Chapter 5 Linear Algebra

- Vectors in $R^{n}: X=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ or $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (column or row form)
- dependence/independence: $V_{1}, \ldots, V_{m} \in R^{n}$
- linearly dependent if there are $\alpha_{1}, \ldots, \alpha_{m}$ that are not all zero such that

$$
\alpha_{1} V_{1}+\alpha_{2} V_{2}+\ldots+\alpha_{m} V_{m}=0
$$

- linearly independent if the only solution of above equation is $\alpha_{1}=$ $\ldots=\alpha_{m}=0$
- If V_{1}, \ldots, V_{m} is linearly dependent, then at least one of them is a linear combination of the rest.
- there are no more than n independent vectors in R^{n}
- Subspace of R^{n}
- a subspace S is a subset that is closed under linear operations
* $V, U \in S \Longrightarrow a U+b V \in S$ for any constants a, b
* let $a=b=0 \Longrightarrow 0 \in S$: any subspace must contain the origin
- a subspace is spanned by a few vectors

$$
S=\operatorname{span}\left\{V_{1}, \ldots, V_{m}\right\}
$$

- In R^{2}, only subspaces are lines passing the origin
- In R^{3}, subspaces are lines and planes passing through the origin.
- Basis \& coordinates
- any subspace is generated by finite many vectors: $S=\operatorname{span}\left\{V_{1}, \ldots, V_{m}\right\}$
* if these generators V_{1}, \ldots, V_{m} are linearly dependent, then one must be a linear combination of the rest.
* Suppose V_{m} is a linear combination of the rest
* V_{m} can be eliminated from the set of generators
* i.e., $S=\operatorname{span}\left\{V_{1}, \ldots, V_{m-1}\right\}$
* So by reducing generators, we may end up a set of linearly independent generators
- If V_{1}, \ldots, V_{m} are linearly independent, we say $V=\left\{V_{1}, \ldots, V_{m}\right\}$ form a basis for S
- a set $V=\left\{V_{1}, \ldots, V_{n}\right\}$ of n linearly independent in R^{n} is a basis of R^{n}
- standard basis $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$
- For any vector X, there is a unique solution $\alpha_{1}, \ldots, \alpha_{n}$ for

$$
X=\alpha_{1} V_{1}+\alpha_{2} V_{2}+\ldots+\alpha_{n} V_{n}
$$

- We call $\left(\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right)$ the coordinate of X with respect to basis V

$$
[X]_{V}=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)
$$

- Matrix and operations
$-m \times n$ matrix

$$
A=A_{n m}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

- Column matrix form

$$
A=\left(\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{n}
\end{array}\right), \quad A_{k}=\left(\begin{array}{c}
a_{1 k} \\
a_{2 k} \\
\vdots \\
a_{m k}
\end{array}\right) \text { is the } k \text { th column }
$$

- matrix times a vector

$$
A X=\left(\begin{array}{c}
\sum_{k=1}^{n} a_{1 k} x_{k} \\
\vdots \\
\sum_{k=1}^{n} a_{n k} x_{k}
\end{array}\right)
$$

- matrix $A_{m n}$ times a matrix $B_{n p}$ is a matrix of dimension $m \times p$
- Inverse of matrix
- a square matrix $A_{n n}$ is invertible if there exists a C such that

$$
A C=C A=I
$$

- C is called the inverse matrix of A, and denoted as $C=A^{-1}$
- A is invertible iff columns of A are linearly independent
$-A$ is invertible iff the only solution for the following equation is $X=0$:

$$
A X=0
$$

- A is invertible iff there is a unique solution for the following equation for any vector b :

$$
A X=b
$$

- The solution is $X=A^{-1} b$
- Inverse matrix algorithm by elementary row operations: $[A, I] \rightarrow$ $\left[I, A^{-1}\right]$
- Changes of coordinates matrix
$-V=\left\{V_{1}, \ldots, V_{n}\right\}$ is a basis
$-[X]_{V}$ is the solution of

$$
X=\alpha_{1} V_{1}+\alpha_{2} V_{2}+\ldots+\alpha_{n} V_{n}
$$

- In matrix notation

$$
X=\left(V_{1} V_{2} \ldots V_{n}\right)[X]_{V}
$$

- Let $V=\left[V_{1} \ldots V_{n}\right]$ be the matrix whose columns are V_{k}. Then

$$
\begin{aligned}
X & =V[X]_{V} \\
{[X]_{V} } & =V^{-1} X
\end{aligned}
$$

- Let $W=\left[W_{1}, \ldots, W_{n}\right]$ be another basis, then

$$
[X]_{W}=W^{-1} X
$$

- So we have the formula for changes of coordinate, the matrix for changes of coordinates:

$$
[X]_{W}=W^{-1} V[X]_{V}
$$

- Example 1: $V_{1}=(1,0,0), V_{2}=(1,1,0), V_{3}=(1,1,1)$.

