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Chapter 3 Data Acquisition and Manipulation

In this chapter we introduce z − transform, or the discrete Laplace Transform, to solve linear recur-

sions.

• Section 3.1 z-transform

– Given a data stream x = {x0, x1, x2, ...} , let

X = Z (x) =

∞∑
k=0

xk
zk

– x 7−→ X is called a z − transform
– Example: x = {a, a, a, ...} , X = az (z − 1)−1

– Example: x =
{
1, a, a2, a3, ...

}
, X = z (z − a)−1

– Data xi could be a complex number.

– For instance, the Sine wave x (t) = sinωt is sampled every T seconds to yield the signals

xk = sin (ωTk) = Im
(
ekωT i

)
, k = 0, 1, 2, ...
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So by the Euler formula

X =

∞∑
k=0

sin (ωTk)

zk
=

∞∑
k=0

ekωT i − e−kωT i
2izk

=
1

2i

∞∑
k=0

(
eωTi

z

)k
− 1

2i

∞∑
k=0

(
e−ωTi

z

)k
=
1

2i

(
1− eωTi

z

)−1
− 1

2i

(
1− e−ωTi

z

)−1
=
1

2i

z

z − eωTi −
1

2i

z

z − e−ωTi

=
z sinωT

z2 − 2z cosωT + 1
– Linearity Property:

Z (ax + bx) = aZ (x) + bZ (x)

– Delay of x : x(−1) = {0, x0, x1, ...}

X−1 = Z
(
x(−1)

)
=

∞∑
k=1

xk−1
zk

=
X

z
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– Delay of x(−1) : x(−2) = {0, 0, x0, x1, ...} =
(
x(−1)

)
(−1)

X−2 = Z
(
x(−2)

)
=
1

z
Z
(
x(−1)

)
=
X

z2

– In general

Z
(
x(−j)

)
=
X

zj
(1)

– Forward of x : x(+1) = {x1, x2, ...}

X+1 = Z
(
x(+1)

)
=

∞∑
k=0

xk+1
zk

= z

∞∑
k=0

xk+1
zk+1

= z

∞∑
k=0

xk
zk
− x0z = z (X − x0) = zX − x0z

In general for kth forward of x : x(+k), its Z − transform X+k = Z
(
x(+k)

)
X+k = zkX − x0zk − x1zk−1 − x2zk−2 − ...− xk−1z

– For any sequence x = {xk}k=0 , for convenience we may write

Z (xk) = Z (x) .
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– For a shift {xk−1}k=0 = {x−1, x0, x1, x2, ...} of x with given initial value x−1,we write

Xk−1 = Z (xk−1) = Z ({xk−1}k=0)
= x−1 +

x0
z
+
x1
z2
+ ...

= x−1 +
1

z

(
x0 +

x1
z
+ ...

)
= x−1 +

Z (x)

z

– For a pth shift {xk−p}k=0 = {x−p, x−p+1, ...x−1, x0, x1, x2, ...}with given initial values x−p, x−p+1, ...x−1,we

have accordingly

Xk−p = Z (xk−p) = Z
(
{xk−p}k=0

)
= x−p +

x−p+1
z

+ ... +
x−1
zp−1

+
x0
zp
+

x1
zp+1

+ ...

= x−p +
x−p+1
z

+ ... +
x−1
zp−1

+
1

zp

(
x0 +

x1
z
+ ...

)
= x−p +

x−p+1
z

+ ... +
x−1
zp−1

+
1

zp
Z (x) (2)
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– For instance, If yk = axk−1 + bxk−2, and

Y = Z (yk) = Z (axk−1 + bxk−2) = aZ (xk−1) + bZ (xk−2)

= a

(
x−1 +

Z (xk)

z

)
+ b

(
x−2 +

x−1
z
+
Z (xk)

z2

)
= ax−1 + bx−2 +

bx−1
z
+

(
a

z
+
b

z2

)
Z (x) (3)

• Section 3.2 Linear Recursions

– Consider the equation for all k = n, n + 1, ...

xk = a1xk−1 + a2xk−2 + ... + anxk−n

where ak are fixed constant. x−1, x−2, ..., x−n are given initially, and are called initial data.

