Chapter 7 Nonlinear Systems

Nonlinear systems in R™:

X' = F(t,X)
T Fl (t,xl,...,xn)
X = : , F(t,X) = :
T, F, (t,xq1,...,xy)

When F (t,X) = F (X) is independent of ¢, it is an example of dynamical
system.

e Dynamical System:

— Definition: Consider any smooth two-variable function ¢ (¢, X) :
(t,X) € R' x R" — R". Let ¢, (X) = ¢ (t, X) be a map R" —
R™. We call the family of map {¢;} a smooth dynamical system if
it satisfies the following two conditions

1. ¢g is an identity map: ¢ (X) = ¢ (0,X) = X for any X
2. ¢to¢8:¢t+8: ¢(t7¢(S7X)):¢(t+SaX)
— Flows of linear systems X’ = AX are dynamical systems

* Solution is
¢ (Xo) = ¢ (¢, Xo) = ' X,

* So
¢0 (X()) = 60AX0 = X()

$10 Os (Xo) = Ot (€SAX0) = 6Me‘SAXO = €(t+S)AX0 = Pr+s (Xo)

e Flows of nonlinear systems X’ = F' (X)) are also dynamical systems (if
F' is smooth function)

— Integral equation formulation:

X(t):X0+/OtF(X(s))ds



— Picard Iteration: To solve this system, we create an iterative se-
quence
Xo=Xo (initial value)

t
Xt = Xo+ / F (X, () ds
0

— Existence (for general system F' (t, X) ):
« the Picard sequence {X,, ()} has a limit as n — oo,for a small
time period —e < t < e. (local existence theorem)

* the limit X (¢) is a solution for ¢ in (—¢, €) , because it satisfies
the integral formulation

« For linear (nonautonomous system)
X' =At)X
the Picard sequence converges for all ¢ as long as A (t) is
defined and continuous. (Global existence)

— Uniqueness (for general system F' (¢, X) ): The solution is unique,
i.e., there is only one solution for the same IVP.

— Continuous dependence on initial data (for general system F (¢, X)
):
« For Yy close to Xy, solution Y (¢) with the initial data Yj also
exits in (—¢, ¢)
* From integral formulations

Y(t):Yo—f—/OtF(Y(S))dS

X(t)=-Y (t) = Xo—f—/OtF(X (5))ds— (Yo +/OtF(Y (s))ds)
Soif |[VF| < K,

X (5) — Y ()] < |Xo - Vil +/O F (X (s)) - F(Y (5))ds|
<X =Yl + [ IF(X ()= F (¥ (s) s

t
<X - Vil + K [ X (5) =Y (9)]ds
0



x By Gronwall’s inequality, we arrive at
X (5) = Y ()] < | X — Yol !

* S0 if Yo — Xo,then Y (t) — X (¢)

— Continuous dependence on parameters (for general system F' (¢, X)

)
X' = F, (X)

x Let X, (t) be the solution, and X} (¢) the solution for X' =
F, (X). Then

Xa (1) = X (t) :/0 (Fa (Xa (s)) = Fy (X, (s))) ds

x So if Fi (X) — F, (X) as b — a, X, (t) — X, (1)
— So the flow ¢ (t, X) exists and unique, and continuously depends
on initial data X.
— The flow is a dynamical system:
By definition, ¢ (0, X) = X
For any fixed s, set Y (t) = ¢ (t + 5, X) . Then Y (¢) solves

*

*

V(1) = 0045, X) = F(6(t+5,X) = F Y (1)
Y (0) = (s, X)

*

Recall that W (t) = ¢ (t, Xo) solves

Y'(t)=F(Y (1)
Y (0) = X,

*

In particular, for Xo = ¢ (s, X), W (t) = ¢ (t, ¢ (s, X)) solves

Yi(t) = F(Y (1)
Y (0) = ¢ (s, X)

*

By the uniqueness theory, W (t) =Y (t)

¢(t7¢(57X)) :¢(t+87X)



— Integral formulation for flow
t
60 =X + [ F(0.())ds
0

e All dynamical systems are flows of ODEs:
— Given ¢ (X) ,we compute F' (X)
20 (X) |z = F (X)
ot
— Since ¢y (X) = ¢4 (05 (X))
9 dur (X) = 2 (60 (6, (X))
— At t =0,

0

0
§¢t+s (X) = géﬁs (X)

9 (6000 (X)) = F (6, (X)
— 50 ¢ (X) is a solution of Y’ = F (V)

Example 1: Use the Picard iteration to solve

v (4 o= (3)

Sol: Recall that the solution is

X:< cqst )
—sint

We now generate the Picard sequence:

(1) (% D

and show it converges to X.



e Jacobian matrix of mappings F' : R* — R"

( fi(ze, .., zp) )
F(X) = , DF (X) =
fo (@1, oy 2p)

Example 2 (a) For F'(X) =X in R", DF(X)=1

(b) In R?, F = (2124, 2?)