1. (a) show they form a basis
(b) Find coordinate of vector $X=(0,1,-1)$ with respect to the basis V
(c) Show that $W_{1}=(0,1,0), W_{2}=(0,1,1), W_{3}=(1,0,1)$ also form a basis
(d) find the matrix representing changes of coordinate from $[X]_{W}$ to $[X]_{V}$ for all any X.

- Determinant $\operatorname{det}(A)$ of a square matrix
$-\operatorname{det}(A)$ may be computed by row or column expansion, e.g., ith row :

$$
\operatorname{det}(A)=\sum_{k=1}^{n}(-1)^{1+k} a_{i k} \operatorname{det}\left(A_{i k}\right)
$$

- $A_{i k}$ is called a (i, k)-minor obtained from A by deleting row i and column k.
- Similar column expansion
$-\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
$-A$ is invertible iff $\operatorname{det}(A) \neq 0, \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A$
- For triangle matrices A, $\operatorname{det} A=$ product of all diagonal entries
- In particular, if $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then $\operatorname{det} A=\lambda_{1} \lambda_{2} \ldots \lambda_{n}$
- elementary row operations for determinants

- Eigenvalues

- λ is called an eigenvalue of A is

$$
\operatorname{det}(A-\lambda I)=0
$$

- If λ is called an eigenvalue, then

$$
A V=\lambda V
$$

has a non-trivial solution V.

- We call V an eigenvector associated with λ.
- Eigenvectors associated with different eigenvalues are always linearly independent.
- diagonalization: if $n \times n$ matrix A has n distinct real eigenvalue, then it can be diagonalized
- i.e., there is an invertible matrix T such that

$$
T^{-1} A T=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

- We call A is similar to $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
$-T=\left(V_{1}, \ldots V_{m}\right), \quad V_{j}$ is an eigenvector associated with λ_{j}
- Example 2 Find eigenvalues, eigenvectors, and then diagonalize:

$$
A=\left(\begin{array}{lll}
1 & 2 & -1 \\
0 & 3 & -2 \\
0 & 2 & -2
\end{array}\right)
$$

- Complex eigenvalues
$-\lambda_{j}=\alpha_{j} \pm i \beta_{j}, j=1,2, \ldots, m$, are distinct complex eigenvalues of A
- None of them is a conjugate of another. A has no other eigenvalue
- complex eigenvector $V_{j}=V_{j}^{r e}+i V_{j}^{i m}$ associated with λ_{j}
$-\left\{V_{j}^{r e}, V_{j}^{i m}: j=1,2, \ldots, m\right\}$ are linearly independent
- Block matrix notation:

$$
A=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 q} \\
\ldots & \ddots & \ldots \\
A_{p 1} & \ldots & A_{p q}
\end{array}\right)
$$

- Let $T=\left(V_{1}^{r e}, V_{1}^{i m}, V_{2}^{r e}, V_{2}^{i m}, \ldots, V_{m}^{r e}, V_{m}^{i m}\right)$,then

$$
T^{-1} A T=\left(\begin{array}{ccc}
D_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & D_{m}
\end{array}\right)
$$

- where

$$
D_{j}=\left(\begin{array}{cc}
\alpha_{j} & \beta_{j} \\
-\beta_{j} & \alpha_{j}
\end{array}\right)
$$

Canonical form

- Canonical form without repeated eigenvalues

$$
T^{-1} A T=\left(\begin{array}{cccccc}
\lambda_{1} & & & & & \\
& \ddots & & & & \\
& & \lambda_{k} & & & \\
& & & D_{1} & & \\
& & & & \ddots & \\
& & & & & D_{l}
\end{array}\right)
$$

- Canonical form in general

$$
T^{-1} A T=\left(\begin{array}{ccc}
B_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & B_{k}
\end{array}\right)=B
$$

