
Chapter 7 Nonlinear Systems

Nonlinear systems in Rn:

X 0 = F (t;X)

X =

0B@ x1
...
xn

1CA ; F (t;X) =

0B@ F1 (t; x1; :::; xn)
...

Fn (t; x1; :::; xn)

1CA
When F (t;X) = F (X) is independent of t; it is an example of dynamical
system.

� Dynamical System:

�De�nition: Consider any smooth two-variable function � (t;X) :
(t;X) 2 R1 �Rn 7�! Rn: Let �t (X) = � (t;X) be a map Rn 7�!
Rn:We call the family of map f�tg a smooth dynamical system if
it satis�es the following two conditions

1. �0 is an identity map: �0 (X) = � (0; X) = X for any X
2. �t � �s = �t+s : � (t; � (s;X)) = � (t+ s;X)

�Flows of linear systems X 0 = AX are dynamical systems

� Solution is
�t (X0) = � (t;X0) = etAX0

� So
�0 (X0) = e0AX0 = X0

�t��s (X0) = �t
�
esAX0

�
= etAesAX0 = e(t+s)AX0 = �t+s (X0)

� Flows of nonlinear systems X 0 = F (X) are also dynamical systems (if
F is smooth function)

� Integral equation formulation:

X (t) = X0 +

Z t

0

F (X (s)) ds
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�Picard Iteration: To solve this system, we create an iterative se-
quence

X0 = X0 (initial value)

Xn+1 = X0 +

Z t

0

F (Xn (s)) ds

�Existence (for general system F (t;X) ):

� the Picard sequence fXn (t)g has a limit as n!1;for a small
time period �" < t < ": (local existence theorem)

� the limit X (t) is a solution for t in (�"; ") ; because it satis�es
the integral formulation

� For linear (nonautonomous system)
X 0 = A (t)X

the Picard sequence converges for all t as long as A (t) is
de�ned and continuous. (Global existence)

�Uniqueness (for general system F (t;X) ): The solution is unique,
i.e., there is only one solution for the same IVP.

�Continuous dependence on initial data (for general system F (t;X)
):

� For Y0 close to X0; solution Y (t) with the initial data Y0 also
exits in (�"; ")

� From integral formulations

Y (t) = Y0 +

Z t

0

F (Y (s)) ds

we see

X (t)�Y (t) = X0+

Z t

0

F (X (s)) ds�
�
Y0 +

Z t

0

F (Y (s)) ds

�
So if jrF j � K;

jX (t)� Y (t)j � jX0 � Y0j+
Z t

0

jF (X (s))� F (Y (s)) dsj

� jX0 � Y0j+
Z t

0

jF (X (s))� F (Y (s)) dsj

� jX0 � Y0j+K

Z t

0

jX (s)� Y (s)j ds
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� By Gronwall�s inequality, we arrive at

jX (t)� Y (t)j � jX0 � Y0j eKt

� So if Y0 ! X0;then Y (t)! X (t)

�Continuous dependence on parameters (for general system F (t;X)
):

X 0 = Fa (X)

� Let Xa (t) be the solution, and Xb (t) the solution for X 0 =
Fb (X). Then

Xa (t)�Xb (t) =

Z t

0

(Fa (Xa (s))� Fb (Xb (s))) ds

� So if Fb (X)! Fa (X) as b! a; Xb (t)! Xa (t)

� So the �ow � (t;X) exists and unique, and continuously depends
on initial data X:

�The �ow is a dynamical system:

� By de�nition, � (0; X) = X

� For any �xed s; set Y (t) = � (t+ s;X) :Then Y (t) solves

Y 0 (t) =
@

@t
� (t+ s;X) = F (� (t+ s;X)) = F (Y (t))

Y (0) = � (s;X)

� Recall that W (t) = � (t;X0) solves

Y 0 (t) = F (Y (t))

Y (0) = X0

� In particular, for X0 = � (s;X) ; W (t) = � (t; � (s;X)) solves

Y 0 (t) = F (Y (t))

Y (0) = � (s;X)

� By the uniqueness theory, W (t) = Y (t)

� (t; � (s;X)) = � (t+ s;X)
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� Integral formulation for �ow

�t (X) = X +

Z t

0

F (�s (X)) ds

� All dynamical systems are �ows of ODEs:

�Given �t (X) ;we compute F (X)

@

@t
�t (X) jt=0 = F (X)

� Since �t+s (X) = �t (�s (X))

@

@t
�t+s (X) =

@

@t
(�t (�s (X)))

�At t = 0;
@

@t
�t+s (X) =

@

@s
�s (X)

@

@t
(�t (�s (X))) = F (�s (X))

� so �s (X) is a solution of Y 0 = F (Y )

Example 1: Use the Picard iteration to solve

X 0 =

�
0 1
�1 0

�
X; X (0) =

�
1
0

�
Sol: Recall that the solution is

X =

�
cos t
� sin t

�
We now generate the Picard sequence:

Un+1 =

�
1
0

�
+

Z t

0

�
0 1
�1 0

�
Un (s) ds

and show it converges to X:
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� Jacobian matrix of mappings F : Rn ! Rn

F (X) =

0@ f1 (x1; :::; xn)
� � �

fn (x1; :::; xn)

