Chapter 3 Data Acquisition and Manipulation

In this chapter we introduce z-transform, or the discrete Laplace Transform, to solve linear recursions.

- Section 3.1 z-transform
- Given a data stream $x=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, let

$$
X=Z(x)=\sum_{k=0}^{\infty} \frac{x_{k}}{z^{k}}
$$

$-x \longmapsto X$ is called a z-transform

- Example: $x=\{a, a, a, \ldots\}, X=a z(z-1)^{-1}$
- Example: $x=\left\{1, a, a^{2}, a^{3}, \ldots\right\}, \quad X=z(z-a)^{-1}$
- Data x_{i} could be a complex number.
- For instance, the Sine wave $x(t)=\sin \omega t$ is sampled every T seconds to yield the signals

$$
x_{k}=\sin (\omega T k)=\operatorname{Im}\left(e^{k \omega T i}\right), \quad k=0,1,2, \ldots
$$

So by the Euler formula

$$
\begin{aligned}
X & =\sum_{k=0}^{\infty} \frac{\sin (\omega T k)}{z^{k}}=\sum_{k=0}^{\infty} \frac{e^{k \omega T i}-e^{-k \omega T i}}{2 i z^{k}} \\
& =\frac{1}{2 i} \sum_{k=0}^{\infty}\left(\frac{e^{\omega T i}}{z}\right)^{k}-\frac{1}{2 i} \sum_{k=0}^{\infty}\left(\frac{e^{-\omega T i}}{z}\right)^{k} \\
& =\frac{1}{2 i}\left(1-\frac{e^{\omega T i}}{z}\right)^{-1}-\frac{1}{2 i}\left(1-\frac{e^{-\omega T i}}{z}\right)^{-1} \\
& =\frac{1}{2 i} \frac{z}{z-e^{\omega T i}}-\frac{1}{2 i} \frac{z}{z-e^{-\omega T i}} \\
& =\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}
\end{aligned}
$$

- Linearity Property:

$$
Z(a x+b x)=a Z(x)+b Z(x)
$$

- Delay of $x: \quad x_{(-1)}=\left\{0, x_{0}, x_{1}, \ldots\right\}$

$$
X_{-1}=Z\left(x_{(-1)}\right)=\sum_{k=1}^{\infty} \frac{x_{k-1}}{z^{k}}=\frac{X}{z}
$$

- Delay of $x_{(-1)}: x_{(-2)}=\left\{0,0, x_{0}, x_{1}, \ldots\right\}=\left(x_{(-1)}\right)_{(-1)}$

$$
X_{-2}=Z\left(x_{(-2)}\right)=\frac{1}{z} Z\left(x_{(-1)}\right)=\frac{X}{z^{2}}
$$

- In general

$$
\begin{equation*}
Z\left(x_{(-j)}\right)=\frac{X}{z^{j}} \tag{1}
\end{equation*}
$$

- Forward of $x: x_{(+1)}=\left\{x_{1}, x_{2}, \ldots\right\}$

$$
X_{+1}=Z\left(x_{(+1)}\right)=\sum_{k=0}^{\infty} \frac{x_{k+1}}{z^{k}}=z \sum_{k=0}^{\infty} \frac{x_{k+1}}{z^{k+1}}=z \sum_{k=0}^{\infty} \frac{x_{k}}{z^{k}}-x_{0} z=z\left(X-x_{0}\right)=z X-x_{0} z
$$

In general for k th forward of $x: x_{(+k)}$, its $Z-$ transform $X_{+k}=Z\left(x_{(+k)}\right)$

$$
X_{+k}=z^{k} X-x_{0} z^{k}-x_{1} z^{k-1}-x_{2} z^{k-2}-\ldots-x_{k-1} z
$$

- For any sequence $x=\left\{x_{k}\right\}_{k=0}$, for convenience we may write

$$
Z\left(x_{k}\right)=Z(x) .
$$

- For a shift $\left\{x_{k-1}\right\}_{k=0}=\left\{x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\}$ of x with given initial value x_{-1}, we write

$$
\begin{aligned}
X_{k-1} & =Z\left(x_{k-1}\right)=Z\left(\left\{x_{k-1}\right\}_{k=0}\right) \\
& =x_{-1}+\frac{x_{0}}{z}+\frac{x_{1}}{z^{2}}+\ldots \\
& =x_{-1}+\frac{1}{z}\left(x_{0}+\frac{x_{1}}{z}+\ldots\right) \\
& =x_{-1}+\frac{Z(x)}{z}
\end{aligned}
$$