- where B_{j} will be in one of the following two forms

$$
\text { (i) }\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & 1 & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right)_{p \times p}, \quad(i i) \quad\left(\begin{array}{cccc}
C_{2} & I_{2} & & \\
& C_{2} & I_{2} & \\
& & \ddots & I_{2} \\
& & & C_{2}
\end{array}\right)_{q \times q}
$$

- where

$$
C_{2}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- case (i) occurs when λ is a real eigenvalue with multiplicity p
- if $p=1, B_{j}=(\lambda)$, a 1×1 matrix
- case (ii) occurs when $\lambda=\alpha+i \beta$ is a complex eigenvalue with multiplicity q.
- if $q=1, B_{j}=C_{2}$
- T consists of columns that are real parts and imaginary parts of linearly independent solutions of $(A-\lambda I)^{m}$, where $m=$ multiplicity of eigenvalue λ. More precisely, columns of T can be calculated as follows
* If λ is a real real eigenvalue with multiplicity m, then
- find a basis of $N(A-\lambda I)$, say $V_{1}, V_{2}, \ldots, V_{p}$.
- if the $\operatorname{dim} N(A-\lambda I)<m$, then solve

$$
(A-\lambda I)^{m-1} W_{j}=V_{j}
$$

- all V_{j}, W_{j}, and $(A-\lambda I)^{q} W_{j}$, for $q=1,2, \ldots, m-2$. Make sure they are linearly independent.
* If λ is a complex eigenvalues.
- Then find complex eigenvectors V and solutions of

$$
(A-\lambda I)^{m-1} X=V
$$

- real/imaginary parts of $V, W,(A-\lambda I)^{q} W, q=1,2, \ldots, m-$ 2
* These vectors must be assembled according to the corresponding eigenvalues in B and the order of power (power q in $\left.(A-\lambda I)^{q} W\right)$

Example 3 Find canonical forms for

$$
A=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & -1 & 2
\end{array}\right)
$$

Sol: eigenvalue $\lambda=2$. Solve $(A-2) V=0$. Since $\operatorname{dim} N u l(A-2 I)=1$, we have only one eigenvector in

$$
V_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

So we proceed to solve $(A-2 I)^{2} X=V_{1}$, or

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

There are two independent solutions

$$
X=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

we choose the first one since the second one is a linear combination the the first one and V_{1} :

$$
V_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Let

$$
V_{2}=(A-2) V_{3}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
$$

So

$$
B=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right), T=\left(V_{1} V_{2} V_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

Example 4 Find canonical forms for

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 1 \\
2 & -1 & 1 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Sol: $\operatorname{det}(A-\lambda)=\left(\lambda^{2}+1\right)^{2}=0, \lambda= \pm i$. Solve for $\lambda=i$,

$$
(A-\lambda) X=0 \rightarrow X_{1}=\left(\begin{array}{c}
1 \\
1-i \\
0 \\
0
\end{array}\right), \quad V_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), \quad V_{2}=\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right)
$$

and

$$
(A-\lambda)^{2} X=X_{1} \rightarrow \quad X_{2}=\left(\begin{array}{c}
0 \\
0 \\
1-i \\
1
\end{array}\right), V_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right), V_{4}=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right)
$$

So

$$
B=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Example 5 Find canonical forms for

$$
A=\left(\begin{array}{cccc}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
0 & 0 & 2 & 0 \\
0 & -1 & 0 & 2
\end{array}\right)
$$

Sol: $\operatorname{det}(A-\lambda)=(2-\lambda)^{2}\left((2-\lambda)^{2}+1\right)=0, \quad \lambda_{1}=2, m_{1}=2, \lambda_{2}=2 \pm i$. For $\lambda_{1}=2$,

$$
(A-2 I) V_{1}=0 \rightarrow V_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

$$
(A-2 I) V_{2}=V_{1} \rightarrow V_{2}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

For $\lambda_{2}=2+i$,

$$
\left(A-\lambda_{2} I\right) X=0 \rightarrow X=\left(\begin{array}{c}
0 \\
-i \\
0 \\
1
\end{array}\right) \rightarrow V_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right), V_{4}=\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right)
$$

So one can choose

$$
B=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & -1 & 2
\end{array}\right), \quad T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

or

$$
B=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right), \quad T=\left(V_{3}, V_{4}, V_{1}, V_{2}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

- Genericity: The set of all $n \times n$ matrices with distinct eigenvalues is open and dense set in $L\left(R^{n}\right)$, the space of all $n \times n$. matrices
- Homework: 3, 5gh, 6, 10

