Chapter 9 Global Nonlinear Techniques
Consider nonlinear dynamical system
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e Nullcline

xj; —nullcline = {X : f; (X) =0}

equilibrium solutions = intersection of all z; — nullclines

— x; — nullcline is usually a surface of co-dimension one

total N x; — nullcline, j = 1,...,n, divide the space into at least
2" parts

— type of equilibrium can be easily figured out by looking at one
direction in each part

— In R?, there are two nullcline curves. They divide the plane into
four parts. Each will be one of the followings

« NE (in which all directions in the directional field point to
northeast)

* NW (in which all directions in the directional field point to
northwest)

* SE (in which all directions in the directional field point to
southeast)

* SW (in which all directions in the directional field point to
southwest)

Example 1 Consider (p. 189)

¥ =y — 2?
y =x—2
e x — nullcline : parabola y = 2?2

e y — nullcline : vertical line z = 2
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e there is only one equilibrium X, =

(2,4)

e the line 7 = 2 and the parabola y = 22 divide the plane into four parts.

— In part A containing X =
— In part B containing X =
— In part C containing X =
— In part D containing X =

e X, is a saddle:

(0,4), F(X) = (4, -2) (SE)
(3,10), F'(X) = (1,1) (NE)
(3,0), F(X) = (=9,1) (NW)
(1,0), F(X) = (= 1—1) (SW)

Solutions with initial values in part B and D will stay in the same

regions and move away from the origin

Solutions with initial values in part A and C will either enter B or

D, or remain in the same region. In the latter case, the solutions
will converge to Xj.(stable curve). All other solutions once enter
B or D, they will stay there and move away from the origin.

—4 1
—ForA—< 1 0),

—2 — /5, one eigenvector is X =

Its linearization at Xy =

(2,4) is

¥ =—4dr+vy

/
=

the eigenvalues are A = —2 + V5. For \ =

(1,2—-+/5) = (1,-0.236). So
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the stable curve passes through X, with the tangent parallel to
the direction (1,—0.236)

e Recall Stability:

— An equilibrium X, is called stable if any solution with initial
value X; near X, will remain nearby.

— For linear system, sinks, spiral sinks, and centers are stable.

— An equilibrium X is called asymptotically stable if it is stable
and it converges to X, as t — oc.

— Stability Theorem: Any equilibrium that is a sink or spiral sink
for its linearization is asymptotically stable.

— In other words, an equilibrium X, is asymptotically stable if all
eigenvalues of DF (Xj) have negative real parts.

e We shall extend this to the case when some eigenvalues have zero real
parts.

e Liapunov Stability Analysis

— Liapunov function for the dynamical system around Xj : A func-
tion defined in a neighborhood O of X satisfying
a L(Xy)=0, L(X)>0for X # Xy, X €O
b VL(X) -F(X)<0 forall X € O

— Liapunov Stability Theorem: Let X be an equilibrium for
X = F(X). The equilibrium is stable if there exists a smooth
Liapunov function. If furthermore, the Liapunov function satisfies
¢ VL(X)-F(X)<0 for X # X,

then X is asymptotically stable (i.e., X (t) — Xy as t — 00)

e Note that if all eigenvalues of DF' (X)) are negative, then we define

L(X)= —% (X — Xo)" DF (Xo) (X — Xq) >0



one can verify this is a Liapunov function. This is because DF (X)) is
negatively definite, and, by Taylor expansion

F(X) = F(Xo) + DF (Xo) (X — Xo) + O (| X — Xo)
= DF (Xo) (X — Xo) + O (|| X — XOHQ)

and
VL(X)=—-DF (X) (X — Xop).

So
VL(X)-F(X)=—(DF (Xo) (X — Xo))(DF (Xo) (X — X0))+O (|| X — Xo||3) <0
as X — Xj. Liapunov Theorem includes Stability Theorem.
Example 2. Consider, for parameter ¢,
(ex +2y)(z+1)

=

v =(—r+ey)(z+1)
!

Z =

The only equilibrium is Xy = 0, and its linearization is

¥ =er+2y
y'=-z+ey
Z=0

with eigenvalues 0,¢ 4 iv/2. So this is not hyperbolic. Therefore, the lin-
earization does not indicate anything about the nonlinear system. For ¢ < 0,
we look for a Liapunov function in the form:

L(z,y,2) = azx® + by? + c2?
We see that

VL-F =2(ax,by,cz) - F
= 2ax (e +2y) (z + 1) + 2by (—z + ey) (2 + 1) + 2cz (—2°)
= 2¢ (az® + by?) (2 4+ 1) + (2a — b) yz (z + 1) — 2c2*



So if we choose a = 1,b = 2, ¢ = 1. Then for all X

VL F(X)=2¢(az” +by®) (2 4+ 1) — 2¢z* <0
VL -F(X)<0if X#0

Hence, the equilibrium X, = 0 is asymptotically stable. However, for ¢ =
0, we can only conclude that the equilibrium is stable.

e Justification of Liapunov Theorem:

— For any solution X (t) of the system X' = F (X (¢)), we have (by

(b))

%L (X (1)) = VL(X (t))- X' (t) = VL(X (1)) - F (X (t)) <0

— So L (X (t)) decreases to L (X (0))
— For any a > 0, the set G = {X : L (X) < a} is a neighborhood of
Xo.

