Chapter 11 Partial Differential Equations

- Review partial derivative/vector calculus: Let $f(x, y, z)$ be a function, $F(x, y, z)=(P(x, y, z), Q, R)$ be a vector field.
- Gradient operator

$$
\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

- Gradient of f

$$
\nabla f=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

- Divergence of vector field F

$$
\begin{aligned}
\nabla \circ F & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \circ F(x, y, z)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \circ(P, Q, R) \\
& =\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
\end{aligned}
$$

- The curl of F

$$
\begin{aligned}
\nabla \times F & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times F(x, y, z)=\operatorname{det}\left[\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right] \\
& =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \vec{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \vec{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k}
\end{aligned}
$$

- The Laplacian $\Delta=\nabla \circ \nabla$

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

- Section11.2 Some PDEs
(a) Transport Equation for $u(t, x, y, z)$

$$
\frac{\partial u}{\partial t}+\vec{c} \circ \nabla u=f
$$

where \vec{c} is a constant vector
(b) Conservation laws:

$$
\frac{\partial u}{\partial t}+\nabla \circ(u \vec{C})=0
$$

where $\vec{C}(x, y, z)$. If $\vec{C}(x, y, z)=\vec{c}$, it becomes a transport.
(c) The heat equation

$$
\frac{\partial u}{\partial t}=c^{2} \nabla^{2} u=c^{2} \Delta u
$$

(d) The wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \Delta u
$$

(e) Laplace's equation

$$
\Delta u=0
$$

(f) Poisson's equation

$$
\Delta u=f
$$

(g) Schrodinger's equation for $\psi=u(t, x, y, z)+i v(t, x, y, z)$:

$$
i \frac{\partial \psi}{\partial t}=-c^{2} \Delta \psi+a(x, y, z) \psi
$$

(h) The Plate/beam equation (biharmonic)

$$
\frac{\partial u}{\partial t}=-c^{2} \Delta^{2} u=-c^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

(i) The Navier-Stokes equation

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\frac{1}{\rho} \nabla p+(u \circ \nabla) u & =\nu \Delta^{2} u \\
\rho_{t}+\nabla \circ \rho u & =0
\end{aligned}
$$

(j) The Euler equation: $\nu=0$

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\frac{1}{\rho} \nabla p+(u \circ \nabla) u & =0 \\
\rho_{t}+\nabla \circ \rho u & =0
\end{aligned}
$$

(k) The Maxwell equations for E (electric field) and B (magnetic field)

$$
\begin{aligned}
\nabla \circ E & =\frac{\rho}{\varepsilon} \\
\nabla \times B & =\mu\left(J+\varepsilon \frac{\partial E}{\partial t}\right) \\
\nabla \times E & =-\frac{\partial B}{\partial t} \\
\nabla \circ B & =0
\end{aligned}
$$

See: https://en.wikipedia.org/wiki/Maxwell\'s_equations

- Section 11.3 Separation of variables:
- Well-posedness: We consider the heat equation

$$
\frac{\partial u}{\partial t}=\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

If $u(t, x, y, z)$ is stationary, i.e., independent of time t, it reduce to the Laplace equation

$$
0=\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

In one spatial dimension $u=u(t, x)$

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

In two spatial dimension $u=(t, x, y)$

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
\end{gathered}
$$

Let Ω be a spatial domain in $R^{n}, n=1,2,3$. We call Ω a rectangular domain if

$$
\begin{align*}
\Omega= & (a, b) \times(c, d) \times(e, f) \\
= & \{(x, y, z): a<x<b, c<y<d, e<z<f\} \tag{3-D}\\
& \Omega=(a, b) \times(c, d) \\
& =\{(x, y, z): a<x<b, c<y<d\} \quad \text { (2-D) }
\end{align*}
$$

or $\Omega=(a, b)$ if in 1-D. The boundary of D is

$$
\partial D=\{(x, y, z): x=a, \text { or } x=b, \text { or } y=c, \text { or } y=d, \text { or } z=e, \text { or } z=f\}
$$

If $\Omega=B_{r}(a, b, c)=b a l l$ centered at (a, b, c) with the radius r, then $\partial D=$ sphere.

- Cauchy problem: Let $\Omega=R^{n}$. A Cauchy problem is referred to the following initial value problem

$$
\frac{\partial u}{\partial t}=\Delta u, u(0, x, y, z)=u_{0}(x, y, z)
$$

- Boundary Value problem for Laplace's equation:
- Dirichlet Boundary Value problem:

$$
\begin{aligned}
\Delta u & =0 \\
u(x, y, z) & =f(x, y, z) \text { for }(x, y, z) \text { on } \partial D
\end{aligned}
$$

- Neumann Boundary Value problem:

$$
\begin{aligned}
\Delta u & =0 \\
\frac{\partial u(x, y, z)}{\partial \vec{n}} & =f(x, y, z) \text { for }(x, y, z) \text { on } \partial D
\end{aligned}
$$

where $\vec{n}(x, y, z)=$ the unit normal vector pointing to outside of Ω, and directional derivative is

$$
\frac{\partial u(x, y, z)}{\partial \vec{n}}=\nabla u \circ \vec{n}
$$

- Mixed (Robin) Boundary Value problem:

$$
\begin{aligned}
\Delta u & =0 \\
\frac{\partial u(x, y, z)}{\partial \vec{n}}+\beta u(x, y, z) & =f(x, y, z) \text { for }(x, y, z) \text { on } \partial D
\end{aligned}
$$