- For a p th shift $\left\{x_{k-p}\right\}_{k=0}=\left\{x_{-p}, x_{-p+1}, \ldots x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\}$ with given initial values $x_{-p}, x_{-p+1}, \ldots x_{-1}$, we have accordingly

$$
\begin{align*}
X_{k-p} & =Z\left(x_{k-p}\right)=Z\left(\left\{x_{k-p}\right\}_{k=0}\right) \\
& =x_{-p}+\frac{x_{-p+1}}{z}+\ldots+\frac{x_{-1}}{z^{p-1}}+\frac{x_{0}}{z^{p}}+\frac{x_{1}}{z^{p+1}}+\ldots \\
& =x_{-p}+\frac{x_{-p+1}}{z}+\ldots+\frac{x_{-1}}{z^{p-1}}+\frac{1}{z^{p}}\left(x_{0}+\frac{x_{1}}{z}+\ldots\right) \\
& =x_{-p}+\frac{x_{-p+1}}{z}+\ldots+\frac{x_{-1}}{z^{p-1}}+\frac{1}{z^{p}} Z(x) \tag{2}
\end{align*}
$$

- For instance, If $y_{k}=a x_{k-1}+b x_{k-2}$, and

$$
\begin{align*}
Y & =Z\left(y_{k}\right)=Z\left(a x_{k-1}+b x_{k-2}\right)=a Z\left(x_{k-1}\right)+b Z\left(x_{k-2}\right) \\
& =a\left(x_{-1}+\frac{Z\left(x_{k}\right)}{z}\right)+b\left(x_{-2}+\frac{x_{-1}}{z}+\frac{Z\left(x_{k}\right)}{z^{2}}\right) \\
& =a x_{-1}+b x_{-2}+\frac{b x_{-1}}{z}+\left(\frac{a}{z}+\frac{b}{z^{2}}\right) Z(x) \tag{3}
\end{align*}
$$

- Section 3.2 Linear Recursions
- Consider the equation for all $k=n, n+1, \ldots$

$$
x_{k}=a_{1} x_{k-1}+a_{2} x_{k-2}+\ldots+a_{n} x_{k-n}
$$

where a_{k} are fixed constant. $x_{-1}, x_{-2}, \ldots, x_{-n}$ are given initially, and are called initial data.

- We can use z-transform to solve x by using the above calculation:
(i) Apply z-trans form to both sides.
(ii) note that $Z\left(x_{k-p}\right)$ is given by (2)
(iii) Solve $X=Z(x)$
(iv) Recover x_{k}
- Example (page 34) Solve

$$
x_{k}=x_{k-1}+2 x_{k-2}, \quad x_{-1}=1 / 2, \quad x_{-2}=-1 / 4
$$

Solution: By (3) with $a=1, b=2$, we have

$$
\begin{aligned}
Z\left(x_{k}\right) & =a x_{-1}+b x_{-2}+\frac{b x_{-1}}{z}+\left(\frac{a}{z}+\frac{b}{z^{2}}\right) Z\left(x_{k}\right) \\
& =\frac{1}{z}+\left(\frac{1}{z}+\frac{2}{z^{2}}\right) Z\left(x_{k}\right)
\end{aligned}
$$

Set $w=1 / z$, then

$$
\begin{aligned}
Z\left(x_{k}\right) & =\frac{1}{z}\left(1-\frac{1}{z}-\frac{2}{z^{2}}\right)^{-1}=\frac{w}{1-w-2 w^{2}}=\frac{w}{(1-2 w)(1+w)} \\
& =\frac{1}{3(1-2 w)}-\frac{1}{3(1+w)} \\
& =\frac{1}{3} \sum_{k=0}(2 w)^{k}-\frac{1}{3} \sum_{k=0}(-w)^{k}=\frac{1}{3} \sum_{k=0}\left[2^{k}-(-1)^{k}\right] w^{k} \\
& =\sum_{k=0} \frac{2^{k}-(-1)^{k}}{3} \frac{1}{z^{k}}
\end{aligned}
$$

Ans:

$$
x_{k}=\frac{2^{k}-(-1)^{k}}{3} \text { for } k>0
$$

- Problem in page 35: $x_{k}=a x_{k-1}+b$, for $k=1,2, \ldots, x_{0}=0.7 \%$. Find x_{k}. There are two ways to solve it.
* (1) Set $y_{k}=x_{k+1}$. So $y_{-1}=x_{0}=0.7 \%$ is given, and $y_{k}=a y_{k-1}+b$ for $k=0,1, \ldots$ Use the relation we derived earlier,

$$
\begin{gathered}
Y=a Y_{-1}+Z(b)=a\left(z^{-1} Y+y_{-1}\right)+\frac{b z}{z-1} \\
\left(1-a z^{-1}\right) Y=a y_{-1}+\frac{b z}{z-1} \\
Y=\frac{a y_{-1}}{1-a z^{-1}}+\frac{b z}{(z-1)\left(1-a z^{-1}\right)}=\frac{\left(b+a y_{-1}\right) z^{2}-a y_{-1} z}{(z-1)(z-a)} \\
=\left(b+a x_{0}\right)+\frac{A}{(z-1)}+\frac{B}{(z-a)}
\end{gathered}
$$