1A ; DF (X) =

0BBB@
@f1
@x1

@f1
@x2

� � � @f1
@xn

� � � � � � � � � � � �
@fn
@x1

@fn
@x2

� � � @fn
@xn

1CCCA =

0@ rf1
� � �
rfn

1A

Example 2 (a) For F (X) = X in Rn; DF (X) = I
(b) In R2; F = (x1x2; x21)

DF =

�
x2 x1
2x1 0

�
� Some formulas: DF (�) = DF �D�

� Di¤erentiate DE
@� (t:X)

@t
= F (� (t:X))

with respect to X; we see D� (t:X) = D�t (X) Solves

@D� (t:X)

@t
= DF (� (t:X))D� (t:X)

i.e., each column of D� (t:X) solves

U 0 = DF (� (t:X))U

or

D�t (X) = I +

Z t

0

DF (�s (X))D�s (X) ds

� The Variational Equation

�Given X0; let � (t;X0) be the solution of IVP with the initial value
X0

� SetA (t) = DF (� (t;X0)) ;i.e., the Jacobian matrix of F evaluated
at � (t;X0)

�We call the followingVariational Equation along solution � (t;X0) :

U 0 = A (t)U
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� Variational equation is a (global) linearization along � (t;X0) :

� If � (t;X0) exists for t in [0; T ] ; then so does the entire �ow
 (t; U0) for Variational equation, i.e.,

@ (t; U0)

@t
= A (t) (t; U0)

� Since
@D� (t:X0)

@t
= DF (� (t:X0))D� (t:X0)

� each column of D� (t:X0) is a solution of the variational equation

�Multiplying both sides by U0 :

@D� (t:X0)U0
@t

= DF (� (t:X0))D� (t:X0)U0

� Since D� (0; X0)U0 = U0,

 (t; U0) = D� (t;X0)U0

�This means that, if we are able to solve the viational equation,
then we can easily �nd D� (t;X0) since

D� (t;X0) = [ (t; e1) ;  (t; e2) ; :::;  (t; en)]

where ei is the standard basis.

� If � (t;X) is smooth, we expand � (t;X1) in X variable around
X0 :

� (t;X1) = � (t;X0) +D� (t;X0) (X1 �X0) +O
�
jX1 �X0j2

�
� So if X1 = X0 + U0;then

� (t;X1) = � (t;X0) +  (t; U0) +O
�
jX1 �X0j2

�
This means that if we can solve IVP at initial value X0 to get
� (t;X0) ; then we can calculate A (t) = DF (� (t;X0)) and thus
to calculate the solution  (t; U0) for the viational equation since
it is linear. Then, we can approximate other IVP for nearby initial
value X = X0 + U0 by

� (t;X0) +  (t; U0)
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� In general (with less smoothness condition), letX (t) = � (t;X0) ; U (t) =
 (t; U0) ; then X (t)+U (t) is an approximation for � (t;X0 + U0)
of order higher than one:

jX (t) + U (t)� � (t;X0 + U0)j
jU0j

! 0

as jU0j ! 0: The convergence is uniform in t:

� In particular, if X0 is an equilibrium solution, i.e., � (t;X0) = X0;
then

A (t) = DF (� (t;X0)) = DF (X0)

Variational equation is

U 0 = DF (X0)U

Its solution  (t; U0) is such that

� (t;X0) +  (t; U0) = X0 +  (t; U0)

is an approximation solution for � (t;X0 + U0). So sometime we
call the variational equation linearization.

Example 3 x0 = x2:Solution is

� (t; x0) =
x0

1� x0t

So
D� (t; x0) =

1

(1� x0t)
2

On the other hand, DF = 2x: So its variational equation for x = � (t; x0) is

u0 = 2� (t; x0)u =

�
2x0

1� x0t

�
u

The solution of this variational equation with initial data u0 is

 (t; u0) =
u0

(1� x0t)
2

Apparently, this function is de�ned as long as t < 1=x0, the same as for
� (t; x0) :
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For x1 = x0 + u0;

� (t; x0) +  (t; u0)� � (t; x1)

=
x0

1� x0t
+

u0

(1� x0t)
2 �

x1
1� x1t

=
x1 � x20t

(1� x0t)
2 �

x1
1� x1t

=
x1 � x20t� x21t+ x20x1t

2 � x1 (1� x0t)
2

(1� x0t)
2 (1� x1t)

=
� (u0)2 t

(1� x0t)
2 (1� x1t)

So as u0 ! 0;

j� (t; x0) +  (t; u0)� � (t; x1)j
ju0j

=

���� u0t

(1� x0t)
2 (1� x1t)

����! 0

� When X0 is an equilibrium solution, the variational equation becomes
an autonomous linear system. We call in this case the linearization.

Example 5: Consider X 0 = F (X) ; F = (x+ y2;�y) : X = 0 is an
equilibrium. So along this solution, the linearization is

DF (0) =

�
1 0
0 �1

�
; U (t) =

�
x0e

t

y0e
�t

�

� Homework: 1ce, 2, 7(for the case (i) A (t) = diag (�1 (t) ; :::; � (t)) ; (ii)
n = 2; general matrices that may not be diagonal)

� Homework (additional): Find and solve the variational equations for
X 0 = F (X)

1. F = (x2 + xy; x+ y3) ; X = (�1; 1)
2. x0 = x4=3; x (t) = 27 (3� t)�3

� Homework (optional): Write (or �nd from internet) a numerical pro-
gram (in any language, such as C; Matlab, Mathematica, etc.) for (i)
Euler�s method (ii) Runge-Kutta of order 4.
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