Chapter 6 Higher Dimensional Linear Systems

Linear systems in R^{n} :

$$
\begin{gathered}
X^{\prime}=A X \\
X=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
\end{gathered}
$$

- Observations:
- Let T the the coordinate change matrix such that $T^{-1} A T$ is in canonical form B, then $Y=T^{-1} X$ solves

$$
Y^{\prime}=T^{-1} X^{\prime}=T^{-1} A X=\left(T^{-1} A T\right)\left(T^{-1} X\right)=B Y
$$

- For block-diagonal matrix

$$
B=\left(\begin{array}{lll}
B_{1} & & \\
& \ddots & \\
& & B_{k}
\end{array}\right)
$$

the system $Y^{\prime}=B Y$ is reduced to total of k smaller linear systems

$$
\begin{gathered}
Y_{j}^{\prime}=B_{j} Y_{j} \\
Y=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{k}
\end{array}\right)
\end{gathered}
$$

- So it suffices to solve $Y^{\prime}=B Y$ for B in the following two forms
(i) $\left(\begin{array}{cccc}\lambda & 1 & & \\ & \lambda & 1 & \\ & & \ddots & 1 \\ & & & \lambda\end{array}\right)_{p \times p}$,
(ii) $\left(\begin{array}{cccc}C_{2} & I_{2} & & \\ & C_{2} & I_{2} & \\ & & \ddots & I_{2} \\ & & & C_{2}\end{array}\right)_{2 q \times 2 q}$
- where

$$
C_{2}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Case (i):
$-Y^{\prime}=B Y$ is

$$
\begin{aligned}
y_{1}^{\prime} & =\lambda y_{1}+y_{2} \\
& \ldots \\
y_{p-1}^{\prime} & =\lambda y_{p-1}+y_{p} \\
y_{p}^{\prime} & =\lambda y_{p}
\end{aligned}
$$

- each is a linear first-order DE
- we start with solving the last equation

$$
y_{p}=c_{p} e^{\lambda t}
$$

- and substitute it into the one above it:

$$
y_{p-1}^{\prime}=\lambda y_{p-1}+y_{p}=\lambda y_{p-1}+c_{p} e^{\lambda t}
$$

- and solve this linear DE:

$$
\begin{gathered}
\left(e^{-\lambda t} y_{p-1}\right)^{\prime}=e^{-\lambda t} y_{p-1}^{\prime}-\lambda e^{-\lambda t} y_{p-1}=e^{-\lambda t}\left(y_{p-1}^{\prime}-\lambda y_{p-1}\right)=c_{p} \\
e^{-\lambda t} y_{p-1}=c_{p} t+c_{p-1} \\
y_{p-1}=\left(c_{p} t+c_{p-1}\right) e^{\lambda t}
\end{gathered}
$$

- In the same manner, we can "move upward" to solve y_{p-2}, then y_{p-3}, \ldots,till finally solve y_{1}
- Case (ii):
$-q=1, B=C_{2}$. We know from planar system (chapter 3), for $\lambda=\alpha+i \beta$

$$
Y=e^{\alpha t}\binom{a \cos \beta t+b \sin \beta t}{-a \sin \beta t+b \cos \beta t}
$$

- for $q>1$,we write

$$
Y=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{q}
\end{array}\right), \quad Y_{j}=\binom{y_{j 1}}{y_{j 2}}
$$

- We again start with the last DE and move backwards. Solving the last equation:

$$
\begin{gathered}
Y_{q}^{\prime}=C_{2} Y_{q} \Longrightarrow \\
Y_{q}=e^{\alpha t}\binom{a_{q} \cos \beta t+b_{q} \sin \beta t}{-a_{q} \sin \beta t+b_{q} \cos \beta t}
\end{gathered}
$$

- Substitute into the next one above

$$
Y_{q-1}^{\prime}=C_{2} Y_{q-1}+Y_{q}
$$

- This is a planar system of linear nonhomogeneous DEs. it may be solved using the method of "variation of parameters" by looking for solution in the form (optional homework)

$$
Y=e^{\alpha t}\binom{a_{q}(t) \cos \beta t+b_{q}(t) \sin \beta t}{-a_{q}(t) \sin \beta t+b_{q}(t) \cos \beta t}
$$

- once we solve this system, we can then move upward to solve for $Y_{q-2}, Y_{q-3}, \ldots, Y_{1}$ successively.
- We shall introduce another approach to solve this nonhomogeneous system
- In summary, to solve $X^{\prime}=A X$,

1. we first find its canonical form $T^{-1} A T=B$.
2. next, we solve $Y^{\prime}=B Y$ by solving several subproblems in case (i) and/or case (ii)
3. Finally, $X=T Y$ is the desired solution.