– We can use z − transform to solve x by using the above calculation:

(i) Apply z − transform to both sides.

(ii) note that Z (xk−p) is given by (2)

(iii) Solve X = Z (x)

(iv) Recover xk

– Example (page 34) Solve

xk = xk−1 + 2xk−2, x−1 = 1/2, x−2 = −1/4
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Solution: By (3) with a = 1, b = 2, we have

Z (xk) = ax−1 + bx−2 +
bx−1
z
+

(
a

z
+
b

z2

)
Z (xk)

=
1

z
+

(
1

z
+
2

z2

)
Z (xk)

Set w = 1/z, then

Z (xk) =
1

z

(
1− 1

z
− 2

z2

)−1
=

w

1− w − 2w2 =
w

(1− 2w) (1 + w)

=
1

3 (1− 2w) −
1

3 (1 + w)

=
1

3

∑
k=0

(2w)k − 1
3

∑
k=0

(−w)k = 1
3

∑
k=0

[
2k − (−1)k

]
wk

=
∑
k=0

2k − (−1)k

3

1

zk

Ans:

xk =
2k − (−1)k

3
for k > 0
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– Problem in page 35: xk = axk−1 + b, for k = 1, 2, ..., x0 = 0.7%. Find xk. There are two ways to

solve it.

∗ (1) Set yk = xk+1. So y−1 = x0 = 0.7% is given, and yk = ayk−1+b for k = 0, 1, .... Use the relation

we derived earlier,

Y = aY−1 + Z (b) = a
(
z−1Y + y−1

)
+

bz

z − 1

(
1− az−1

)
Y = ay−1 +

bz

z − 1

Y =
ay−1

1− az−1 +
bz

(z − 1) (1− az−1) =
(b + ay−1) z

2 − ay−1z
(z − 1) (z − a)

= (b + ax0) +
A

(z − 1) +
B

(z − a)
∗ (2) From x0 = ax−1 + b, we solve x−1 = (x0 − b) /z. Then, we proceed to solve

X =
(b + ax−1) z

2 − ax−1z
(z − 1) (z − a) =

x0z
2 − ax−1z

(z − 1) (z − a)

= x0 +
C

(z − 1) +
D

(z − a)
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– Convolution: For x = {xk} , h = {hk} , the discrete convolution product y = h ∗x is defined as

follows

yk = h0xk + h1xk−1 + ... + hku0 =

k∑
j=0

hjxk−j =

k∑
j=0

xjhk−j

– In the frequency domain, Z (h ∗ u) = Z (h)Z (u) , or Y = HU. This is because the above expres-

sion indicate power series product. In fact( ∞∑
k=0

akz
k

)( ∞∑
k=0

bkz
k

)
=
(
a0 + a1z + a2z

2 + ...
) (
b0 + b1z + b2z

2 + ...
)

= a0b0 + (a0b1 + a1b0) z + (a0b2 + a1b1 + a2b0) z
2 + ...

– Examples: (1) for δ(0) = {1, 0, 0, 0, ...} , u ∗ δ(0) = u, (2) δ(1) = {0, 1, 0, 0, 0, ...} = δ(−1), u ∗ δ(1) =
u(−1), (3) u ∗ δ(j) = u(−j)

• Section 3.3 Filters

– A filter F is a device or algorithm that turns one stream of signals to another more useful one. We

assume following three properties

(i) F is linear: F (au + bv) = aF (u) + bF (v)

(ii) F is causal, i.e., the output depends on past and current inputs but not future inputs. In other
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words, if y = F (u) , then

uk = 0 for all k < k0 implies yk = 0 for all k < k0.

