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Chapter 4 The Discrete Fourier Transform
Recall The Fourier Transform of a function f (t) is

F (t) =

∫ ∞
−∞

f (s) e−2πtsids

and Fourier series

f (t) ˜

∞∑
k=0

(ak cos (2kπt) + bk sin (2kπt))

The Fourier Series transform infinitely discrete signal stream {an, bn} to a continuous function in so-

called the frequency domain. We also recall that Z-transform of xn at z = e−2πt is

∞∑
k=0

xkz
−k =

∞∑
k=0

xk
(
e−2πt

)−k
=

∞∑
k=0

xke
2πtk =

∞∑
k=0

xk (cos (2kπt) + i sin (2kπt))

• Section 4.1 Real-time Processing
– Consider finite data set x = {x0, x1, ..., xn−1}
– In Chap 3, we learned that a causal filter F is basically a convolution y = h ∗ x. In many applica-

tions, the original signal x is transmitted through a channel (noise). At the other end a distorted

signal y is received. The question is how to recover x from y if we have knowledge about the

noise. In other words, we want to solve x from equation y = h ∗ x with given h. This can be
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achieved by applying Z − transform : Z (y) = Z (h)Z (x) . So x = Z−1 (Z (y) /Z (h)) . But this

process is very time consuming. It is difficult, if not impossible, to process in real time.

– Here we introduce another tool called "Discrete Fourier Transform" DFT that can be done in real

time

– DFT of a finite signal stream x is a sequence of the frequency-domain objects

x̂ = F (x) = {x̂0, x̂1, ..., x̂n−1} , ξ = e
2π
n
i (n-th complex root of 1)

x̂k =

n−1∑
j=0

xjξ
−jk =

n−1∑
j=0

xje
−2πjk

n
i

=

n−1∑
j=0

xj

(
cos

(
2πjk

n

)
− i sin

(
2πjk

n

))
– Recall that matrix multiplication: for A = (aij)m×n , B = (bij)n×p , AB = (cij)m×p , where

cij =

n∑
k=1

aikbkj.

– Using matrix form, let F be the n× n symmetric matrix

F = [fij]ij , fij = ξ−(i−1)(j−1)
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F =


1 1 1 · · · 1

1 ξ−1 ξ−2 · · · ξ−(n−1)

1 ξ−2 ξ−4 · · · ξ−2(n−1)
...

...
... . . . ...

1 ξ−(n−1) ξ−2(n−1) · · · ξ−(n−1)
2

 , ŷ =


ŷ1
ŷ2
ŷ3
...

ŷn

 , x =


x0
x1
x2
...

xn−1


and consider the matrix equation

ŷ = Fy

– One can verify that, for k = 0, 1, ..., n− 1, (note that the k-th component of vector x is (x)k = xk−1

ŷk+1 =

n∑
l=1

fk+1,lyl =

n∑
l=1

ξ−k(l−1)yl
l−1=j

=

n−1∑
j=0

ξ−kjxj = x̂k

– The DFT may be written in matrix form x̂ = Fx
x̂0
x̂1
x̂2
...

x̂n−1

 =


1 1 1 · · · 1

1 ξ−1 ξ−2 · · · ξ−(n−1)

1 ξ−2 ξ−4 · · · ξ−2(n−1)
...

...
... . . . ...

1 ξ−(n−1) ξ−2(n−1) · · · ξ−(n−1)
2




x0
x1
x2
...

xn−1
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– Note if ξα 6= 1

n−1∑
j=0

ξja =

n−1∑
j=0

(ξa)j =
1− ξna

1− ξα = 0 (ξn = 1)

Note that ξα 6= 1 for 0 < α < n. So

n−1∑
j=0

ξja =

{
n if ξa = 1 (or a = kn)

0 otherwise

– Note that ξ̄ = e−
2π
n
i. Now the (i, j)-entry if FF̄ is(

FF̄
)
ij

=

n∑
k=1

fikf̄kj =

n∑
k=1

ξ−(i−1)(k−1)ξ(k−1)(j−1)

