Chapter 7 Nonlinear Systems

Nonlinear systems in R^{n} :

$$
\begin{gathered}
X^{\prime}=F(t, X) \\
X=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), F(t, X)=\left(\begin{array}{c}
F_{1}\left(t, x_{1}, \ldots, x_{n}\right) \\
\vdots \\
F_{n}\left(t, x_{1}, \ldots, x_{n}\right)
\end{array}\right)
\end{gathered}
$$

When $F(t, X)=F(X)$ is independent of t, it is an example of dynamical system.

- Dynamical System:
- Definition: Consider any smooth two-variable function $\phi(t, X)$: $(t, X) \in R^{1} \times R^{n} \longmapsto R^{n}$. Let $\phi_{t}(X)=\phi(t, X)$ be a map $R^{n} \longmapsto$ R^{n}. We call the family of map $\left\{\phi_{t}\right\}$ a smooth dynamical system if it satisfies the following two conditions

1. ϕ_{0} is an identity map: $\phi_{0}(X)=\phi(0, X)=X$ for any X
2. $\phi_{t} \circ \phi_{s}=\phi_{t+s}: \quad \phi(t, \phi(s, X))=\phi(t+s, X)$

- Flows of linear systems $X^{\prime}=A X$ are dynamical systems
* Solution is

$$
\phi_{t}\left(X_{0}\right)=\phi\left(t, X_{0}\right)=e^{t A} X_{0}
$$

* So

$$
\begin{gathered}
\phi_{0}\left(X_{0}\right)=e^{0 A} X_{0}=X_{0} \\
\phi_{t} \circ \phi_{s}\left(X_{0}\right)=\phi_{t}\left(e^{s A} X_{0}\right)=e^{t A} e^{s A} X_{0}=e^{(t+s) A} X_{0}=\phi_{t+s}\left(X_{0}\right)
\end{gathered}
$$

- Flows of nonlinear systems $X^{\prime}=F(X)$ are also dynamical systems (if F is smooth function)
- Integral equation formulation:

$$
X(t)=X_{0}+\int_{0}^{t} F(X(s)) d s
$$

- Picard Iteration: To solve this system, we create an iterative sequence

$$
\begin{aligned}
X_{0} & =X_{0} \quad \text { (initial value) } \\
X_{n+1} & =X_{0}+\int_{0}^{t} F\left(X_{n}(s)\right) d s
\end{aligned}
$$

- Existence (for general system $F(t, X)$):
* the Picard sequence $\left\{X_{n}(t)\right\}$ has a limit as $n \rightarrow \infty$,for a small time period $-\varepsilon<t<\varepsilon$. (local existence theorem)
* the limit $X(t)$ is a solution for t in $(-\varepsilon, \varepsilon)$, because it satisfies the integral formulation
* For linear (nonautonomous system)

$$
X^{\prime}=A(t) X
$$

the Picard sequence converges for all t as long as $A(t)$ is defined and continuous. (Global existence)

- Uniqueness (for general system $F(t, X)$): The solution is unique, i.e., there is only one solution for the same IVP.
- Continuous dependence on initial data (for general system $F(t, X)$):
* For Y_{0} close to X_{0}, solution $Y(t)$ with the initial data Y_{0} also exits in $(-\varepsilon, \varepsilon)$
* From integral formulations

$$
Y(t)=Y_{0}+\int_{0}^{t} F(Y(s)) d s
$$

we see
$X(t)-Y(t)=X_{0}+\int_{0}^{t} F(X(s)) d s-\left(Y_{0}+\int_{0}^{t} F(Y(s)) d s\right)$
So if $|\nabla F| \leq K$,

$$
\begin{aligned}
|X(t)-Y(t)| & \leq\left|X_{0}-Y_{0}\right|+\int_{0}^{t}|F(X(s))-F(Y(s)) d s| \\
& \leq\left|X_{0}-Y_{0}\right|+\int_{0}^{t}|F(X(s))-F(Y(s)) d s| \\
& \leq\left|X_{0}-Y_{0}\right|+K \int_{0}^{t}|X(s)-Y(s)| d s
\end{aligned}
$$

