Chapter 9 Global Nonlinear Techniques

Consider nonlinear dynamical system

$$
X^{\prime}=F(X)=\left(\begin{array}{c}
f_{1}(X) \\
f_{2}(X) \\
\vdots \\
f_{n}(X)
\end{array}\right)
$$

- Nullcline
$-x_{j}-$ nullcline $=\left\{X: f_{j}(X)=0\right\}$
- equilibrium solutions $=$ intersection of all x_{j} - nullclines
$-x_{j}$ - nullcline is usually a surface of co-dimension one
- total $\mathrm{N} x_{j}$ - nullcline, $j=1, \ldots, n$, divide the space into at least 2^{n} parts
- type of equilibrium can be easily figured out by looking at one direction in each part
- In R^{2}, there are two nullcline curves. They divide the plane into four parts. Each will be one of the followings
* NE (in which all directions in the directional field point to northeast)
* NW (in which all directions in the directional field point to northwest)
* SE (in which all directions in the directional field point to southeast)
* SW (in which all directions in the directional field point to southwest)

Example 1 Consider (p. 189)

$$
\begin{aligned}
x^{\prime} & =y-x^{2} \\
y^{\prime} & =x-2
\end{aligned}
$$

- x - nullcline : parabola $y=x^{2}$
- y-nullcline : vertical line $x=2$

- there is only one equilibrium $X_{0}=(2,4)$
- the line $x=2$ and the parabola $y=x^{2}$ divide the plane into four parts.
- In part A containing $X=(0,4), F(X)=(4,-2)(\mathrm{SE})$
- In part B containing $X=(3,10), F(X)=(1,1)(\mathrm{NE})$
- In part C containing $X=(3,0), F(X)=(-9,1)(\mathrm{NW})$
- In part D containing $X=(1,0), F(X)=(-1,-1)(\mathrm{SW})$
- X_{0} is a saddle:
- Solutions with initial values in part B and D will stay in the same regions and move away from the origin
- Solutions with initial values in part A and C will either enter B or D, or remain in the same region. In the latter case, the solutions will converge to X_{0}.(stable curve). All other solutions once enter B or D, they will stay there and move away from the origin.
- Its linearization at $X_{0}=(2,4)$ is

$$
\begin{aligned}
x^{\prime} & =-4 x+y \\
y^{\prime} & =x
\end{aligned}
$$

- For $A=\left(\begin{array}{cc}-4 & 1 \\ 1 & 0\end{array}\right)$, the eigenvalues are $\lambda=-2 \pm \sqrt{5}$. For $\lambda=$ $-2-\sqrt{5}$, one eigenvector is $X=(1,2-\sqrt{5})=(1,-0.236)$. So
the stable curve passes through X_{0} with the tangent parallel to the direction $(1,-0.236)$

- Recall Stability:

- An equilibrium X_{0} is called stable if any solution with initial value X_{1} near X_{0} will remain nearby.
- For linear system, sinks, spiral sinks, and centers are stable.
- An equilibrium X_{0} is called asymptotically stable if it is stable and it converges to X_{0} as $t \rightarrow \infty$.
- Stability Theorem: Any equilibrium that is a sink or spiral sink for its linearization is asymptotically stable.
- In other words, an equilibrium X_{0} is asymptotically stable if all eigenvalues of $D F\left(X_{0}\right)$ have negative real parts.
- We shall extend this to the case when some eigenvalues have zero real parts.
- Liapunov Stability Analysis
- Liapunov function for the dynamical system around X_{0} : A function defined in a neighborhood O of X_{0} satisfying
a $L\left(X_{0}\right)=0, L(X)>0$ for $X \neq X_{0}, X \in O$
b $\nabla L(X) \cdot F(X) \leq 0$ for all $X \in O$
- Liapunov Stability Theorem: Let X_{0} be an equilibrium for $X=F(X)$. The equilibrium is stable if there exists a smooth Liapunov function. If furthermore, the Liapunov function satisfies
c $\nabla L(X) \cdot F(X)<0$ for $X \neq X_{0}$ then X_{0} is asymptotically stable (i.e., $X(t) \rightarrow X_{0}$ as $t \rightarrow \infty$)
- Note that if all eigenvalues of $D F\left(X_{0}\right)$ are negative, then we define