=

n∑
k=1

ξ(j−i)(k−1) =

{
n if i = j

0 otherwise

So FF̄ = nI , or F−1 = F̄ /n,

x =
1

n
F̄ x̂ =

1

n
F̄ x̂ =

1

n

n−1∑
j=0

x̂jξ
jk
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• Section 4.2 Properties of DFT
– DFT is linear bijective maps from Cn to itself

– Circular convolution of two n-tuples h and x : z = h ∗ x = {z0, z1, ..., zn−1}

zk =

n−1∑
j=0

hjxk−j = h0xk + h1xk−1 + ... + hkx0 + hk+1xn−1 + ... + hn−1xk+1

= (h0, h1, ..., hn−1) ◦ (xk, xk−1, xk−2,..., x0, xn−1, xn−2,..., xk+1)

where the subscripts are calculated module n (i.e., x−1 = xn−1, x−2 = xn−2, ...).

– Note that for w = x ∗ h

wk =

n−1∑
j=0

xjhk−j = x0hk + x1hk−1 + ... + xkh0 + xk+1hn−1 + ... + xn−1hk+1

So

h ∗ x = x ∗ h.
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– Another way to look at z = h ∗ x : zk = h0xk + ... + hkx0 + hk+1xn−1 + ... + hn−1xk+1{
−→

h0, h1, ..., hk,
...

−→
hk+1, ..., hn−1

}
{
x0, x1, ..., xk,

←−

... xk+1, ..., xn−1
←−

}
– Example: Given x = {1, 1, 2} , y = {−1, 3, 4} .{

1, ... 1, 2
}
,
{

1, 1, ... 2
}
, { 1, 1, 2}{

−1, ... 3, 4
}
,
{
−1, 3, ... 4

}
, {−1, 3, 4}

So x ∗ y = {9, 10, 5}
– One may extend x periodically to all integer m : xm = xm+kn, and extend hk by 0 for m ≥ n. With

this extension, circular convolution is the same as the discrete convolution defined in Chapter 3.

To see this, we write

h̃ = {h0, h1, ..., hn−1, 0, 0, ...} ,
x̃ = {x̃0, x̃1.x̃2, ...}

= {x0, x1, ..., xn−1, x0, x1, ..., xn−1, x0, x1, ..., xn−1, ...}
x̃k = xk−jn for k > n.
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Let h̃ ∗ x̃ = {u0, u1, u2, ...un−1, ...} .Then

un+k =

n+k∑
j=0

hjx̃n+k−j =

n−1∑
j=0

hjx̃n+k−j =

n−1∑
j=0

hjxk−j = zk

So in that sense

h ∗ x = h̃ ∗ x̃

– Example: We know that for x = {1, 1, 2} , y = (−1, 3, 4) , x ∗ y = (9, 10, 5) .One can also use the

discrete convolution to compute the circular convolution:

x̃ = {1, 1, 2, 0, 0, 0, ...} , ỹ = {−1, 3, 4,−1, 3, 4,−1, 3, 4, ...}

x̃ ∗ ỹ = {−1, 2, 5, (−1 + 4 + 6), (3− 1 + 8) , (4 + 3− 2) , ...}
= {−1, 2, 5, 9, 10, 5, 9, 10, 5, ...}

– Define coordinate-wise product ◦

x ◦ y = {x0y0, x1y1, ..., xn−1yn−1}

– F (x ∗ y) = F (x) ◦ F (y) (or x ∗ y 7→ x̂ ◦ ŷ)

– F (x ◦ y) = F (x) ∗ F (y) /n
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– Example (Using circular convolution to modify xk by its surroundings)

(i) Let h = {h0, h1, 0, 0, ..., 0, hn−1} .Then

zk =

n−1∑
j=0

hjxk−j = h0xk + h1xk−1 + hn−1xk−(n−1) = h0xk + h1xk−1 + hn−1xk+1

Therefore, xk is modified only by itself and its two immediate neighbors, if 1 ≤ k ≤ n − 2,i.e.,

xk is not an end points. For endpoints

z0 = h0x0 + h1x−1 + hn−1x−(n−1) = h0x0 + h1xn−1 + hn−1x1

zn−1 = h0xn−1 + h1x(n−1)−1 + hn−1x(n−1)−(n−1) = h0xn−1 + h1xn−2 + hn−1x0

So x0 is modified by x0, x1,and xn−1 that is at the opposite side. This is called "edge effect"