— For any X, € GG, along the solution X (t) initiated from Xjy,since
L (X (t)) decreases to L (Xp)

L(X (t) < L(Xp) <«
— So the entire solution X () remains in G — stable

Example 3. (Nonlinear pendulum) Consider a pendulum consisting of
a light rod of length [ to which is attached a ball of mass m.The other
end of the rod is attached to a point on the ceiling. The position of the
mass is described by the angle 0 (¢) from the straight-down position and
measured in the counterclockwise direction. So the position of the mass is
[ (sinf (t),—cosf(t)), and velocity and acceleration are, respectively

v =1(cosf,sinh) b

a=1v" =1(cosb,sinf) 0" + 1 (—sinb,cosb)
F = (0,—mg) — bl (cosf,sinh) ¢’



We assume the only forces are gravitational force and Stoke’s friction to be
proportional to its velocity:

F =(0,—mg) — blv
= (0, —myg) — bl (cos0,sin ) §'.

Now Newton’s law F' = ma along the tangential direction (cos#,sin @) leads
to
ma - (cos@,sinf) = F - (cos B, sin 0)

or nonlinear Pendulum model:
mlf” + bl0" +mgsinf =0
Set | = g = m = 1In the system form, it is

0 =v

v = —bv — sin 6.

The total energy functional can be used as its Liapunov function:
E0,v) = %UQ +1—cosd
One can verify that, for b > 0,
VE (0,v)-F = (sinf,v) - (v, —bv —sinf) = —bv* < 0

Thus the equilibrium 6 = 0, v = 0 is stable.
Example 4. Show (0,0) is asymptotically stable for

1 = —%x+x2 + 2y
Y =—x—y+ 227
Sol: We try L = ax? + by? for some a, b > 0.
VL = (2ax,2by)
VL -F =2ax (—%x + 2%+ 2y2> + 2by (—a: —y+ 2x2)

= —az? + 2a2® + daxy® — 2bzy — 2by* + 4bz’y
=— (ax2 + 2by* + Qbmy) + 2ax® + daxy? + 4ba?y.



Choose b =1, a = 2 we have

VL -F =-— (x2+y2+2xy) — 22 — % + 2ax® + daxy® + 4bx’y
= —(z+y)” — 2> (1 — 4z — 4y) — y* (1 — 8x)

When |z| < 1/8, |y| < 1/8,
VL-F <0.

Therefore, it is asymptotically stable.
e Some special nonlinear systems
1. Gradient Flows: V (X) is a smooth function R" — R!
X' '=-VV (X)
— For any solution X (¢),

SV X (1) = TV (X (1) X' (1) = ~ |9V (X () <0

— So the potential function V' decreases along any solution curve.

— For any level surface {X : V (X) = ¢} of V| its tangent plane
has the normal direction VV'

— Therefore, any solution curve is moving towards lower-value
level surfaces and is perpendicular to level surface

— Any solution X (¢) will approach to a point that reaches a
minimal value of V'

— Critical points X (i.e., VV (Xy) = 0 ) of V are equilibrium
solutions.
— All equilibria are stable.

— Any isolated local minimum points X, are asymptotically sta-
ble.

— Linearization matrices are symmetric, and have only real eigen-
values.

Example 5 Consider gradient system

V=2a(zx—1)7 41>



Since

VV = (2z (22° — 3z + 1), 2y)
there are three critical points: X, = (0,0), (1,0), (0.5,0).The
first two are local minimums of V. But (0.5, 0) is not.

2. Hamiltonian Systems: H (X)) is smooth function (called Hamil-
tonian function)

,  OH
Ty
, 0H
A
— H (X) is constant along any solution X ()

d
(X (1) =VH (X (1)-X'(t) = (0.H,0,H)-(9,H, =0, H) = 0
H (X (1) = H(X(0))
— thus, Hamiltonian system is conservative system: it will not
alter value of H
— Therefore, a solution curve is a part of a level curve of H

— linearizations have the structure

0*H 0*H

B 0xdy 02
A=\ "ot 2w
0x? 0x0y



— Its characteristic polynomial is

0

A%_8%12+WHWH_
0x 0y ox2 Oy

— Eigenvalues of any linearized Hamiltonian system at critical
point VH (Xy) =0

_WHWH_(WH

2
x If det (D*H) ) > 0 (local minimum

o 0x? 0y? 0xy
of H), then eigenvalue are £4/det (D?H )i, and thus X,

1S a center.

« If det (D?H) < 0 (local saddle of H ), then eigenvalue are
+4/—det (D?H),and thus Xj is a saddle.

Example 6. (ideal pendulum) The frictionless pendulum

0 =uv

v = —sinf
is a Hamiltonian with
1,
H(0,v) = 2V +1—cosf

Example 7. Consider

=y
!

Yy =—1°+x

This is a Hamiltonian with

.7,'4 2

="
4

+

2 g2

2 2
There are three equilibrium solutions Xy = (0,0), (£1,0). Note that the
linearized system is X' = AX

0 1
A_<1—3x2 0>



while the Hessian matrix is

o, [ 322—1 0
(0

At (0,0), D?H is neither positive nor negative, so (0,0) is a saddle for H, or
a saddle for the linearized system X’ = A (0,0) X. At the other two equilibria
Xo = (£1,0), D*H is positively definite. So they are local minimum points
of H, and are center for the linearized systems.

e Homework: lab, 2, 6, 7aef (no phase portrait, no level surface)

e #8 (no phase portrait. Do the followings)

1. Determine which is gradient, which is Hamiltonian.

2. (optional) If it is a gradient or Hamiltonian, find V" or H.

— Hints for #8: In 2d, a system

¥ =f
y=g
a is a gradient iff
of _ 9%
dy  Ox
then, V' can be found by solving
ov
or 1
o _
oy g
b is a Hamiltonian iff
of _ _99
or Oy
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