$$
\begin{aligned}
\tilde{x}= & \{1,1,2,0,0,0, \ldots\}, \tilde{y}=\{-1,3,4,-1,3,4,-1,3,4, \ldots\} \\
\tilde{x} * \tilde{y} & =\{-1,2,5,(-1+4+6),(3-1+8),(4+3-2), \ldots\} \\
& =\{-1,2,5,9,10,5,9,10,5, \ldots\}
\end{aligned}
$$

- Define coordinate-wise product \circ

$$
x \circ y=\left\{x_{0} y_{0}, x_{1} y_{1}, \ldots, x_{n-1} y_{n-1}\right\}
$$

$-F(x * y)=F(x) \circ F(y)($ or $x * y \mapsto \hat{x} \circ \hat{y})$
$-F(x \circ y)=F(x) * F(y) / n$

- Example (Using circular convolution to modify x_{k} by its surroundings)
(i) Let $h=\left\{h_{0}, h_{1}, 0,0, \ldots, 0, h_{n-1}\right\}$.Then

$$
z_{k}=\sum_{j=0}^{n-1} h_{j} x_{k-j}=h_{0} x_{k}+h_{1} x_{k-1}+h_{n-1} x_{k-(n-1)}=h_{0} x_{k}+h_{1} x_{k-1}+h_{n-1} x_{k+1}
$$

Therefore, x_{k} is modified only by itself and its two immediate neighbors, if $1 \leq k \leq n-2$,i.e., x_{k} is not an end points. For endpoints

$$
\begin{aligned}
z_{0} & =h_{0} x_{0}+h_{1} x_{-1}+h_{n-1} x_{-(n-1)}=h_{0} x_{0}+h_{1} x_{n-1}+h_{n-1} x_{1} \\
z_{n-1} & =h_{0} x_{n-1}+h_{1} x_{(n-1)-1}+h_{n-1} x_{(n-1)-(n-1)}=h_{0} x_{n-1}+h_{1} x_{n-2}+h_{n-1} x_{0}
\end{aligned}
$$

So x_{0} is modified by x_{0}, x_{1}, and x_{n-1} that is at the opposite side. This is called "edge effect"
(ii) Let $h=\left\{h_{0}, h_{1}, h_{2}, 0, \ldots, 0, h_{n-2}, h_{n-1}\right\}$.Then z_{k} is modified by itself, two immediately before and two immediately after

- Section 4.4 The Fast Fourier Transform (http://paulbourke.net/miscellaneous/dft/) - In DFT, each \hat{x}_{k} requires n multiplications. So total it requires $O\left(n^{2}\right)$ multiplication operations
- FFT can reduce the number to $O(n \ln n)$
- The Fast Fourier Transform is an algorithm that reduces the computer implementation time
- data set of even signal $x=\left\{x_{0}, x_{1}, \ldots, x_{2 m-1}\right\}, \quad n=2 m$
- Let $y=\left\{x_{0}, x_{2}, x_{4, \ldots}, x_{n-1}\right\}$ be all signals with even indices, and $z=\left\{x_{1}, x_{3}, \ldots, x_{n-1}\right\}$ be odd-index signals. Set

$$
\xi=e^{\frac{2 \pi}{n} i}=e^{\frac{\pi}{m} i}, \zeta=\xi^{2}=e^{\frac{2 \pi}{m} i} \text { (m-th complex root of unity) }
$$

- Then $D F T$ of frame length $n=2 m$:

$$
\begin{aligned}
\hat{x}_{k} & =\sum_{j=0}^{n-1} x_{j} \xi^{-j k}=\sum_{j=0, j=e v e n}^{n-1} x_{j} \xi^{-j k}+\sum_{j=0, j=o d d}^{n-1} x_{j} \xi^{-j k} \\
& =\sum_{l=0}^{m-1} x_{2 l} \xi^{-2 l k}+\sum_{l=0}^{m-1} x_{2 l+1} \xi^{-(2 l+1) k} \\
& =\sum_{l=0}^{m-1} y_{l} \zeta^{-l k}+\sum_{l=0}^{m-1} z_{l} \zeta^{-l k} \xi^{-k} \\
& =\hat{y}_{k}+\hat{z}_{k} \xi^{-k}, \quad k=0,1, \ldots 2 m-1
\end{aligned}
$$

- Note that for $k=1,2, \ldots, m-1, \quad \hat{y}_{k}$ and \hat{z}_{k} are $D F T$ of frame length m,
- For $d=m+k, \quad k=0,1, \ldots, m-1$, since $\zeta^{m}=\xi^{2 m}=1, \xi^{m}=e^{-\pi i}=-1$, we see

$$
\begin{aligned}
\zeta^{-l d} & =\zeta^{-l(m+k)}=\zeta^{-l m} \zeta^{-l k}=\zeta^{-l k} \\
\xi^{-d} & =\xi^{-m-k}=-\xi^{-k}
\end{aligned}
$$