(ii) Let h = {h0, h1, h2, 0, ..., 0, hn−2, hn−1} .Then zk is modified by itself, two immediately before and

two immediately after

• Section 4.4 The Fast Fourier Transform (http://paulbourke.net/miscellaneous/dft/)

– In DFT, each x̂k requires n multiplications. So total it requires O
(
n2
)

multiplication operations

– FFT can reduce the number to O (n lnn)

– The Fast Fourier Transform is an algorithm that reduces the computer implementation time

– data set of even signal x = {x0, x1, ..., x2m−1} , n = 2m
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– Let y = {x0, x2, x4,..., xn−1} be all signals with even indices, and z = {x1, x3, ..., xn−1} be odd-index

signals. Set

ξ = e

2π

n
i

= e

π

m
i
, ζ = ξ2 = e

2π

m
i
(m-th complex root of unity)

– Then DFT of frame length n = 2m:

x̂k =

n−1∑
j=0

xjξ
−jk =

n−1∑
j=0,j=even

xjξ
−jk +

n−1∑
j=0,j=odd

xjξ
−jk

=

m−1∑
l=0

x2lξ
−2lk +

m−1∑
l=0

x2l+1ξ
−(2l+1)k

=

m−1∑
l=0

ylζ
−lk +

m−1∑
l=0

zlζ
−lkξ−k

= ŷk + ẑkξ
−k, k = 0, 1, ...2m− 1

– Note that for k = 1, 2, ...,m− 1, ŷk and ẑk are DFT of frame length m,
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– For d = m + k, k = 0, 1, ...,m− 1, since ζm = ξ2m = 1, ξm = e−πi = −1, we see

ζ−ld = ζ−l(m+k) = ζ−lmζ−lk = ζ−lk

ξ−d = ξ−m−k = −ξ−k

Therefore

∗ For k = 0, 1, ...,m− 1

x̂k = ŷk + ẑkξ
−k,

x̂m+k = ŷk + ẑkξ
−(m+k) = ŷk − ẑkξ−k

∗ where ŷk and ẑk are DFT of frame length m

∗ So FFT algorithm reduces a DFT of frame length 2m to the sum of two DFT of frame length m.

∗ Total number of multiplications required: 2 (m)2 = n2/2,half as much as DFT.

∗ If n = 2a,then apply one step of FFT, the number of multiplications reduces to

n2

2
= 22a−1

– Recall that DFT has matrix form: x̂ = Fx
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– FFT basically is a matrix factorization: Let Fn be the DFT matrix of frame length n.Then

Fn = Bn

[
Fm 0

0 Fm

]
Pn

where

Bn =

[
Im Dm

Im Dm

]
, Dm = diag

{
1, ξ−1n , ξ−2n , ..., ξ−(m−1)n

}
, ξn = e

−
2π

n

and Pn is a permutation matrix of 0′s and 1′s such that

Pnx =

[
y

z

]
, y even index term, z odd index term

= [x0, x2, x4, ..., x2m, x1, x3, x5,..., x2m−1]

– n = 4, 6

P4 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , P6 =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1
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– If n = 2m = 4l, then

Fn = Bn

[
Fm 0

0 Fm

]
Pn

= Bn


Bm

[
Fl 0

0 Fl

]
Pm 0

0 Bm

[
Fl 0

0 Fl

]
Pm

Pn

= Bn

[
Bm 0

0 Bm

]
Fl 0 0 0

0 Fl 0 0

0 0 Fl 0

0 0 0 Fl


[
Pm 0

0 Pm

]
Pn

– Note that

B2 = F2 =

[
1 1

1 −1

]



13

– If n = 2a, then we may continue this kind of factorization:

Fn = Bn

[
Bn/2 0

0 Bn/2

]
...


B4 0 · · · 0

0 B4 · · · 0
...

... . . . ...

0 0 · · · B4



F2 0 0 · · · 0

0 F2 0 · · · 0

0 0 F2 · · · 0
...