$$
L(X)=-\frac{1}{2}\left(X-X_{0}\right)^{T} D F\left(X_{0}\right)\left(X-X_{0}\right) \geq 0
$$

one can verify this is a Liapunov function. This is because $D F\left(X_{0}\right)$ is negatively definite, and, by Taylor expansion

$$
\begin{aligned}
F(X) & =F\left(X_{0}\right)+D F\left(X_{0}\right)\left(X-X_{0}\right)+O\left(\left\|X-X_{0}\right\|^{2}\right) \\
& =D F\left(X_{0}\right)\left(X-X_{0}\right)+O\left(\left\|X-X_{0}\right\|^{2}\right)
\end{aligned}
$$

and

$$
\nabla L(X)=-D F\left(X_{0}\right)\left(X-X_{0}\right)
$$

So
$\nabla L(X) \cdot F(X)=-\left(D F\left(X_{0}\right)\left(X-X_{0}\right)\right) \cdot\left(D F\left(X_{0}\right)\left(X-X_{0}\right)\right)+O\left(\left\|X-X_{0}\right\|^{3}\right)<0$
as $X \rightarrow X_{0}$. Liapunov Theorem includes Stability Theorem.
Example 2. Consider, for parameter ε,

$$
\begin{aligned}
x^{\prime} & =(\varepsilon x+2 y)(z+1) \\
y^{\prime} & =(-x+\varepsilon y)(z+1) \\
z^{\prime} & =-z^{3}
\end{aligned}
$$

The only equilibrium is $X_{0}=0$, and its linearization is

$$
\begin{aligned}
x^{\prime} & =\varepsilon x+2 y \\
y^{\prime} & =-x+\varepsilon y \\
z^{\prime} & =0
\end{aligned}
$$

with eigenvalues $0, \varepsilon \pm i \sqrt{2}$. So this is not hyperbolic. Therefore, the linearization does not indicate anything about the nonlinear system. For $\varepsilon<0$, we look for a Liapunov function in the form:

$$
L(x, y, z)=a x^{2}+b y^{2}+c z^{2}
$$

We see that

$$
\begin{aligned}
\nabla L \cdot F & =2(a x, b y, c z) \cdot F \\
& =2 a x(\varepsilon x+2 y)(z+1)+2 b y(-x+\varepsilon y)(z+1)+2 c z\left(-z^{3}\right) \\
& =2 \varepsilon\left(a x^{2}+b y^{2}\right)(z+1)+(2 a-b) y x(z+1)-2 c z^{4}
\end{aligned}
$$

So if we choose $a=1, b=2, c=1$. Then for all X

$$
\begin{aligned}
& \nabla L \cdot F(X)=2 \varepsilon\left(a x^{2}+b y^{2}\right)(z+1)-2 c z^{4} \leq 0 \\
& \nabla L \cdot F(X)<0 \text { if } X \neq 0
\end{aligned}
$$

Hence, the equilibrium $X_{0}=0$ is asymptotically stable. However, for $\varepsilon=$ 0 , we can only conclude that the equilibrium is stable.

- Justification of Liapunov Theorem:
- For any solution $X(t)$ of the system $X^{\prime}=F(X(t))$, we have (by (b))

$$
\frac{d}{d t} L(X(t))=\nabla L(X(t)) \cdot X^{\prime}(t)=\nabla L(X(t)) \cdot F(X(t)) \leq 0
$$

- So $L(X(t))$ decreases to $L(X(0))$
- For any $\alpha>0$, the set $G=\{X: L(X)<\alpha\}$ is a neighborhood of X_{0}.
- For any $X_{0} \in G$, along the solution $X(t)$ initiated from X_{0},since $L(X(t))$ decreases to $L\left(X_{0}\right)$

$$
L(X(t)) \leq L\left(X_{0}\right)<\alpha
$$

- So the entire solution $X(t)$ remains in G - stable

Example 3. (Nonlinear pendulum) Consider a pendulum consisting of a light rod of length l to which is attached a ball of mass m. The other end of the rod is attached to a point on the ceiling. The position of the mass is described by the angle $\theta(t)$ from the straight-down position and measured in the counterclockwise direction. So the position of the mass is $l(\sin \theta(t),-\cos \theta(t))$, and velocity and acceleration are, respectively

$$
\begin{aligned}
v & =l(\cos \theta, \sin \theta) \theta^{\prime} \\
a & =v^{\prime}=l(\cos \theta, \sin \theta) \theta^{\prime \prime}+l(-\sin \theta, \cos \theta) \theta^{\prime} \\
F & =(0,-m g)-b l(\cos \theta, \sin \theta) \theta^{\prime}
\end{aligned}
$$

