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Chapter 1 Statistical Reasoning

•Why statistics?
– Uncertainty of nature (weather, earth movement, etc. )

– Uncertainty in observation/sampling/measurement

– Variability of human operation/error

– imperfection of machines, etc.

•Section 1.1 Basics of Probability Theory
( http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf )

– The classical definition of probability states that the probability of an event is the number of out-

comes favorable to the event, divided by the total number of outcomes, where all outcomes are

equally likely. For instance, in coin toss, the probability of seeing head = 1/2. This definition is very

restrictive: it considers only experiments with a finite number of outcomes, and, more seriously,

circular (no matter how you look at it "equally likely" essentially means "equally probable.") The

concept of "equally probable" involves the concept of probability. Thus we are using the concept

of probability to define probability itself.

• Mathematical definition of probability:
– ∗ Ω – a set (e.g., Rn,part of integers, etc.) called sample space representing all possible outcome.
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· In coin toss example, Ω = {head, tail}
· In dice toss, Ω = {1, 2, 3, 4, 5, 6} . In an experiment of tossing a dice, one may define other

outcomes. For instance, N representing even and O representing odd number. So outcome

could be a subset of Ω.This leads to "events"

· An event is a subset of the sample space.

∗ F – collection of events

· F must be closed in set operations (Boolean algebra), and must contain Ω and ∅ (empty set).

For instance, if A,Bare two events, so are A ∩B,A ∪B, Ac = Ω\A, Bc = Ω\B,etc.

· We call such F a σ − field, or Boolean field

∗ P (A) is a countable additive non-negative function defined for every event A, P (Ω) = 1.

· countable additive means that

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) if Ai ∩ Aj = ∅ for any i < j
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· This implies: P (Ac) = 1− P (A) . If A1 ⊂ A2 ⊂ A3 ⊂ · · · , then

P

(∞⋃
i=1

Ai

)
= P

(
A1 ∪

∞⋃
i=1

(Ai+1 − Ai)

)

= P (A1) +

∞∑
i=1

P (Ai+1 − Ai)

= P (A1) +

∞∑
i=1

(P (Ai+1)− P (Ai)) = lim
i→∞

P (Ai)

· This last property is called lower continuity, or continuous from below.

· If A1 ⊃ A2 ⊃ A3 ⊃ ..., and let A =

∞⋂
n=1

An, then

A1 = A ∪ (A1 − A2) ∪ (A2 − A3) ∪ (A3 − A4) ∪ ... = A ∪
∞⋃
n=1

(An − An+1)

So

P (A1) = P (A) +

∞∑
n=1

P (An − An+1) = P (A) + P (A1)− lim
n→∞

P (An+1)
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· This limit lim
n→∞

P (An) = P (A) is called upper continuity.

· Any non-negative countable additive function is called a measure. When the measure of the

whole space = 1, it is called a probability measure.

· One (classical) "definition" of P is

P (A) =
number of points in A

total number of points in Ω
=
favorable outcomes

total outcomes

∗ (Ω, F , P ) is called a probability space. If you are familiar with real analysis, a probability space

is a measurable space with total measure one. An event is called a measurable set. Note that

there are non-measurable sets.

∗ Recall that in real analysis, we may define integration based on this measure P∫
Ω

g (ω) dP = lim
∑
i

xiP ({ω : xi ≤ g (ω) ≤ xi+1})

In particular, if g (x) = XA (x) , characteristic function of A,then∫
Ω

XA (x) dP = P (A)

∗ A function X (ω) defined on ω ∈ Ω is called measurable function if for any real number x,

{ω : X (ω) ≤ x} ∈ F . We view such a function is a measurement for outcomes associated
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with an experiment. In probability theory, it is called a random variable.

∗ Two events A and B are called independent if P (A ∩B) = P (A)P (B)

∗ Conditional probability of B given A: P (B | A) = P (A ∩B) /P (A)

∗ Theory of Total Probability: Let B1, B2, ...be a finite or countably infinite family of mutually

exclusive and exhaustive events (i.e., disjoint and their union is Ω ). Then

P (A) =
∑
i

P (A ∩ Bi) =
∑
i

P (Bi)P (A | Bi) .

∗ We define

FX (x) = P ({ω : X (ω) ≤ x}) .

This is called cumulative probability distribution function CDF of the random variable.

∗ FX is continuous from the right. This is because for integers n > m, 1/n < 1/m

{ω : X (ω) ≤ x} ⊂
{
ω : X (ω) ≤ x +

1

n

}
⊂
{
ω : X (ω) ≤ x +

1

m

}
So

{ω : X (ω) ≤ x} ⊂
∞⋂
n=1

{
ω : X (ω) ≤ x +

1

n

}
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On the other hand, for any ω0 such that

ω0 ∈
∞⋂
n=1

{
ω : X (ω) ≤ x +

1

n

}
,

it must hold

X (ω0) ≤ x

since otherwise

X (ω0) > x.