Therefore

* For $k=0,1, \ldots, m-1$

$$
\begin{aligned}
\hat{x}_{k} & =\hat{y}_{k}+\hat{z}_{k} \xi^{-k}, \\
\hat{x}_{m+k} & =\hat{y}_{k}+\hat{z}_{k} \xi^{-(m+k)}=\hat{y}_{k}-\hat{z}_{k} \xi^{-k}
\end{aligned}
$$

* where \hat{y}_{k} and \hat{z}_{k} are DFT of frame length m
* So FFT algorithm reduces a DFT of frame length $2 m$ to the sum of two DFT of frame length m.
* Total number of multiplications required: $2(m)^{2}=n^{2} / 2$, half as much as DFT.
* If $n=2^{a}$, then apply one step of FFT, the number of multiplications reduces to

$$
\frac{n^{2}}{2}=2^{2 a-1}
$$

- Recall that $D F T$ has matrix form: $\hat{x}=F x$
- FFT basically is a matrix factorization: Let F_{n} be the DFT matrix of frame length n. Then

$$
F_{n}=B_{n}\left[\begin{array}{cc}
F_{m} & 0 \\
0 & F_{m}
\end{array}\right] P_{n}
$$

where

$$
B_{n}=\left[\begin{array}{cc}
I_{m} & D_{m} \\
I_{m} & D_{m}
\end{array}\right], \quad D_{m}=\operatorname{diag}\left\{1, \xi_{n}^{-1}, \xi_{n}^{-2}, \ldots, \xi_{n}^{-(m-1)}\right\}, \xi_{n}=e^{-\frac{2 \pi}{n}}
$$

and P_{n} is a permutation matrix of $0^{\prime} s$ and $1^{\prime} s$ such that

$$
\begin{aligned}
P_{n} x & =\left[\begin{array}{l}
y \\
z
\end{array}\right], y \text { even index term, } z \text { odd index term } \\
& =\left[x_{0}, x_{2}, x_{4}, \ldots, x_{2 m}, x_{1}, x_{3}, x_{5, \ldots}, x_{2 m-1}\right]
\end{aligned}
$$

$-n=4,6$

$$
P_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad P_{6}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- If $n=2 m=4 l$, then

$$
\begin{aligned}
F_{n} & =B_{n}\left[\begin{array}{cc}
F_{m} & 0 \\
0 & F_{m}
\end{array}\right] P_{n} \\
& =B_{n}\left[\begin{array}{cc}
B_{m}\left[\begin{array}{cc}
F_{l} & 0 \\
0 & F_{l}
\end{array}\right] P_{m} & 0 \\
0 & B_{m}\left[\begin{array}{cc}
F_{l} & 0 \\
0 & F_{l}
\end{array}\right] P_{m}
\end{array}\right] P_{n} \\
& =B_{n}\left[\begin{array}{cc}
B_{m} & 0 \\
0 & B_{m}
\end{array}\right]\left[\begin{array}{cccc}
F_{l} & 0 & 0 & 0 \\
0 & F_{l} & 0 & 0 \\
0 & 0 & F_{l} & 0 \\
0 & 0 & 0 & F_{l}
\end{array}\right]\left[\begin{array}{cc}
P_{m} & 0 \\
0 & P_{m}
\end{array}\right] P_{n}
\end{aligned}
$$

- Note that

$$
B_{2}=F_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- If $n=2^{a}$, then we may continue this kind of factorization:

$$
F_{n}=B_{n}\left[\begin{array}{cc}
B_{n / 2} & 0 \\
0 & B_{n / 2}
\end{array}\right] \cdots\left[\begin{array}{cccc}
B_{4} & 0 & \cdots & 0 \\
0 & B_{4} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{4}
\end{array}\right]\left[\begin{array}{ccccc}
F_{2} & 0 & 0 & \cdots & 0 \\
0 & F_{2} & 0 & \cdots & 0 \\
0 & 0 & F_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & F_{2}
\end{array}\right] Q_{n}
$$

where Q_{n} is the product of permutation matrices

$$
Q_{n}=\left[\begin{array}{cccc}
P_{4} & 0 & \cdots & 0 \\
0 & P_{4} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P_{4}
\end{array}\right] \ldots\left[\begin{array}{cc}
P_{n / 2} & 0 \\
0 & P_{n / 2}
\end{array}\right] P_{n}
$$

- Q_{n} depends only on $n=2^{a}$. It is basically re-arrangement of x. It can be pre-coded and stored for use with using computing power.
- Note that in the decomposition of F_{n}, it is the product of a total of a matrices that are (2×2) -blockdiagonal. So total number of multiplication operations for $n=2^{a}$:

$$
a(2 n)=2 n \log _{2} n
$$

- Section 4.5 Imaging Processing
- Two dimensional DFT
- For a two-dimensional data stream $X=\left[x_{i j}\right]_{m \times n}$, its DFT $\hat{X}=\left[\hat{x}_{i j}\right]_{m \times n}$ is

$$
\hat{x}_{i j}=\sum_{p, q=1}^{m, n} x_{p q} \xi_{m}^{=(p-1)(i-1)} \xi_{n}^{=(q=1)(j=1)}, \quad \xi_{k}=e^{\frac{2 \pi}{k} i} \text { is the primitive } k \text { th root of unity }
$$