* (2) From $x_{0}=a x_{-1}+b$, we solve $x_{-1}=\left(x_{0}-b\right) / z$. Then, we proceed to solve

$$
\begin{aligned}
X & =\frac{\left(b+a x_{-1}\right) z^{2}-a x_{-1} z}{(z-1)(z-a)}=\frac{x_{0} z^{2}-a x_{-1} z}{(z-1)(z-a)} \\
& =x_{0}+\frac{C}{(z-1)}+\frac{D}{(z-a)}
\end{aligned}
$$

- Convolution: For $x=\left\{x_{k}\right\}, h=\left\{h_{k}\right\}$, the discrete convolution product $y=h * x$ is defined as follows

$$
y_{k}=h_{0} x_{k}+h_{1} x_{k-1}+\ldots+h_{k} u_{0}=\sum_{j=0}^{k} h_{j} x_{k-j}=\sum_{j=0}^{k} x_{j} h_{k-j}
$$

- In the frequency domain, $Z(h * u)=Z(h) Z(u)$, or $Y=H U$. This is because the above expression indicate power series product. In fact

$$
\begin{aligned}
& \left(\sum_{k=0}^{\infty} a_{k} z^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} z^{k}\right) \\
& =\left(a_{0}+a_{1} z+a_{2} z^{2}+\ldots\right)\left(b_{0}+b_{1} z+b_{2} z^{2}+\ldots\right) \\
& =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) z+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) z^{2}+\ldots
\end{aligned}
$$

- Examples: (1) for $\delta^{(0)}=\{1,0,0,0, \ldots\}, u * \delta^{(0)}=u$, (2) $\delta^{(1)}=\{0,1,0,0,0, \ldots\}=\delta_{(-1)}, u * \delta^{(1)}=$ $u_{(-1)}$, (3) $u * \delta^{(j)}=u_{(-j)}$
- Section 3.3 Filters
- A filter F is a device or algorithm that turns one stream of signals to another more useful one. We assume following three properties
(i) F is linear: $F(a u+b v)=a F(u)+b F(v)$
(ii) F is causal, i.e., the output depends on past and current inputs but not future inputs. In other
words, if $y=F(u)$, then

$$
u_{k}=0 \text { for all } k<k_{0} \text { implies } y_{k}=0 \text { for all } k<k_{0} .
$$

(iii) F is time invariant: if $y=F(u)$, then the same is true for delay shift, i.e.,

$$
F\left\{u_{\left(-k_{0}\right)}\right\}=\left\{y_{\left(-k_{0}\right)}\right\}
$$

In other words, if $F: u \rightarrow y$, then

$$
F:\left\{u_{k}, u_{k+1}, \ldots\right\} \rightarrow\left\{y_{k}, y_{k+1}, \ldots\right\}
$$

- Let $\delta=\{1,0,0,0, \ldots\}$ be the unit impulse, and $h=F(\delta)=\left\{h_{0}, h_{1}, \ldots\right\}$. Then for any u

$$
y=F(u)=h * u
$$

where $*$ stands for discrete convolution product defined as follows

$$
y_{k}=h_{0} u_{k}+h_{1} u_{k-1}+\ldots+h_{k} u_{0}=\sum_{j=0}^{k} h_{j} u_{k-j}=\sum_{j=0}^{k} u_{j} h_{k-j}
$$

- Proof: Let $\delta^{(j)}=\delta_{(-j)}=\{0, \ldots, 0,1,0, \ldots\}$ be a $j-$ delay, where 1 is in $j-t h$ position. Then by
property \#3, $F\left(\delta^{(j)}\right)=h_{(-j)}=\left\{0, \ldots, 0, h_{0}, h_{1}, \ldots\right\}$ Now

$$
\begin{gathered}
u=\sum_{j=0}^{\infty} u_{j} \delta_{(-j)} \\
y=F(u)=\sum_{j=0}^{\infty} u_{j} F\left(\delta_{(-j)}\right)=\sum_{j=0}^{\infty} u_{j} h_{(-j)}
\end{gathered}
$$