- Initial-Boundary Value problem for the heat equation:
- Dirichlet Boundary Value problem:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\Delta u \\
u(t, x, y, z) & =f(x, y, z) \text { for }(x, y, z) \text { on } \partial D \\
u(0, x, y, z) & =g(x, y, z)
\end{aligned}
$$

- Neumann Boundary Value problem:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\Delta u \\
\frac{\partial u(t, x, y, z)}{\partial \vec{n}} & =f(x, y, z) \text { for }(x, y, z) \text { on } \partial D \\
u(0, x, y, z) & =g(x, y, z)
\end{aligned}
$$

where $\vec{n}(x, y, z)=$ the unit normal vector pointing to outside of Ω, and directional derivative is

$$
\frac{\partial u(x, y, z)}{\partial \vec{n}}=\nabla u \circ \vec{n}
$$

- Mixed (Robin) Boundary Value problem:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\Delta u \\
\frac{\partial u(t, x, y, z)}{\partial \vec{n}}+\beta u(x, y, z) & =f(x, y, z) \text { for }(x, y, z) \text { on } \partial D \\
u(0, x, y, z) & =g(x, y, z)
\end{aligned}
$$

- Separation of variable for The heat equation in a rectangular domain in 1D: $u(t, x)=T(t) X(x)$
- Transport Equation: Let $u=f\left(x-c_{1} t, y-c_{2} t, z-c_{3} t\right)$.Then

$$
\begin{aligned}
& u_{t}=-c_{1} f_{x}-c_{2} f_{y}-c_{3} f_{z}=-\vec{c} \circ \nabla f, \quad \nabla u=\nabla f \\
& u_{t}+\vec{c} \circ \nabla u=-\vec{c} \circ \nabla f+\vec{c} \circ \nabla f=0
\end{aligned}
$$

So for any $f, u=f\left(x-c_{1} t, y-c_{2} t, z-c_{3} t\right)$ is a solution. Any solution is constant along

$$
(x, y, z)=\vec{c} t
$$

- D'Alembert's formula for wave equation in 1-D

$$
\frac{\partial^{2} u(t, x)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(t, x)}{\partial x^{2}}
$$

Changing variables

$$
\begin{gathered}
\xi=x-c t \\
\delta=x+c t \\
w(\xi, \delta)=u(t, x)
\end{gathered}
$$

then

$$
\begin{aligned}
& u_{t}=w_{\xi}(-c)+w_{\delta} c, u_{x}=w_{\xi}+w_{\delta} \\
& u_{t t}=\left(w_{\xi}(-c)+w_{\delta} c\right)_{t} \\
&=-c\left(w_{\xi \xi}(-c)+w_{\xi \delta} c\right)+c\left(w_{\delta \xi}(-c)+w_{\delta \delta} c\right) \\
&=c^{2} w_{\xi \xi}-2 c^{2} w_{\xi \delta}+c^{2} w_{\delta \delta} \\
& \quad u_{x}=w_{\xi}+w_{\delta} \\
& \quad u_{x x}=w_{\xi \xi}+2 w_{\xi \delta}+w_{\delta \delta}
\end{aligned}
$$

Substituting into the wave equation, we find

$$
\begin{gathered}
\left(c^{2} w_{\xi \xi}-2 c^{2} w_{\xi \delta}+c^{2} w_{\delta \delta}\right)=c^{2}\left(w_{\xi \xi}+2 w_{\xi \delta}+w_{\delta \delta}\right) \\
-2 c^{2} w_{\xi \delta}=2 c^{2} w_{\xi \delta} \Longrightarrow w_{\xi \delta}=0 \\
w=f(\xi)+g(\delta)=f(x-c t)+g(x+c t)
\end{gathered}
$$

- Another approach:

$$
D_{t}=\frac{\partial}{\partial t}, \quad D_{x}=\frac{\partial}{\partial x}
$$

So
and the wave equation is

$$
\left(D_{t}+c D_{x}\right)\left(D_{t}-D_{x}\right) u=\left(D_{t}^{2}-c^{2} D_{t}^{2}\right) u=u_{t t}-c^{2} u_{x x}=0
$$

Note both

$$
\begin{aligned}
\left(D_{t}-D_{x}\right) u & =0 \\
\left(D_{t}+c D_{x}\right) u & =0
\end{aligned}
$$

are transport equations with velocity c and $-c$. So general solutions are, respectively,

$$
f(x+c t), g(x-c t)
$$

Consider, for instance $c=1, \Omega=(0,1)$. The boundary condition at $x=0$ and $x=1$ must satisfy a "reflective condition" to avoid conflict. In other words, there are compatibility condition needed to coordinate initial and boundary conditions.

- Homework: 11.6, 11.8, 11.9