$-\hat{X}=F_{m} X F_{n}, \quad F_{k}=\left[f_{i j}\right]_{k \times k}, \quad f_{i j}=\xi_{k}^{-(i-1)(j-1)}$

- For $H=\left[h_{i j}\right]_{m \times n}, X=\left[x_{i j}\right]_{m \times n}$, the $2 d$ circular convolution is defined as $Y=H * X=\left[y_{i j}\right]$

$$
y_{i j}=\sum_{p, q=1}^{m, n} h_{p q} x_{(i-p+1),(j-q+1)},
$$

where $x_{-p,-q}=x_{m-p, n-q}$.

- In particular, in the summation of $y_{i j}$, the contribution of $x_{i, j+1}$ is when

$$
\begin{aligned}
& i-p+1=i, i \pm m \quad \Longrightarrow p=1 \\
& j-q+1=j+1, j+1 \pm n \Longrightarrow q=n
\end{aligned}
$$

i.e.,

$$
h_{p q} x_{(i-p+1),(j-q+1)}=h_{1, n} x_{i, j+1}
$$

- Properties:
- Inverse: $X=\left(F_{m}\right)^{-1} \hat{X}\left(F_{n}\right)^{-1}=\bar{F}_{m} \hat{X} \bar{F}_{n} /(m n)$

$$
x_{i j}=\frac{1}{m n} \sum_{p, q=1}^{m, n} \hat{x}_{p q} \xi_{m}^{(p-1)(i-1)} \xi_{n}^{(q=1)(j=1)}
$$

$-X * Y \rightarrow \hat{X} \circ \hat{Y} \quad$ (entry-wise product: if $X=\left[x_{i j}\right], Y=\left[y_{i j}\right]$, then $X \circ Y=\left[x_{i j} y_{i j}\right]$
$-\hat{X} \circ \hat{Y} \rightarrow X * Y /(m n)$

- local modification and Edge Effect: Let $Y=H * X$ where

$$
H=\left[\begin{array}{ccc}
{\left[\begin{array}{cc}
K_{1,1} & K_{1,2} \\
K_{2,1} & K_{2,2}
\end{array}\right]} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & {\left[\begin{array}{cc}
L_{n-1, n-1} & L_{(n-1), n} \\
L_{n,(n-1)} & L_{n, n}
\end{array}\right]}
\end{array}\right]
$$

Then $y_{i j}=K_{1,1} x_{i, j}+$ surrounding

- Image Processing (black \& White):
- An B\&W image file consists of $m \times n$ pixels $X=\left[x_{i j}\right]_{m \times n}$. Each pixel $x_{i j}$ is a integer intensity representing a grey scale from 0 to W.
- For instance $m=n=128, W=255$,provide recognizable image of human face
- Enhance contrast, brightness, redeye correction, etc., may be realized by a filter, or circular convolution

$$
\begin{aligned}
Y & =H * X=\left[y_{i j}\right] \\
y_{i j} & =\sum_{p, q=1}^{m, n} h_{p q} x_{(i-p),(j-q)}
\end{aligned}
$$

it modifies the pixel (i,j) according to its nearby pixels with certain weight H if

$$
H=\left[\begin{array}{ccc}
K_{r \times s} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & L_{r \times s}
\end{array}\right]
$$

- However, this also could cause "edge effects" at the borders by the pixel at the opposite edge. This edge effects may be corrected by cropping.
- Deblurring: Suppose that an image file X is transmitted through a channel (such image scanning). This image is filtered by H to become a blurred image $Y=H * X$. It is very time consuming to recover the original image X by solving a huge system of equations. With DFT, we compute

$$
\hat{Y}=\hat{H} \circ \hat{X}=\left[\hat{h}_{i j} \hat{x}_{i j}\right]
$$

then solve

$$
\hat{x}_{i j}=\frac{\hat{y}_{i j}}{\hat{h}_{i j}}
$$

The original image pixel at (i,j) can be recovered by inverse DFT

$$
\begin{aligned}
x_{i j} & =\frac{1}{m n} \sum_{p, q=1}^{m, n} \hat{x}_{p q} \xi_{m}^{(p-1)(i-1)} \xi_{n}^{(q=1)(j=1)} \\
& =\frac{1}{m n} \sum_{p, q=1}^{m, n} \frac{\hat{y}_{p q}}{\hat{h}_{p q}} \xi_{m}^{(p-1)(i-1)} \xi_{n}^{(q=1)(j=1)}
\end{aligned}
$$

- Example in 72 (see also project 4.15)
- Homework: 4.3,4.4,4.8, 4.12, 4.13
- Project: 4.9, 4.15