. Note that

$$
\left(h_{(-j)}\right)_{k}=0 \text { if } k<j, \quad\left(h_{(-j)}\right)_{k}=h_{k-j} \text { if } k \geq j
$$

so for any k

$$
y_{k}=\sum_{j=0}^{\infty} u_{j}\left(h_{(-j)}\right)_{k}=\sum_{j=0}^{\infty} u_{j} h_{k-j}=\sum_{j=0}^{k} u_{j} h_{k-j}=(h * u)_{k}
$$

- $H(z)=Z(h)$ is called transfer function of F with impulse response h
- Examples: (1) $u * \delta^{(j)}=u_{(-j)}$, (2) $Z\left(u_{(-j)}\right)=Z\left(u * \delta^{(j)}\right)=U Z\left(\delta^{(j)}\right)=U z^{-j}$
- Example (page 38) Consider the filter with the finite impulse response (FIR)

$$
h=\{1 / 2,1 / 2,0,0, \ldots\}=\frac{1}{2} \delta^{(0)}+\frac{1}{2} \delta^{(1)}
$$

For any signal $u=\left\{u_{0}, u_{1}, \ldots\right\}$,

$$
y=u * h=\frac{1}{2} u * \delta^{(0)}+\frac{1}{2} u * \delta^{(1)}=\frac{1}{2} u+\frac{1}{2} h_{(-1)} .
$$

This can also be seen directly

$$
y_{k}=\sum_{j=0}^{k} u_{j} h_{k-j}=u_{k} h_{0}+u_{k-1} h_{1}=\frac{u_{k}+u_{k-1}}{2}, \quad y_{0}=u_{0} h_{0}=\frac{u_{0}}{2}
$$

So

$$
y=\frac{u+u_{(-1)}}{2}, \quad Y=\frac{1}{2} U+\frac{1}{2 z} U=\left(\frac{1+z^{-1}}{2}\right) U
$$

The transfer function is

$$
H=\frac{1+z^{-1}}{2}
$$

- Problem (page 38): Suppose that in a room with various sounds. One want to eliminate frequency 60 Hz sound wave. In other words, the component $A \sin (120 \pi t)$ needs to be eliminated. In theory,
to do so, we need to add

$$
-A \sin (120 \pi t)=A \sin (120 \pi t-\pi)=A \sin \left(120 \pi\left(t-\frac{1}{120}\right)\right.
$$

The black curve is sine wave of frquency 60 Hz with period $1 / 60$ the red has frequency 720 Hz with period $1 / 720$. If we sample using 720 Hz , i.e., pick up a signal every $T=1 / 720$ second, it will meet the max of the black wave at $t=1 / 120=6 T, 3 / 120=18 T, 5 / 120=30 T, 42 T$, \ldots, i.e., every $12 T$.

$$
\text { scale }=1: \frac{1}{120}=6 T
$$

Let $u_{k}=$ signal picked up at time $k T$. So $u_{6}, u_{18}, u_{30}, \ldots$ will be 60 Hz signal. To cancel it, we use the min point: at the second max point u_{18}, we use the previous min point u_{12} to cancel it. Thus the filter $y_{k}=u_{k}+u_{k-6}$, or $Y=\left(1+z^{-6}\right) U$

- - Downside: Green wave has frequency 180 Hz . This filter could also cancel this frequency sound.
- Section 3.4 Stability
- We say a filter with impulse response h is stable if bounded inputs u yield bounded outputs y.
- Theorem: A filter is stable iff the transfer function $H(z)$ absolutely converges on the unit circle $|z|=1$, i.e.,

$$
\sum_{j=0}^{\infty}\left|h_{j}\right|<\infty
$$

- If H has a pole at $z=z_{0}$ of order k, i.e.,

$$
H(z)=\frac{G(z)}{\left(z-z_{0}\right)^{k}}, \quad G(z) \text { is bounded near } z_{0}
$$

then it is stable only if $\left|z_{0}\right|<1$. This is because for all $|z|>1$,

$$
\left|z-z_{0}\right| \geq|z|-\left|z_{0}\right|>1-\left|z_{0}\right|>0
$$

Thus

$$
|H(z)|=\frac{|G(z)|}{\left|z-z_{0}\right|^{k}} \leq \frac{|G(z)|}{\left(1-\left|z_{0}\right|\right)^{k}} \text { is bounded for all } z \text {. }
$$