* By Gronwall's inequality, we arrive at

$$
|X(t)-Y(t)| \leq\left|X_{0}-Y_{0}\right| e^{K t}
$$

* So if $Y_{0} \rightarrow X_{0}$, then $Y(t) \rightarrow X(t)$
- Continuous dependence on parameters (for general system $F(t, X)$):

$$
X^{\prime}=F_{a}(X)
$$

* Let $X_{a}(t)$ be the solution, and $X_{b}(t)$ the solution for $X^{\prime}=$ $F_{b}(X)$. Then

$$
X_{a}(t)-X_{b}(t)=\int_{0}^{t}\left(F_{a}\left(X_{a}(s)\right)-F_{b}\left(X_{b}(s)\right)\right) d s
$$

* So if $F_{b}(X) \rightarrow F_{a}(X)$ as $b \rightarrow a, X_{b}(t) \rightarrow X_{a}(t)$
- So the flow $\phi(t, X)$ exists and unique, and continuously depends on initial data X.
- The flow is a dynamical system:
* By definition, $\phi(0, X)=X$
* For any fixed s, set $Y(t)=\phi(t+s, X)$.Then $Y(t)$ solves

$$
\begin{aligned}
& Y^{\prime}(t)=\frac{\partial}{\partial t} \phi(t+s, X)=F(\phi(t+s, X))=F(Y(t)) \\
& Y(0)=\phi(s, X)
\end{aligned}
$$

* Recall that $W(t)=\phi\left(t, X_{0}\right)$ solves

$$
\begin{aligned}
& Y^{\prime}(t)=F(Y(t)) \\
& Y(0)=X_{0}
\end{aligned}
$$

* In particular, for $X_{0}=\phi(s, X), W(t)=\phi(t, \phi(s, X))$ solves

$$
\begin{aligned}
& Y^{\prime}(t)=F(Y(t)) \\
& Y(0)=\phi(s, X)
\end{aligned}
$$

* By the uniqueness theory, $W(t)=Y(t)$

$$
\phi(t, \phi(s, X))=\phi(t+s, X)
$$

- Integral formulation for flow

$$
\phi_{t}(X)=X+\int_{0}^{t} F\left(\phi_{s}(X)\right) d s
$$

- All dynamical systems are flows of ODEs:
- Given $\phi_{t}(X)$, we compute $F(X)$

$$
\left.\frac{\partial}{\partial t} \phi_{t}(X)\right|_{t=0}=F(X)
$$

- Since $\phi_{t+s}(X)=\phi_{t}\left(\phi_{s}(X)\right)$

$$
\frac{\partial}{\partial t} \phi_{t+s}(X)=\frac{\partial}{\partial t}\left(\phi_{t}\left(\phi_{s}(X)\right)\right)
$$

- At $t=0$,

$$
\begin{gathered}
\frac{\partial}{\partial t} \phi_{t+s}(X)=\frac{\partial}{\partial s} \phi_{s}(X) \\
\frac{\partial}{\partial t}\left(\phi_{t}\left(\phi_{s}(X)\right)\right)=F\left(\phi_{s}(X)\right)
\end{gathered}
$$

- so $\phi_{s}(X)$ is a solution of $Y^{\prime}=F(Y)$

Example 1: Use the Picard iteration to solve

$$
X^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) X, X(0)=\binom{1}{0}
$$

Sol: Recall that the solution is

$$
X=\binom{\cos t}{-\sin t}
$$

We now generate the Picard sequence:

$$
U_{n+1}=\binom{1}{0}+\int_{0}^{t}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) U_{n}(s) d s
$$

and show it converges to X.

- Jacobian matrix of mappings $F: R^{n} \rightarrow R^{n}$

$$
F(X)=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right), D F(X)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{c}
\nabla f_{1} \\
\cdots \\
\nabla f_{n}
\end{array}\right)
$$

Example 2 (a) For $F(X)=X$ in $R^{n}, \quad D F(X)=I$
(b) In $R^{2}, F=\left(x_{1} x_{2}, x_{1}^{2}\right)$

$$
D F=\left(\begin{array}{cc}
x_{2} & x_{1} \\
2 x_{1} & 0
\end{array}\right)
$$