...
... . . . ...

0 0 0 · · · F2

Qn

where Qn is the product of permutation matrices

Qn =


P4 0 · · · 0

0 P4 · · · 0
...

... . . . ...

0 0 · · · P4

 ...
[
Pn/2 0

0 Pn/2

]
Pn

– Qn depends only on n = 2a. It is basically re-arrangement of x. It can be pre-coded and stored for

use with using computing power.

– Note that in the decomposition of Fn, it is the product of a total of amatrices that are (2× 2)−block-

diagonal. So total number of multiplication operations for n = 2a:

a (2n) = 2n log2 n

• Section 4.5 Imaging Processing
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• Two dimensional DFT

– For a two-dimensional data stream X = [xij]m×n ,its DFT X̂ = [x̂ij]m×n is

x̂ij =

m,n∑
p,q=1

xpqξ
=(p−1)(i−1)
m ξ=(q=1)(j=1)n , ξk = e

2π
k
i is the primitive kth root of unity

– X̂ = FmXFn, Fk = [fij]k×k , fij = ξ
−(i−1)(j−1)
k

– For H = [hij]m×n , X = [xij]m×n ,the 2d circular convolution is defined as Y = H ∗X = [yij]

yij =

m,n∑
p,q=1

hpqx(i−p+1),(j−q+1),

where x−p,−q = xm−p,n−q.

– In particular, in the summation of yij, the contribution of xi,j+1 is when

i− p + 1 = i, i±m =⇒ p = 1,

j − q + 1 = j + 1, j + 1± n =⇒ q = n

i.e.,

hpqx(i−p+1),(j−q+1) = h1,nxi,j+1
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• Properties:

– Inverse: X = (Fm)−1 X̂ (Fn)−1 = F̄mX̂F̄n/ (mn)

xij =
1

mn

m,n∑
p,q=1

x̂pqξ
(p−1)(i−1)
m ξ(q=1)(j=1)n

– X ∗ Y → X̂ ◦ Ŷ (entry-wise product: if X = [xij] , Y = [yij] , then X ◦ Y = [xijyij]

– X̂ ◦ Ŷ → X ∗ Y/ (mn)

– local modification and Edge Effect: Let Y = H ∗X where

H =


[
K1,1 K1,2

K2,1 K2,2

]
0 0

0 0 0

0 0

[
Ln−1,n−1 L(n−1),n
Ln,(n−1) Ln,n

]


Then yij = K1,1xi,j+surrounding

• Image Processing (black & White):

– An B&W image file consists of m × n pixels X = [xij]m×n . Each pixel xij is a integer intensity

representing a grey scale from 0 to W.
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– For instance m = n = 128, W = 255,provide recognizable image of human face

– Enhance contrast, brightness, redeye correction, etc., may be realized by a filter, or circular con-

volution

Y = H ∗X = [yij] ,

yij =

m,n∑
p,q=1

hpqx(i−p),(j−q)

it modifies the pixel (i,j) according to its nearby pixels with certain weight H if

H =

Kr×s 0 0

0 0 0

0 0 Lr×s


– However, this also could cause "edge effects" at the borders by the pixel at the opposite edge.

This edge effects may be corrected by cropping.

• Deblurring: Suppose that an image file X is transmitted through a channel (such image scanning).

This image is filtered by H to become a blurred image Y = H ∗ X. It is very time consuming to

recover the original image X by solving a huge system of equations. With DFT, we compute

Ŷ = Ĥ ◦ X̂ =
[
ĥijx̂ij

]
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then solve

x̂ij =
ŷij

ĥij

The original image pixel at (i,j ) can be recovered by inverse DFT

xij =
1

mn

m,n∑
p,q=1

x̂pqξ
(p−1)(i−1)
m ξ(q=1)(j=1)n

=
1

mn

m,n∑
p,q=1

ŷpq

ĥpq
ξ(p−1)(i−1)m ξ(q=1)(j=1)n

– Example in 72 (see also project 4.15)

• Homework: 4.3,4.4,4.8, 4.12, 4.13

• Project: 4.9, 4.15