Example 1 Solve $X^{\prime}=A X$

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Example 2 Solve $X^{\prime}=A X$

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Sol:

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- The Exponential of A Matrix

- Recall that in solving case (ii), we need to solve nonhomogeneous system

$$
Y^{\prime}=C_{2} Y+Y_{q}(t), \quad Y_{q}(t) \text { is a given vector function }
$$

- The method of variation of parameter is used then
- but better methods are need
- Recall the Taylor series expansion

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

- it is convergent for all x.
- for diagonal matrix $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$

$$
A^{k}=\operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)
$$

- So as $N \rightarrow \infty$

$$
\sum_{k=0}^{N} \frac{A^{k}}{k!}=\operatorname{diag}\left(\sum_{k=0}^{N} \frac{\lambda_{1}^{k}}{k!}, \ldots, \sum_{k=0}^{N} \frac{\lambda_{n}^{k}}{k!}\right) \rightarrow \operatorname{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right)=e^{A}
$$

- Definition of e^{A}

$$
\exp (A)=e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

- Theorem: The above series convergent if we define metric in $L\left(R^{n}\right)$ as, for $A=\left(a_{i j}\right)$

$$
\|A\|=\max \left(\left|a_{i j}\right|\right)
$$

Example 3. Find e^{A} if

$$
A=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)
$$

Example 4. Find e^{A} if

$$
A=\left(\begin{array}{cc}
0 & \beta \\
-\beta & 0
\end{array}\right)=\beta\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\beta E
$$

Sol: Note that $E^{2}=-I, E^{3}=-E, E^{4}=I$. So

$$
e^{A}=\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right)
$$

Example 5. Find e^{A} if

$$
A=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Sol:

$$
e^{A t}=\left(\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)
$$

Example 6. Guess what is e^{A} if

$$
A=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \mu
\end{array}\right) ?
$$

- Properties of exponential of matrices:

1. If $B=T^{-1} A T$, then $e^{B}=T^{-1} e^{A} T$
2. If $A B=B A$, then $\exp (A+B)=e^{A} e^{B}$
3. $\exp (-A)=(\exp (A))^{-1}$
4. If λ is an eigenvalue of A and V is an associated eigenvector, then e^{λ} is an eigenvalue of e^{A} and V is an eigenvector of e^{A} associated with e^{λ}
5. $\left(e^{t A}\right)^{\prime}=A e^{t A}=e^{t A} A$

- Theorem: $e^{t A} X_{0}$ is the only solution of

$$
X^{\prime}=A X, \quad X(0)=X_{0}
$$

Example7: Find general solutions for $X^{\prime}=A X$ with A in Example 3-5:

1. In Example 3.

$$
A=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right), \quad e^{t A}=\left(\begin{array}{cc}
e^{\lambda t} & 0 \\
0 & e^{\mu t}
\end{array}\right)
$$

So

$$
X=e^{t A} X_{0}=\binom{e^{\lambda t} x_{0}}{e^{\mu t} y_{0}}
$$

2. In Example 4.

$$
A=\left(\begin{array}{cc}
0 & \beta \\
-\beta & 0
\end{array}\right), e^{A t}=\left(\begin{array}{cc}
\cos \beta t & \sin \beta t \\
-\sin \beta t & \cos \beta t
\end{array}\right)
$$

So

$$
X=e^{t A} X_{0}=\binom{x_{0} \cos \beta t+y_{0} \sin \beta t}{-x_{0} \sin \beta t+y_{0} \cos \beta t}
$$

3. In Example 5.

$$
A=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right), \quad e^{A t}=\left(\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)
$$

So

$$
X=e^{t A} X_{0}=\binom{x_{0} e^{\lambda t}+y_{0} t e^{\lambda t}}{y_{0} e^{\lambda t}}
$$

- Nonhomogeneous

$$
X^{\prime}=A X+G(t)
$$

- Variation of Parameters: Consider solution in the form

$$
X=e^{t A} Y
$$

Note that when $G=0, Y(t)=$ constant. Now consider $Y(t)$ is a function. Substituting it into the equation

$$
\begin{aligned}
& L H S=X^{\prime}=\left(e^{t A} Y\right)^{\prime}=\left(e^{t A}\right)^{\prime} Y+e^{t A} Y^{\prime}=A e^{t A} Y+e^{t A} Y^{\prime} \\
& R H S=A X+G(t)=A e^{t A} Y+G(t)
\end{aligned}
$$