- Some formulas: $D F(\phi)=D F \cdot D \phi$
- Differentiate DE

$$
\frac{\partial \phi(t . X)}{\partial t}=F(\phi(t . X))
$$

with respect to X, we see $D \phi(t . X)=D \phi_{t}(X)$ Solves

$$
\frac{\partial D \phi(t . X)}{\partial t}=D F(\phi(t . X)) D \phi(t . X)
$$

i.e., each column of $D \phi(t . X)$ solves

$$
U^{\prime}=D F(\phi(t . X)) U
$$

or

$$
D \phi_{t}(X)=I+\int_{0}^{t} D F\left(\phi_{s}(X)\right) D \phi_{s}(X) d s
$$

- The Variational Equation
- Given X_{0}, let $\phi\left(t, X_{0}\right)$ be the solution of IVP with the initial value X_{0}
- Set $A(t)=D F\left(\phi\left(t, X_{0}\right)\right)$,i.e., the Jacobian matrix of F evaluated at $\phi\left(t, X_{0}\right)$
- We call the following Variational Equation along solution $\phi\left(t, X_{0}\right)$:

$$
U^{\prime}=A(t) U
$$

- Variational equation is a (global) linearization along $\phi\left(t, X_{0}\right)$:
- If $\phi\left(t, X_{0}\right)$ exists for t in $[0, T]$, then so does the entire flow $\psi\left(t, U_{0}\right)$ for Variational equation, i.e.,

$$
\frac{\partial \psi\left(t, U_{0}\right)}{\partial t}=A(t) \psi\left(t, U_{0}\right)
$$

- Since

$$
\frac{\partial D \phi\left(t . X_{0}\right)}{\partial t}=D F\left(\phi\left(t . X_{0}\right)\right) D \phi\left(t . X_{0}\right)
$$

- each column of $D \phi\left(t . X_{0}\right)$ is a solution of the variational equation
- Multiplying both sides by U_{0} :

$$
\frac{\partial D \phi\left(t . X_{0}\right) U_{0}}{\partial t}=D F\left(\phi\left(t . X_{0}\right)\right) D \phi\left(t . X_{0}\right) U_{0}
$$

- Since $D \phi\left(0, X_{0}\right) U_{0}=U_{0}$,

$$
\psi\left(t, U_{0}\right)=D \phi\left(t, X_{0}\right) U_{0}
$$

- This means that, if we are able to solve the viational equation, then we can easily find $D \phi\left(t, X_{0}\right)$ since

$$
D \phi\left(t, X_{0}\right)=\left[\psi\left(t, e_{1}\right), \psi\left(t, e_{2}\right), \ldots, \psi\left(t, e_{n}\right)\right]
$$

where e_{i} is the standard basis.

- If $\phi(t, X)$ is smooth, we expand $\phi\left(t, X_{1}\right)$ in X variable around X_{0} :

$$
\phi\left(t, X_{1}\right)=\phi\left(t, X_{0}\right)+D \phi\left(t, X_{0}\right)\left(X_{1}-X_{0}\right)+O\left(\left|X_{1}-X_{0}\right|^{2}\right)
$$

- So if $X_{1}=X_{0}+U_{0}$, then

$$
\phi\left(t, X_{1}\right)=\phi\left(t, X_{0}\right)+\psi\left(t, U_{0}\right)+O\left(\left|X_{1}-X_{0}\right|^{2}\right)
$$

This means that if we can solve IVP at initial value X_{0} to get $\phi\left(t, X_{0}\right)$, then we can calculate $A(t)=D F\left(\phi\left(t, X_{0}\right)\right)$ and thus to calculate the solution $\psi\left(t, U_{0}\right)$ for the viational equation since it is linear. Then, we can approximate other IVP for nearby initial value $X=X_{0}+U_{0}$ by

$$
\phi\left(t, X_{0}\right)+\psi\left(t, U_{0}\right)
$$

- In general (with less smoothness condition), let $X(t)=\phi\left(t, X_{0}\right), U(t)=$ $\psi\left(t, U_{0}\right)$, then $X(t)+U(t)$ is an approximation for $\phi\left(t, X_{0}+U_{0}\right)$ of order higher than one:

$$
\frac{\left|X(t)+U(t)-\phi\left(t, X_{0}+U_{0}\right)\right|}{\left|U_{0}\right|} \rightarrow 0
$$

as $\left|U_{0}\right| \rightarrow 0$. The convergence is uniform in t.