(iii) F is time invariant: if y = F (u) , then the same is true for delay shift, i.e.,

F
{
u(−k0)

}
=
{
y(−k0)

}
In other words, if F : u→ y, then

F : {uk, uk+1, ...} → {yk, yk+1, ...}

– Let δ = {1, 0, 0, 0, ...} be the unit impulse, and h = F (δ) = {h0, h1, ...} .Then for any u

y = F (u) = h ∗ u

where ∗ stands for discrete convolution product defined as follows

yk = h0uk + h1uk−1 + ... + hku0 =
k∑
j=0

hjuk−j =
k∑
j=0

ujhk−j

– Proof: Let δ(j) = δ(−j) = {0, ..., 0, 1, 0, ...} be a j − delay, where 1 is in j − th position. Then by
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property #3, F
(
δ(j)
)
= h(−j) = {0, ..., 0, h0, h1, ...}Now

u =

∞∑
j=0

ujδ(−j)

y = F (u) =

∞∑
j=0

ujF
(
δ(−j)

)
=

∞∑
j=0

ujh(−j)

. Note that (
h(−j)

)
k
= 0 if k < j,

(
h(−j)

)
k
= hk−j if k ≥ j

so for any k

yk =

∞∑
j=0

uj
(
h(−j)

)
k
=

∞∑
j=0

ujhk−j =

k∑
j=0

ujhk−j = (h ∗ u)k

– H (z) = Z (h) is called transfer function of F with impulse response h

– Examples: (1) u ∗ δ(j) = u(−j), (2) Z
(
u(−j)

)
= Z

(
u ∗ δ(j)

)
= UZ

(
δ(j)
)
= Uz−j
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– Example (page 38) Consider the filter with the finite impulse response (FIR)

h = {1/2, 1/2, 0, 0, ...} = 1
2
δ(0) +

1

2
δ(1)

For any signal u = {u0, u1, ...} ,

y = u ∗ h = 1
2
u ∗ δ(0) + 1

2
u ∗ δ(1) = 1

2
u +

1

2
h(−1).

This can also be seen directly

yk =

k∑
j=0

ujhk−j = ukh0 + uk−1h1 =
uk + uk−1

2
, y0 = u0h0 =

u0
2

So

y =
u + u(−1)

2
, Y =

1

2
U +

1

2z
U =

(
1 + z−1

2

)
U

The transfer function is

H =
1 + z−1

2

– Problem (page 38): Suppose that in a room with various sounds. One want to eliminate frequency

60 Hz sound wave. In other words, the component A sin (120πt) needs to be eliminated. In theory,
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to do so, we need to add

−A sin (120πt) = A sin (120πt− π) = A sin

(
120π(t− 1

120

)
The black curve is sine wave of frquency 60 Hz with period 1/60 the red has frequency 720 Hz

with period 1/720. If we sample using 720 Hz, i.e., pick up a signal every T = 1/720 second, it will

meet the max of the black wave at t = 1/120 = 6T, 3/120 = 18T, 5/120 = 30T, 42T, ..., i.e., every

12T.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y



13

scale = 1 :
1

120
= 6T

Let uk = signal picked up at time kT. So u6, u18, u30,... will be 60 Hz signal. To cancel it, we use the

min point: at the second max point u18, we use the previous min point u12 to cancel it. Thus the filter

yk = uk + uk−6, or Y =
(
1 + z−6

)
U

• – Downside: Green wave has frequency 180 Hz. This filter could also cancel this frequency sound.

• Section 3.4 Stability

– We say a filter with impulse response h is stable if bounded inputs u yield bounded outputs y.

