## Homework 21

- Section 21.1

1. Consider linear ODE

$$
L[y]=y^{(n)}+p_{n-1}(t) y^{(n-1)}+p_{n-2}(t) y^{(n-2)}+\ldots+p_{1}(t) y^{(1)}+p_{0}(t) y=f(t) .
$$

Convert this problem into an equivalent problem of a system of first ODE in matrix form

$$
\vec{V}^{\prime}=A \vec{V}+\vec{F}
$$

and write down explicitly the matrix $A$ and the vector $\vec{F}$.
2. Find general solution for

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=t^{2}+\sin t
$$

- Section 21.5

Determine if the following BVP has a unique solution:

$$
\begin{aligned}
& y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=\sin \left(t^{2}\right), 0<t<1 \\
& y(0)=1, y(1)=2
\end{aligned}
$$

- Section 21.7: Find the Green function for

1. $y^{\prime \prime}-4 y=f(x), y(0)=y(1)=0$
2. $y^{\prime \prime}-4 y=f(x), y^{\prime}(0)=y(1)=0$
3. $y^{\prime \prime}-4 y=f(x), y(0)=y^{\prime}(1)=0$
4. $y^{\prime \prime}-4 y=f(x), y^{\prime}(0)=y^{\prime}(1)=0$

- Section 21.9:
- Consider BVP (boundary value problem)

$$
\begin{aligned}
y^{\prime \prime}+y & =\cos 2 x \\
y(0) & =a, y(\pi)=b
\end{aligned}
$$

1. Determine values for $a \& b$ such that the BVP has a unique solution
2. Determine values for $a \& b$ such that the BVP has no solution
3. Determine values for $a \& b$ such that the BVP has infinite many solutions

- (Optional) Can you do the same for the same equation with different types of boundary conditions?