- In particular, if X_{0} is an equilibrium solution, i.e., $\phi\left(t, X_{0}\right)=X_{0}$, then

$$
A(t)=D F\left(\phi\left(t, X_{0}\right)\right)=D F\left(X_{0}\right)
$$

Variational equation is

$$
U^{\prime}=D F\left(X_{0}\right) U
$$

Its solution $\psi\left(t, U_{0}\right)$ is such that

$$
\phi\left(t, X_{0}\right)+\psi\left(t, U_{0}\right)=X_{0}+\psi\left(t, U_{0}\right)
$$

is an approximation solution for $\phi\left(t, X_{0}+U_{0}\right)$. So sometime we call the variational equation linearization.

Example $3 x^{\prime}=x^{2}$. Solution is

$$
\phi\left(t, x_{0}\right)=\frac{x_{0}}{1-x_{0} t}
$$

So

$$
D \phi\left(t, x_{0}\right)=\frac{1}{\left(1-x_{0} t\right)^{2}}
$$

On the other hand, $D F=2 x$. So its variational equation for $x=\phi\left(t, x_{0}\right)$ is

$$
u^{\prime}=2 \phi\left(t, x_{0}\right) u=\left(\frac{2 x_{0}}{1-x_{0} t}\right) u
$$

The solution of this variational equation with initial data u_{0} is

$$
\psi\left(t, u_{0}\right)=\frac{u_{0}}{\left(1-x_{0} t\right)^{2}}
$$

Apparently, this function is defined as long as $t<1 / x_{0}$, the same as for $\phi\left(t, x_{0}\right)$.

For $x_{1}=x_{0}+u_{0}$,

$$
\begin{aligned}
& \phi\left(t, x_{0}\right)+\psi\left(t, u_{0}\right)-\phi\left(t, x_{1}\right) \\
& =\frac{x_{0}}{1-x_{0} t}+\frac{u_{0}}{\left(1-x_{0} t\right)^{2}}-\frac{x_{1}}{1-x_{1} t} \\
& =\frac{x_{1}-x_{0}^{2} t}{\left(1-x_{0} t\right)^{2}}-\frac{x_{1}}{1-x_{1} t} \\
& =\frac{x_{1}-x_{0}^{2} t-x_{1}^{2} t+x_{0}^{2} x_{1} t^{2}-x_{1}\left(1-x_{0} t\right)^{2}}{\left(1-x_{0} t\right)^{2}\left(1-x_{1} t\right)} \\
& =\frac{-\left(u_{0}\right)^{2} t}{\left(1-x_{0} t\right)^{2}\left(1-x_{1} t\right)}
\end{aligned}
$$

So as $u_{0} \rightarrow 0$,

$$
\frac{\left|\phi\left(t, x_{0}\right)+\psi\left(t, u_{0}\right)-\phi\left(t, x_{1}\right)\right|}{\left|u_{0}\right|}=\left|\frac{u_{0} t}{\left(1-x_{0} t\right)^{2}\left(1-x_{1} t\right)}\right| \rightarrow 0
$$

- When X_{0} is an equilibrium solution, the variational equation becomes an autonomous linear system. We call in this case the linearization.

Example 5: Consider $X^{\prime}=F(X), F=\left(x+y^{2},-y\right) . X=0$ is an equilibrium. So along this solution, the linearization is

$$
D F(0)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), U(t)=\binom{x_{0} e^{t}}{y_{0} e^{-t}}
$$

- Homework: 1ce, 2,7 (for the case (i) $A(t)=\operatorname{diag}\left(\lambda_{1}(t), \ldots, \lambda(t)\right),(i i)$ $n=2$, general matrices that may not be diagonal)
- Homework (additional): Find and solve the variational equations for $X^{\prime}=F(X)$

1. $F=\left(x^{2}+x y, x+y^{3}\right), X=(-1,1)$
2. $x^{\prime}=x^{4 / 3}, x(t)=27(3-t)^{-3}$

- Homework (optional): Write (or find from internet) a numerical program (in any language, such as C, Matlab, Mathematica, etc.) for (i) Euler's method (ii) Runge-Kutta of order 4.