Then one can find a large integer n such that (e.g., n = [(X (ω0)− x)−1 + 2] > (X (ω0)− x)−1
)

X (ω0) > x +
1

n
=⇒ ω0 /∈

{
ω : X (ω) ≤ x +

1

n

}
a contradiction. Thus

{ω : X (ω) ≤ x} =

∞⋂
n=1

{
ω : X (ω) ≤ x +

1

n

}
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According to the upper continuity of P, it follows that

P ({ω : X (ω) ≤ x}) = lim
n→∞

P

({
ω : X (ω) ≤ x +

1

n

})
or equivalently

FX (x) = lim
n→∞

FX

(
x +

1

n

)
∗ Exercise 1: Define

G (x) = P ({ω : X (ω) < x}) . (Exercise 1)

Show that G (x) is continuous from left.

∗ For right-continuous function FX (x) , one may define the Lebesgue–Stieltjes integration for any

function g (x)∫
Ω

g (x) dFX = lim
∑

g (xi) (FX (xi+1)− FX (xi))

= lim
∑

g (xi)P ({ω : xi ≤ X (ω) ≤ xi+1}) =

∫
Ω

g (X) dP
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In particular, when g = XA,the indicator function of an event A,∫
A

dFX = P ({ω : X (ω) ∈ A})

Since {ω : a < X (ω) ≤ b} = {ω : X (ω) ≤ b} \ {ω : X (ω) ≤ a} ,we have

P ({ω : a < X (ω) ≤ b}) = FX (b)− FX (a)

Note that since FX (x) may not be continuous from the left,

P ({ω : a ≤ X (ω) ≤ b}) = FX (b)− FX
(
a−
)

∗ One may view FX (x) is new measurement for X : [FX (a) , FX (b)] replaces [a, b]

In particular,

FX (x) =

∫ x

−∞
dFX

∗ FX (x) is always non-negative, increasing, and

lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1
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∗ We call FX absolutely continuous, if there exists a function such that ρ (x)

FX (x) =

∫ x

−∞
dFX =

∫ x

−∞
ρ (t) dt

∗ ρX (x) is called probability density function (PDF). One can show that ρ is in fact the derivative

of FX :

ρX (x) = lim
δ→0

FX (x + δ)− FX (x)

δ

= lim
δ→0

P ({ω : x < X (ω) ≤ x + δ})
δ

= F ′X (x)

∗ ρX (x) may be understood as the per-unit probability of X = x

∗ For any interval A

P
(
X−1 (A)

)
= P ({ω : X (ω) ∈ A}) =

∫
A

dFX (x) =

∫
A

ρX (x) dx.

For any function g (x) ∫
Ω

g (X (ω)) dP =

∫ ∞
−∞

g (x) ρX (x) dx

∗ This formula established connection between Probability measure P and PDF p. From this
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point, we don’t need to care about P , nor about X.All we need is ρ (or F ). In application, CDF

FX (x)(or PDF) has all information about random variable X (ω) . For instance, X (ω) = height

of a person, FX (x) = percent of persons height is less than x.

∗ Expected value, or expectation of X,is defined as

µ = E [X ] =

∫ ∞
−∞

xρX (x) dx =

∫
Ω

X (ω) dP

E (X) means average value of X,or center of mass of ρX
· If X takes only finite many values xi, then

E [X ] =

∫
Ω

X (ω) dP =
∑

xiP (X = xi)

· E [X ] is linear

E [aX + bY ] = aE [X ] + bE [Y ]

· In particular, E [X − µ] = 0

· R = X − µ is called residue of X. Reynolds decomposition:

X = µ + R
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· for any function g (x) , the expected value of random variable Y = g (X) is

E [Y ] =

∫ ∞
−∞

g (x) ρX (x) dx =

∫
Ω

g (X (ω)) dP.

· n th moment of X

E [Xn] =

∫ ∞
−∞

xnρX (x) dx =

∫
Ω

X (ω)n dP

· Variance or the moment of inertia

υ = σ2 = E
[
(X − µ)2

]
=

∫ ∞
−∞

(x− µ)2 ρX (x) dx =

∫
Ω

(X (ω)− µ)2 dP

· σ is called standard deviation of X

· median m (X) is a number such that FX (m) = 1/2

∗ Joint distribution function: LetX and Y are two random variables. The joint cumulative probability

distribution function is

F (x, y) = P (X ≤ x, Y ≤ y)

= P ({ω : X (ω) ≤ x and Y (ω) ≤ y})
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· We say F (x, y) is absolutely continuous if there exists a probability density function PDF