So

$$
e^{t A} Y^{\prime}=G(t), \quad \text { or } \quad Y^{\prime}=e^{-t A} G(t)
$$

and

$$
Y=X_{0}+\int_{0}^{t} e^{-A s} G(s) d s
$$

- Solution of nonhomogeneous IVP is

$$
X=e^{t A}\left(X_{0}+\int_{0}^{t} e^{-A s} G(s) d s\right)
$$

Example 8: Find solution for systems in case (ii) of canonical forms $X^{\prime}=C_{2} X+G(t), \quad G(t)=\left(g_{1}(t) \cdot g_{2}(t)\right)$ is a given vector function

Sol: To find $e^{t C_{2}}$, we first try:

$$
\begin{gathered}
C_{2}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right), C_{2}^{2}=\left(\begin{array}{cc}
\alpha^{2}-\beta^{2} & 2 \alpha \beta \\
-2 \alpha \beta & \alpha^{2}-\beta^{2}
\end{array}\right) \\
C_{2}^{3}=\left(\begin{array}{cc}
\alpha^{3}-3 \alpha \beta^{2} & -\beta^{3}+3 \alpha^{2} \beta \\
\beta^{3}-3 \alpha^{2} \beta & \alpha^{3}-3 \alpha \beta^{2}
\end{array}\right) \ldots
\end{gathered}
$$

It seems not so easy! We try something else. Notice that $X=e^{t C_{2}} X_{0}$ is the solution of

$$
X^{\prime}=C_{2} X, \quad X(0)=X_{0}=\binom{a}{b}
$$

On the other hand, we know the solution of this planar system is

$$
X=e^{\alpha t}\binom{a \cos \beta t+b \sin \beta t}{-a \sin \beta t+b \cos \beta t}
$$

So

$$
e^{t C_{2}}\binom{a}{b}=e^{\alpha t}\binom{a \cos \beta t+b \sin \beta t}{-a \sin \beta t+b \cos \beta t}
$$

In particular, if we choose $a=1, b=0$, and $a=0, b=1$, respectively, then we shall see

$$
e^{t C_{2}}=e^{\alpha t}\left(\begin{array}{cc}
\cos \beta t & \sin \beta t \\
-\sin \beta t & \cos \beta t
\end{array}\right)
$$

Recall

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

So

$$
\begin{aligned}
e^{-t C_{2}} & =\left(e^{\alpha t}\left(\begin{array}{cc}
\cos \beta t & \sin \beta t \\
-\sin \beta t & \cos \beta t
\end{array}\right)\right)^{-1} \\
& =e^{-\alpha t}\left(\begin{array}{cc}
\cos \beta t & \sin \beta t \\
-\sin \beta t & \cos \beta t
\end{array}\right)^{-1}=e^{-\alpha t}\left(\begin{array}{cc}
\cos \beta t & -\sin \beta t \\
\sin \beta t & \cos \beta t
\end{array}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
X & =e^{t C_{2}}\left(X_{0}+\int_{0}^{t} e^{-C_{2} s} G(s) d s\right) \\
& =e^{\alpha t}\left(\begin{array}{cc}
\cos \beta t & \sin \beta t \\
-\sin \beta t & \cos \beta t
\end{array}\right)\binom{x_{1}+\int_{0}^{t}\left(g_{1}(s) \cos \beta s-g_{2}(s) \sin \beta s\right) e^{-\alpha s} d s}{x_{0}+\int_{0}^{t}\left(g_{1}(s) \sin \beta s+g_{2}(s) \cos \beta s\right) e^{-\alpha s} d s} .
\end{aligned}
$$

Example 9: Harmonic oscillators

$$
x^{\prime \prime}+x=\cos \omega t
$$

or

$$
X^{\prime}=A X+\binom{0}{\cos \omega t}, \quad A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Recall that

$$
\begin{aligned}
& e^{A t}=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \\
& e^{-A t}=e^{A(-t)}=\left(\begin{array}{cc}
\cos (-t) & \sin (-t) \\
-\sin (-t) & \cos (-t)
\end{array}\right)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \\
& \int_{0}^{t} e^{-A s} G(s) d s=\int_{0}^{t}\left(\begin{array}{cc}
\cos s & -\sin s \\
\sin s & \cos s
\end{array}\right)\binom{0}{\cos \omega s} d s \\
&=\int_{0}^{t}\binom{-\sin s \cos \omega s}{\cos s \cos \omega s} d s=\frac{1}{2}\binom{\frac{\cos (\omega+1) t}{(\omega+1)}-\frac{\cos (\omega-1) t}{(\omega-1)}+\frac{2}{\omega^{2}-1}}{\frac{\sin (\omega+1) t}{(\omega+1)}-\frac{\sin (\omega-1) t}{(\omega-1)}}
\end{aligned}
$$

So

$$
X=e^{t A} X_{0}+e^{t A} \int_{0}^{t} e^{-A s} G(s) d s
$$

- Homework: 1(h), 4, 6, 7, 12(c)(g)(j)