We assume the only forces are gravitational force and Stoke's friction to be proportional to its velocity:

$$
\begin{aligned}
F & =(0,-m g)-b l v \\
& =(0,-m g)-b l(\cos \theta, \sin \theta) \theta^{\prime}
\end{aligned}
$$

Now Newton's law $F=m a$ along the tangential direction $(\cos \theta, \sin \theta)$ leads to

$$
m a \cdot(\cos \theta, \sin \theta)=F \cdot(\cos \theta, \sin \theta)
$$

or nonlinear Pendulum model:

$$
m l \theta^{\prime \prime}+b l \theta^{\prime}+m g \sin \theta=0
$$

Set $l=g=m=1$ In the system form, it is

$$
\begin{aligned}
\theta^{\prime} & =v \\
v^{\prime} & =-b v-\sin \theta .
\end{aligned}
$$

The total energy functional can be used as its Liapunov function:

$$
E(\theta, v)=\frac{1}{2} v^{2}+1-\cos \theta
$$

One can verify that, for $b \geq 0$,

$$
\nabla E(\theta, v) \cdot F=(\sin \theta, v) \cdot(v,-b v-\sin \theta)=-b v^{2} \leq 0
$$

Thus the equilibrium $\theta=0, v=0$ is stable.
Example 4. Show $(0,0)$ is asymptotically stable for

$$
\begin{aligned}
& x^{\prime}=-\frac{1}{2} x+x^{2}+2 y^{2} \\
& y^{\prime}=-x-y+2 x^{2}
\end{aligned}
$$

Sol: We try $L=a x^{2}+b y^{2}$ for some $a, b>0$.

$$
\begin{aligned}
\nabla L & =(2 a x, 2 b y) \\
\nabla L \cdot F & =2 a x\left(-\frac{1}{2} x+x^{2}+2 y^{2}\right)+2 b y\left(-x-y+2 x^{2}\right) \\
& =-a x^{2}+2 a x^{3}+4 a x y^{2}-2 b x y-2 b y^{2}+4 b x^{2} y \\
& =-\left(a x^{2}+2 b y^{2}+2 b x y\right)+2 a x^{3}+4 a x y^{2}+4 b x^{2} y .
\end{aligned}
$$

Choose $b=1, a=2$ we have

$$
\begin{aligned}
\nabla L \cdot F & =-\left(x^{2}+y^{2}+2 x y\right)-x^{2}-y^{2}+2 a x^{3}+4 a x y^{2}+4 b x^{2} y \\
& =-(x+y)^{2}-x^{2}(1-4 x-4 y)-y^{2}(1-8 x)
\end{aligned}
$$

When $|x|<1 / 8,|y|<1 / 8$,

$$
\nabla L \cdot F<0
$$

Therefore, it is asymptotically stable.

- Some special nonlinear systems

1. Gradient Flows: $V(X)$ is a smooth function $R^{n} \rightarrow R^{1}$

$$
X^{\prime}=-\nabla V(X)
$$

- For any solution $X(t)$,

$$
\frac{d}{d t} V(X(t))=\nabla V(X(t)) \cdot X^{\prime}(t)=-|\nabla V(X(t))|^{2} \leq 0
$$

- So the potential function V decreases along any solution curve.
- For any level surface $\{X: V(X)=c\}$ of V, its tangent plane has the normal direction ∇V
- Therefore, any solution curve is moving towards lower-value level surfaces and is perpendicular to level surface
- Any solution $X(t)$ will approach to a point that reaches a minimal value of V
- Critical points X_{0} (i.e., $\left.\nabla V\left(X_{0}\right)=0\right)$ of V are equilibrium solutions.
- All equilibria are stable.
- Any isolated local minimum points X_{0} are asymptotically stable.
- Linearization matrices are symmetric, and have only real eigenvalues.