ρ (x, y) such that for any intervals A, B

P (X ∈ A, Y ∈ B) =

∫ ∫
A×B

ρ (x, y) dxdy

so

F (x, y) =

∫ y

−∞

∫ x

−∞
ρ (x, y) dxdy

∫
Ω

g (X, Y ) dP =

∫ ∫
R2
g (x, y) ρ (x, y) dxdy

· Two random variables are called independent if {ω : X ∈ A} and {ω : Y ∈ B} are independent

events for any intervals A, B. In this case

F (x, y) = FX (x)FY (y) , ρ (x, y) = ρX (x) ρY (y)
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∗ Covariance between random variables: for random variables X1,X2, ..., Xn

Cov (Xi, Xj) = E
[
(Xi − µi)

(
Xj − µj

)]
=

∫
Ω

(Xi − µi)
(
Xj − µj

)
dP

=

∫ ∫
R2

(x− µi)
(
y − µj

)
ρij (x, y) dxdy

is called covariance between Xi and Xj.

· Cov (Xi, Xj) = υ (Xi, Xj) measures relative dependence between Xi and Xj

· If Xi and Xj are independent, then Cov (Xi, Xj) = 0

· Cov (Xi, Xi) = υ (Xi) = variance

· the matrix V = [Cov (Xi, Xj)] is called covariance matrix

V =


υ (X1) υ (X1, X2) · · · υ (X1, Xn)

υ (X2, X1) υ (X2) · · · υ (X2, Xn)
...

... . . . ...

υ (Xn, X1) υ (Xn, X2) · · · υ (Xn)


∗ random process = stochastic process: {X (t)}t≥0 . For each t, X (t) is a random variable, and it

is "continuous" with respective to t

∗ Random field X (x) : for each x, X (x) is a random variable. So υ (x, y) = Cov (X (x) , X (y)) is
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a function of two variable.

∗ Example: Let Ωi for i = 1, 2, ..., n, be disjoint regions, and Ki be random variable representing

conductivity of Ωi with mean µi and variance σ2
i . Then the over conductivity of the entire region

Ω = ∪Ωi is

K (x) =
∑
i

XΩi
(x)Ki

The over all mean is

µ = E [K] =
∑
i

E [XΩi
Ki] =

∑
i

E [XΩi
]E [Ki] =

∑
i

Iiµi

where Ii = proportion of Ωi, assuming independence of XΩi
and Ki, and

E [XΩi
] =

∫
Ω

XΩi
dP =

∫
Ωi

dP = Ii.
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The covariance between different locations x and y :

σ2 (K) = E

[
n∑
i=1

(XΩi
(x)Ki − Iiµi)

]2

(Optional Exercise)

=

n∑
i=1

Iiσ
2
i +

1

2

n∑
i=1

IiIj
(
µi − µj

)2

•Section 1.2 Uniform Distributions
– Given interval [a, b] ,consider cumulative distribution function

F[a,b] (x) =


0 if x < a

x− a
b− a if a ≤ x ≤ b

1 if b < x

The random variable X associated with F is said to be uniformly distributed on [a, b] ,and is de-

noted as X → U [a, b] .
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– PDF is

ρ (x)


0 if x < a

1

b− a if a ≤ x ≤ b

0 if b < x

– mean

E [X ] =

∫ ∞
−∞

xρ (x) dx =

∫ b

a

x

b− adx =
b + a

2

– variance

σ2 =

∫ ∞
−∞

(
x− b− a

2

)2

ρ (x) dx =
1

b− a

∫ b

a

d

(
x− b− a

2

)2

x =
(b− a)2

12

– Standard deviation υ = (b− a) /
√

12

– In particular, if X → U [0, 1] is called the standard uniform distribution.

– Let X → F, and Y = (b− a)X + a→ G, then

G (x) = P {Y = (b− a)X + a ≤ x} = P

{
X ≤ x− a

b− a

}
= F

(
x− a
b− a

)
( b > a )
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So if X → U [0, 1] , then

(b− a)X + a→ U [a, b]

•Section 1.3 Gaussian Distributions
– PDF of X

ρ =
1√
2πσ

e−(x−µ)2/(2σ2)

– Exercise 2 : show that

mean = µ, variance = σ2 (Exercise 2)

– Denote it by N (µ, σ)

– Let Y = (X − µ) /σ.Then

E [Y ] =
E [X ]− µ

σ

Is called a standard normal distribution with zero mean and standard deviation 1,i.e., N (0, 1)

– n-σ process:

P (|X − µ| ≤ nσ) = P (|Y | ≤ n) =
1√
2π

∫ n

−n
e−x

2/2dx→ 1 as n→∞
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the probability of X (x) lies in n-σ neighborhood of its mean:

1√
2π

∫ 2

−2

e−x
2/2dx = 0.954 50

1√
2π

∫ 4

−4

e−x
2/2dx = 0.999 94

1√
2π

∫ 6

−6

e−x
2/2dx = 0.9999966 = 1− 3.4× 10−6

– In industry, a Six Sigma process describes quantitatively how a process is performing. To achieve

Six Sigma, a process must not produce more than 3.4 defects per million opportunities. A Six

Sigma defect is defined as anything outside of customer specifications.