– Theorem: A filter is stable iff the transfer function H (z) absolutely converges on the unit circle

|z| = 1, i.e.,

∞∑
j=0

|hj| <∞

– If H has a pole at z = z0 of order k, i.e.,

H (z) =
G (z)

(z − z0)k
, G (z) is bounded near z0

then it is stable only if |z0| < 1. This is because for all |z| > 1,

|z − z0| ≥ |z| − |z0| > 1− |z0| > 0.
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Thus

|H (z)| = |G (z)|
|z − z0|k

≤ |G (z)|
(1− |z0|)k

is bounded for all z.

– Example in page 40.

• Section 3.5 Polar and Bode Plots

• We shall introduce two graphing methods to exam efficacy of filters

• Theorem. Let F be a stable filter with real impulse response h = {h0, h1, ...} and transfer function

H (z) = Z (h) .Then after transients have died away, the response to the sinusoidal signal uk =

sinωkT is also a sinusoid yk = r sin (ωkT + φ) of the same frequency but different amplitude and

phase angle

r =
∣∣H (eiωT)∣∣ , φ = argH

(
eiωT

)
.

• Proof: Recall that y = F (u) = h ∗ u. In particular

yk =

k∑
j=0

hjuk−j
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For uk = ξk,

yk =

k∑
j=0

hjξ
k−j = ξk

k∑
j=0

hjξ
−j

= ξk
∞∑
j=0

hjξ
−j − ξk

∞∑
j=k+1

hjξ
−j = ξkH (ξ) + o (1) ,

where o (1)→ 0 as k →∞ (by assumption of after dying away)

Set

H (ξ) = reiφ, ξ = eiωT

then, the response to uk = ξk = eiωkT is

yk = ξkH (ξ) + o (1) = reiφξk + o (1) = rei(ωkT+φ) + o (1)

= r [cos (ωkT + φ) + i sin (ωkT + φ)] + o (1)

Since hk are real, the response to the imaginary parts of eiωkT , i.e., Im (uk) = sinωkT, should be the

imaginary parts of the response to uk

Im (yk) == r sin (ωkT + φ) + o (1) .

• The graph (r (ω) , φ (ω)) in polar coordinate is called Polar plots. T = smapling period, 1/T sampling
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rate.

• Two separate graphs, r = r (ω) , and φ = φ (ω) are called Bode plots (Bode-ee).

• Bode plot for r is often scaled in decibels (dB) of powers 20 log10 r (see section 3.8)

• Example in page 41: h = {1/2, 1/2, 0, 0, 0, ...} , yk = (uk + uk−1) /2, H (z) =
(
1 + z−1

)
2. So

H
(
eiωT

)
=
1 + e−iωT

2
=
1 + cosωT − i sinωT

2

So

r =

√
1 + cosωT

2
, φ = − arctan sinωT

1 + cosωT

– Polar plot
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• Section 3.7 Closing the loop
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– See chart in page 47. We add a feedback filter H to improve stability

(U −HY )P = Y =⇒ Y =
P

1 +HP
U

– For any plant

P =
1

1− az−1 =
z

z − a
that has a pole at z = a. So for a > 1, it is unstable. If we add a constant filter H = k. Then

Y =
P

1 + kP
U =

z

(1 + k) z − aU

that has a pole at

z =
a

1 + k
< 1 if k > a− 1

– Example (at bottom of page 48): For the planr P =
(
1− 2z−1

)−1
, a = 2. We add filter k = 3/2 > 1

will make it stable.

• Homework: 3.1, 3.2, 3.7, 3.8, 3.18, 3.20, 3.21

• Find explicit formula for Fibonacci sequence: F0 = F1 = 1, Fk+2 = Fk + Fk+1 for k = 0, 1, 2, ... Then
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write a Matlab routine to varify your answer. Would answer be different if we start with

F0 = 1, F1 = 2, Fk+2 = Fk + Fk+1 for k = 0, 1, 2, ...?

Or

F0 = 2, F1 = 3, Fk+2 = Fk + Fk+1 for k = 0, 1, 2, ...?

• Project: 3.10 (optional)