Example 5 Consider gradient system

$$
V=x^{2}(x-1)^{2}+y^{2}
$$

Since

$$
\nabla V=\left(2 x\left(2 x^{2}-3 x+1\right), 2 y\right)
$$

there are three critical points: $X_{0}=(0,0),(1,0),(0.5,0)$.The first two are local minimums of V. But $(0.5,0)$ is not.
2. Hamiltonian Systems: $H(X)$ is smooth function (called Hamiltonian function)

$$
\begin{aligned}
x^{\prime} & =\frac{\partial H}{\partial y} \\
y^{\prime} & =-\frac{\partial H}{\partial x}
\end{aligned}
$$

- $H(X)$ is constant along any solution $X(t)$

$$
\begin{gathered}
\frac{d}{d t} H(X(t))=\nabla H(X(t)) \cdot X^{\prime}(t)=\left(\partial_{x} H, \partial_{y} H\right) \cdot\left(\partial_{y} H,-\partial_{x} H\right)=0 \\
H(X(t))=H(X(0))
\end{gathered}
$$

- thus, Hamiltonian system is conservative system: it will not alter value of H
- Therefore, a solution curve is a part of a level curve of H
- linearizations have the structure

$$
A=\left(\begin{array}{cc}
\frac{\partial^{2} H}{\partial x \partial y} & \frac{\partial^{2} H}{\partial y^{2}} \\
-\frac{\partial^{2} H}{\partial x^{2}} & -\frac{\partial^{2} H}{\partial x \partial y}
\end{array}\right)
$$

- Its characteristic polynomial is

$$
\lambda^{2}-\left(\frac{\partial^{2} H}{\partial x \partial y}\right)^{2}+\frac{\partial^{2} H}{\partial x^{2}} \frac{\partial^{2} H}{\partial y^{2}}=0
$$

- Eigenvalues of any linearized Hamiltonian system at critical point $\nabla H\left(X_{0}\right)=0$:
* If $\operatorname{det}\left(D^{2} H\right)=\frac{\partial^{2} H}{\partial x^{2}} \frac{\partial^{2} H}{\partial y^{2}}-\left(\frac{\partial^{2} H}{\partial x \partial y}\right)^{2}>0$ (local minimum of H), then eigenvalue are $\pm \sqrt{\operatorname{det}\left(D^{2} H\right)} i$, and thus X_{0} is a center.
* If $\operatorname{det}\left(D^{2} H\right)<0$ (local saddle of H), then eigenvalue are $\pm \sqrt{-\operatorname{det}\left(D^{2} H\right)}$, and thus X_{0} is a saddle.

Example 6. (ideal pendulum) The frictionless pendulum

$$
\begin{aligned}
\theta^{\prime} & =v \\
v^{\prime} & =-\sin \theta
\end{aligned}
$$

is a Hamiltonian with

$$
H(\theta, v)=\frac{1}{2} v^{2}+1-\cos \theta
$$

Example 7. Consider

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =-x^{3}+x
\end{aligned}
$$

This is a Hamiltonian with

$$
H=\frac{x^{4}}{4}-\frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

There are three equilibrium solutions $X_{0}=(0,0),(\pm 1,0)$. Note that the linearized system is $X^{\prime}=A X$

$$
A=\left(\begin{array}{cc}
0 & 1 \\
1-3 x^{2} & 0
\end{array}\right)
$$

while the Hessian matrix is

$$
D^{2} H=\left(\begin{array}{cc}
3 x^{2}-1 & 0 \\
0 & 1
\end{array}\right)
$$

At $(0,0), D^{2} H$ is neither positive nor negative, so $(0,0)$ is a saddle for H, or a saddle for the linearized system $X^{\prime}=A(0,0) X$. At the other two equilibria $X_{0}=(\pm 1,0), D^{2} H$ is positively definite. So they are local minimum points of H, and are center for the linearized systems.

- Homework: 1ab, 2, 6, 7aef (no phase portrait, no level surface)
- \#8 (no phase portrait. Do the followings)

1. Determine which is gradient, which is Hamiltonian.
2. (optional) If it is a gradient or Hamiltonian, find V or H.

- Hints for \#8: In 2d, a system

$$
\begin{aligned}
x^{\prime} & =f \\
y^{\prime} & =g
\end{aligned}
$$

\mathbf{a} is a gradient iff

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

then, V can be found by solving

$$
\begin{aligned}
& \frac{\partial V}{\partial x}=f \\
& \frac{\partial V}{\partial y}=g
\end{aligned}
$$

b is a Hamiltonian iff

$$
\frac{\partial f}{\partial x}=-\frac{\partial g}{\partial y}
$$