• Exponential distribution

ρ (x) =
1

λ
e−x/λ for x ≥ 0, ρ (x) = 0 for x < 0

– Exercise 3: Show that

E [X ] = λ, υ = λ2 (Exercise 3)

– E [Xn] = λnn!
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– m (X) = λ ln 2 < E [X ]

– momorylessness: it satisfies (Exercise 4)

P (X > s + t | X > s) = P (X > t) (Exercise 4)

(recall that the conditional probability P (A | B) = P (A ∩B) /P (B) ). When X is interpreted as

the waiting time for an event to occur relative to some initial time, this relation implies that, if X is

conditioned on a failure to observe the event over some initial period of time s, the distribution of

the remaining waiting time is the same as the original unconditional distribution. For example, if

an event has not occurred after 30 seconds, the conditional probability that occurrence will take at

least 10 more seconds is equal to the unconditional probability of observing the event more than

10 seconds relative to the initial time.

– The exponential distribution the only memoryless continuous probability distributions.

•Section 1.4 The Binomial Distribution (two outcomes)

– Consider n devices, each has a failure probability p.Then the probability that exact k devices fail

is

p (k) =

(
n

k

)
pk (1− p)n−k
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The discrete random variable X with this PDF is called binomial distribution, and

F (x) =
∑
k≤x

(
n

k

)
pk (1− p)n−k

– Mean is (Exercise 5)

E [X ] =

n∑
k=0

kp (k) =

n∑
k=0

k

(
n

k

)
pk (1− p)n−k = pn (Exercise 5)

– variance (Exercise 6)

υ = σ2 =

n∑
k=0

(k − np)2 p (k) =

n∑
k=0

(k − np)2

(
n

k

)
pk (1− p)n−k = np (1− p) (Exercise 6)

– Problem A in page 7

– Newsboy problem in page 8 of textbook (Exercise 7: run MATLAB routines)

• Geometric distribution

– Suppose that each trial the probability of success is p.The probability in a sequence of trials that

the first occurrence of success requires k number (k = 1, 2, ...) of independent trials is

p (k) = P (X = k) = (1− p)k−1 p
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– Exercise 8: show

E [X ] = 1/p, σ2 = (1− p) /p2 (Exercise 8)

– Exercise 9: The geometric distribution is memoryless . This is the only memoryless discrete

probability distribution.

P (X > s + t | X > s) = P (X > t) (Exercise 9)

•Section 1.5 The Poisson Distribution (continuum version of binomial)

– Suppose λ random noise spikes occur on channel per unit time. Consider in a time period of

length T.We divide [0, T ] into n subintervals of length T/n. On average, the probability of a noise

spike in one time subinterval is p = λT/n Then according to the binomial distribution, the proba-

bility that a spike occurs in exactly k subinterval is(
n

k

)
pk (1− p)n−k =

(
n

k

)(
λT

n

)k(
1− λT

n

)n−k
→ (λT )k

k!
e−λT

So the probability that exact k spikes in [0, T ] is the Poisson distribution with PDF

p (k) =
(λT )k

k!
e−λT

– µ = σ = λT
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– Problem A in page 10 of textbook (Run MATLAB, Exercise 10)

•Section 1.6 Taguchi quality control
– X is a random variable measure the quality of a product. The quality of loss function (QLF) is

defined as

L (X) = k (X − θ)2

– k is the loss coefficient, θ is the target value. The goal is to make L (X) as small as possible.

– E [L (X)] = kE
[
(X − θ)2

]
E [L (X)] = kE

[
((X − µ) + (µ− θ))2

]
= kE

[
(X − µ)2 + 2 (µ− θ) (X − µ) + (µ− θ)2

]
= kE

[
(X − µ)2

]
+ 2k (µ− θ)E (X − µ) + k (µ− θ)2

= kσ2 + k (µ− θ)2

– It reaches minimum when σ = 0 and µ = θ

– Two problems in page 12.

•Homework
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(a) Exercise 1 – 10 (as outlined above in this note, not from textbook)

(b) Let X → U [0, 1] (i.e., the CDF of random variable X is the standard uniform distribution), and

Y (ω) = aX (ω) + b.Find a, b such that Y → U [−C,C] for any C > 0.

(c) From textbook: #1.1, #1.2

• Hints for Exercise #5,6,8: Differentiate the identities (twice if necessary)

(x + y)n =

n∑
k=0

(
n

k

)
xkyn−k

∞∑
k=0

xk =
1

1− x