_ To I1
e Some formulas: DF (¢) = DF - D¢

o Differentiate DE
09 (t.X)

h

8x1
ot
8x1

—— = F(0(t.X))

ot

of
(9x2
ot
81'2

with respect to X, we see D¢ (t.X) = D¢, (X) Solves

0D (t.X)
ot

i.e., each column of D¢ (t.X) solves

U' = DF (¢ (t.X))U

or

Dy (X) = T+ /O "DF (6, (X)) Dé. (X) ds

e The Variational Equation

— Given Xy, let ¢ (¢, Xo) be the solution of IVP with the initial value

Xo

— Set A(t) = DF (¢ (t, Xo)) ,i-e., the Jacobian matrix of F' evaluated

at gb (t, X())

= DF (¢ (+.X)) D¢ (£.X)

on
oz,
Ofn
oz,

— We call the following Variational Equation along solution ¢ (¢, Xj) :

U'=At)U

Vi

\

|



e Variational equation is a (global) linearization along ¢ (t, Xo) :

— If ¢(t,Xo) exists for ¢ in [0,7], then so does the entire flow
¥ (t,Uy) for Variational equation, i.e.,

&ﬂ (ta UO) _
— =AW ¥ )
— Since
% — DF (¢ (t.Xy)) Do (£.X,)

— each column of D¢ (t.X) is a solution of the variational equation
— Multiplying both sides by Uy :

0D (t.Xo) Uy
ot

— Since D¢ (O,XU) U[) = Ub7
w (ta UO) - ng (t7 XO) UO

= DF (¢ (t.X0)) D¢ (t.Xo) Uo

— This means that, if we are able to solve the viational equation,
then we can easily find D¢ (t, Xy) since

ng (ta XO) = [,lvb (t7 61) 7¢ (ta 62) ERED] ¢ (tv en)]
where ¢; is the standard basis.

— If ¢ (¢, X) is smooth, we expand ¢ (t, X;) in X variable around
XO .

¢ (t, X1) = & (t, Xo) + D (t, Xo) (X1 — Xo) + O (| X1 — Xol*)
— So if X7 = Xo + Up,then
¢ (t, X1) = ¢ (t, Xo) + 1 (t, Up) + O (|1 X1 — Xol*)

This means that if we can solve IVP at initial value Xy to get
¢ (t, Xo), then we can calculate A (t) = DF (¢ (t,Xo)) and thus
to calculate the solution 1) (¢, Up) for the viational equation since
it is linear. Then, we can approximate other IVP for nearby initial
value X = Xy + Uy by

¢ (t, Xo) + ¢ (¢, Uo)



— In general (with less smoothness condition), let X (¢) = ¢ (¢, Xo), U (t) =

¥ (t,Up), then X (t)+ U (t) is an approximation for ¢ (t, Xo + Up)
of order higher than one:
X(O+U () =0t X0+ U)|
|Uo]

as |Up| — 0. The convergence is uniform in ¢.

— In particular, if X is an equilibrium solution, i.e., ¢ (¢, Xy) = X,
then
A(t) = DF(¢(t, Xo)) = DF (Xo)

Variational equation is
U' = DF (Xo)U
Its solution ® (¢, Up) is such that
¢ (t, Xo) + ¢ (t,Uo) = Xo + ¢ (¢, Vo)

is an approximation solution for ¢ (¢, Xo + Up). So sometime we
call the variational equation linearization.

Example 3 2’ = x2.Solution is

Zo
¢<t7$0) - 1 — iL’Qt
So .
Do (t,z0) = m

On the other hand, DF = 2z. So its variational equation for x = ¢ (¢, xo) is

u = 2¢ (t,rg)u = ( 220 >u

l—l'ot

The solution of this variational equation with initial data uq is

w (tu uO) =

Ug
(1 — azot)?

Apparently, this function is defined as long as ¢t < 1/x, the same as for

¢ (t, .270) .



For 1 = xq + uo,
¢ (t,l’o) + ,lvb (t7u0) - QS (t7$1)
T U T
T —mot (1 — zt) 1—aqt

_my—aft T
(1= aot)? 1t
_xy —agt — it + xjet® — ay (1 — zot)?
N (1 —z0t)® (1 — 210)
— (uo)*t
(1 —zot)” (1 — a10)

So as ug — 0,

6 (t,20) + 9 (t,u0) — 6 (t,01)| _ ' uot ' 0
|[uo (1 —azot)* (1 — 211)

e When X is an equilibrium solution, the variational equation becomes
an autonomous linear system. We call in this case the linearization.

Example 5: Consider X' = F(X), F = (z+y* —y). X = 0 is an
equilibrium. So along this solution, the linearization is

DF (0) = ((1) _01) U (t) = ( yf}"ee_tt)

e Homework: 1lce, 2, 7(for the case (i) A (t) = diag (A1 (t),..., A (1)), (i)
n = 2, general matrices that may not be diagonal)

e Homework (additional): Find and solve the variational equations for
X' = F(X)
L. F=(2*+ay,z+9*), X =(-1,1)
2.4 =a'3 x(t)=213—1)""
e Homework (optional): Write (or find from internet) a numerical pro-

gram (in any language, such as C, Matlab, Mathematica, etc.) for (i)
Euler’s method (i7) Runge-Kutta of order 4.