- Example in page 40.
- Section 3.5 Polar and Bode Plots
- We shall introduce two graphing methods to exam efficacy of filters
- Theorem. Let F be a stable filter with real impulse response $h=\left\{h_{0}, h_{1}, \ldots\right\}$ and transfer function $H(z)=Z(h)$.Then after transients have died away, the response to the sinusoidal signal $u_{k}=$ $\sin \omega k T$ is also a sinusoid $y_{k}=r \sin (\omega k T+\phi)$ of the same frequency but different amplitude and phase angle

$$
r=\left|H\left(e^{i \omega T}\right)\right|, \quad \phi=\arg H\left(e^{i \omega T}\right) .
$$

- Proof: Recall that $y=F(u)=h * u$. In particular

$$
y_{k}=\sum_{j=0}^{k} h_{j} u_{k-j}
$$

For $u_{k}=\xi^{k}$,

$$
\begin{aligned}
y_{k} & =\sum_{j=0}^{k} h_{j} \xi^{k-j}=\xi^{k} \sum_{j=0}^{k} h_{j} \xi^{-j} \\
& =\xi^{k} \sum_{j=0}^{\infty} h_{j} \xi^{-j}-\xi^{k} \sum_{j=k+1}^{\infty} h_{j} \xi^{-j}=\xi^{k} H(\xi)+o(1),
\end{aligned}
$$

$$
\text { where } o(1) \rightarrow 0 \text { as } k \rightarrow \infty \text { (by assumption of after dying away) }
$$

Set

$$
H(\xi)=r e^{i \phi}, \quad \xi=e^{i \omega T}
$$

then, the response to $u_{k}=\xi^{k}=e^{i \omega k T}$ is

$$
\begin{aligned}
y_{k} & =\xi^{k} H(\xi)+o(1)=r e^{i \phi} \xi^{k}+o(1)=r e^{i(\omega k T+\phi)}+o(1) \\
& =r[\cos (\omega k T+\phi)+i \sin (\omega k T+\phi)]+o(1)
\end{aligned}
$$

Since h_{k} are real, the response to the imaginary parts of $e^{i \omega k T}$, i.e., $\operatorname{Im}\left(u_{k}\right)=\sin \omega k T$, should be the imaginary parts of the response to u_{k}

$$
\operatorname{Im}\left(y_{k}\right)==r \sin (\omega k T+\phi)+o(1) .
$$

- The graph $(r(\omega), \phi(\omega))$ in polar coordinate is called Polar plots. $T=$ smapling period, $1 / T$ sampling
rate.
- Two separate graphs, $r=r(\omega)$, and $\phi=\phi(\omega)$ are called Bode plots (Bode-ee).
- Bode plot for r is often scaled in decibels (dB) of powers $20 \log _{10} r$ (see section 3.8)
- Example in page 41: $h=\{1 / 2,1 / 2,0,0,0, \ldots\}, y_{k}=\left(u_{k}+u_{k-1}\right) / 2, H(z)=\left(1+z^{-1}\right) 2$. So

$$
H\left(e^{i \omega T}\right)=\frac{1+e^{-i \omega T}}{2}=\frac{1+\cos \omega T-i \sin \omega T}{2}
$$

So

$$
r=\sqrt{\frac{1+\cos \omega T}{2}}, \quad \phi=-\arctan \frac{\sin \omega T}{1+\cos \omega T}
$$

- Polar plot

- Bode plots

- Section 3.7 Closing the loop
- See chart in page 47. We add a feedback filter H to improve stability

$$
(U-H Y) P=Y \Longrightarrow Y=\frac{P}{1+H P} U
$$

- For any plant

$$
P=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
$$

that has a pole at $z=a$. So for $a>1$, it is unstable. If we add a constant filter $H=k$. Then

$$
Y=\frac{P}{1+k P} U=\frac{z}{(1+k) z-a} U
$$

that has a pole at

$$
z=\frac{a}{1+k}<1 \text { if } k>a-1
$$

- Example (at bottom of page 48): For the planr $P=\left(1-2 z^{-1}\right)^{-1}, \quad a=2$. We add filter $k=3 / 2>1$ will make it stable.
- Homework: 3.1, 3.2, 3.7, 3.8, 3.18, 3.20, 3.21
- Find explicit formula for Fibonacci sequence: $F_{0}=F_{1}=1, F_{k+2}=F_{k}+F_{k+1}$ for $k=0,1,2, \ldots$ Then
write a Matlab routine to varify your answer. Would answer be different if we start with

$$
F_{0}=1, F_{1}=2, F_{k+2}=F_{k}+F_{k+1} \text { for } k=0,1,2, \ldots ?
$$

Or

$$
F_{0}=2, F_{1}=3, F_{k+2}=F_{k}+F_{k+1} \text { for } k=0,1,2, \ldots ?
$$

- Project: 3.10 (optional)

