Chapter 4 Classification of Planar Linear Systems

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

Matrix form:

$$
\begin{gathered}
X^{\prime}=A X \\
X=\binom{x}{y}, A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{gathered}
$$

The characteristic polynomial for eigenvalues is

$$
\begin{array}{r}
\operatorname{det}(A-\lambda I)=0 \\
\lambda^{2}-(a+b) \lambda+a d-b c=0
\end{array}
$$

- Trace: $T=\operatorname{Tr}(A)=a+b$
- Determinant: $D=\operatorname{det}(A) a d-b c$
- The characteristic equation is

$$
\lambda^{2}-T \lambda+D=0
$$

- Eigenvalues

$$
\begin{gathered}
\lambda_{1}=\frac{T-\sqrt{T^{2}-4 D}}{2}, \lambda_{2}=\frac{T+\sqrt{T^{2}-4 D}}{2} \\
T=\lambda_{1}+\lambda_{2}, \quad D=\lambda_{1} \lambda_{2}
\end{gathered}
$$

- The Trace - Determinant Plane

- real distinct eigenvalues: $T^{2}-4 D>0$ (below the parabola)

1. $D<0: \lambda_{1}<0<\lambda_{2}$ saddle
2. $D>0$ and $T>0: 0<\lambda_{1}<\lambda_{2}$ source
3. $D>0$ and $T<0: \lambda_{1}<\lambda_{2}<0$ sink

- repeated eigenvalues: $T^{2}-4 D=0$

1. $T<0: \lambda_{1}<0$ sink
2. $T>0: \lambda_{1}>0$ source

- complex eigenvalues: $T^{2}-4 D<0$ (above the parabola)

1. spiral sink: $T<0$ (left half of the plane)
2. spiral source: $T>0$ (right half of the plane)
3. Center: $T=0$ (D - axis)

- The above Trace - Determinant diagram can also be used as a bifurcation diagram.
- Conjugacy of two systems
- Two linear system $X^{\prime}=A X$ and $Y^{\prime}=B Y$
- $\phi^{A}\left(t, X_{0}\right)$ is the flow of $X^{\prime}=A X$,i.e., $X(t)=\phi^{A}\left(t, X_{0}\right)$ is the solution with initial data $X(0)=X_{0}$
$-\phi^{B}\left(t, Y_{0}\right)$ is the flow of $Y^{\prime}=B Y$
$-h: R^{2} \rightarrow R^{2}$ is a homeomorphism (1-1, onto, h and h^{-1} are continuous)
- Definition: These two system is called conjugate if

$$
\phi^{B}\left(t, h\left(X_{0}\right)\right)=h\left(\phi^{A}\left(t, X_{0}\right)\right)
$$

- i.e., if $X(t)$ is a solution of $X^{\prime}=A X$, then $h(X(t))$ is a solution of $Y^{\prime}=B Y$.
- h is called a conjugacy. h maps a solution for A to a solution for B.
- Example 1: For linear transformation T, it is also a conjugacy that maps a solution of $X^{\prime}=A X$ to a solution of $Y^{\prime}=\left(T^{-1} A T\right) Y$
- Example 2: Consider

$$
x^{\prime}=\lambda_{1} x \quad \text { and } y^{\prime}=\lambda_{2} y
$$

- their flows are, respectively,

$$
\phi^{i}\left(t, x_{0}\right)=x_{0} e^{\lambda_{i} t}, \quad i=1,2
$$

- if both λ_{1} and λ_{2} have the same sign, then they are conjugate with the conjugacy

$$
h(x)=\left\{\begin{array}{cc}
x^{\lambda_{2} / \lambda_{1}} & \text { if } x \geq 0 \\
-|x|^{\lambda_{2} / \lambda_{1}} & \text { if } x<0
\end{array}\right.
$$

- verify: for $x_{0}>0$,

$$
\begin{aligned}
h\left(\phi^{1}\left(t, x_{0}\right)\right) & =h\left(x_{0} e^{\lambda_{1} t}\right)=\left(x_{0} e^{\lambda_{1} t}\right)^{\lambda_{2} / \lambda_{1}} \\
& =\left(x_{0}\right)^{\lambda_{2} / \lambda_{1}} e^{\lambda_{2} t}=\phi^{2}\left(t,\left(x_{0}\right)^{\lambda_{2} / \lambda_{1}}\right)=\phi^{2}\left(t, h\left(x_{0}\right)\right)
\end{aligned}
$$

- Definition: A matrix is called hyperbolic if none of its eigenvalues has real part 0 .
- Theorem: Two hyperbolic linear system $X^{\prime}=A_{i} X$ are conjugate iff they have the same number of eigenvalues with negative real part, i.e.,
- Both have one positive and one negative eigenvalue
- Both have complex eigenvalues with positive real part (including both eigenvalues are real)
- Both have complex eigenvalues with negative real part (including both eigenvalues are real)
- The proof in the case of real eigenvalues is similar to Example 2 for canonical forms.
- From this Theorem, all systems of sink (source) or spiral sink (spiral source) are conjugate with each other.
- Homework for Chapter 4: 1, 3, 4, 5a

