tChapter 3 Phase Portraits for Planar Linear Sys-
ems

We shall develop an approach to solve linear systems in higher dimension.
As an example, we look at planar systems from a different angle.

e Phase portrait of general autonomous planar systems

)

is the direction fields in zy — plane,in which at each point X = (z,y)
we assign a vector F' (X)) of equal length.

e (Canonical forms

— canonical form for matrices with two distinct real eigenvalues
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— canonical form for matrices with repeated real eigenvalues
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— canonical form for matrices with complex eigenvalues A = o + i[5
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e Theorem: For any 2 X 2 matrix, there is an invertible matrix 7" such
that T-'AT is in a canonical form. Moreover,
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vector associated with A;.

) , then T'= (V} V3), where V; is an eigen-
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— if TVAT = ( 5

an complex eigenvector associated with A\ = a+ 3. Reason:Since
AV = AV, or

g ),thenT: (Vi V), where V = Vi +il4 is

AVI +iAVy = (a+iB) (Vi +iVa)
=aV; — Vo +i (V) + aVs)
SO
AV = aVy — BV, AV = BV +aV,
and thus

AT = (AV3, AVy)

— (aVi — BV, 5V1+on2):T<_aﬁ ﬁ)

e Linear transformation, diagonalization, and changes of coordinates

— For any matrix 7' = (V} V3), we call X = TW is a linear trans-
formation from W = (Z‘) space to X = (z) space

— for any vectors basis vectors V; and Vs, we call W = ( ) coordinate
with respect to the basis {V; , V4} of the vector (uV; + vVs)

— for instance, X = (z) is the coordinate of Xwith respect to the
standard basis {((1]), ((1))}

— Since (;) =X =TW = (V4 V) (!) = uVi +vVa, we can see that
W = (%) is actually coordinate of X = (z) with respect to the
basis {V; , Va}

— So a linear transformation 7" = (V; V5) is also called a change of

coordinate: It changes the coordinate W = ( ) with respect to the
basis {V; , Va2} to the coordinate for the standard basis X = (y)

— Now
W =T'X'=T'AX = (TT'AT) W

— So T maps a solution curve for W' = (T~'AT)W to a solution
curve of X' = AX, and vice versa.



— In other words, if W = (38) solves W' = (T"'AT) W, then X =
TW solves X' = AX.

e According to the Theorem above, T'AT has three basic canonical
forms.

From these discussion, we can easily find solutions and phase portraits:
e Solving Planar linear systems X' = AX

1. A has two distinct real eigenvalue \; < Ag. Then their associated
eigenvector V; and V5 are linearly independent. using the linear
transformation 7' = (V; V3), T~'AT is in the canonical form

A1 O
0 A
— General solutions of this canonical system is
At Aot

u=cet, v=_cqe

or in vector form

W= (1O) (1) (7).
(t)

— General solutions for the original system X’ = AX is then
X =TW = (Vi Vo) W = 1MV + ™'V

2. A has a pair of complex eigenvalues A = a + i3 and A = a — if3.
Let V = V1 +iV5, be a complex eigenvector associated with A (both
Vi and V5 are real vectors). Then T AT is in the canonical form

a f
-8 «
— General solutions of this canonical system is

_ _ at [ cicosfBt+ cysin St
W =ciWy+cWy=e ( —e Sinﬁt Y Cosﬂt
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where

_ at LY e 0\ [ cospt
Wy=e cosﬁt(()) e 8111625(1)—@ (—sinﬁt)

ot 1 ot 0\ [ sinpt
Wy =ce smﬁt(o)—i-e cosﬁt(l)—e <cosﬂt)

— General solutions of the original system is
X=TW = C1TW1 + CQTWQ
where

X, =TW; = e (cos BtV; — sin BtV3)
Xy = TWy = e (cos BtVs + sin StV;)

3. A has a repeated eigenvalue \; = Ay with an eigenvector ;. Then

X = 1MV + cpeMt (Vo + tV])
= 6)\1t [c1V1 + CQ‘/Q + Cgt‘/l]

where V5 is a solution of (A — A1) Vo =V,
e Phase Portraits of linear systems

e In the following discussion, we may assume canonical forms, i.e., V; =

(o) V2= (2):

1. A has two distinct real eigenvalue \; < Ay with associated eigen-
vectors V; and V5. Then

X = 1MV 4 eV,

= ! (Cle()\l_/\Q)t‘/l + szz) — 2e'Vy as t — 00

X = 1MV + eV

— Mt (01‘/1 + 026(’\2_’\1)t‘/2) — 1MV, as t — —o0

So asymptotically, it behaves as



(a) A< )\2 <0 (Slnk)
As t — o0, solutions follows the direction of "large" V5 ap-
proaches to zero.
As t — —oo, solutions follows the direction of "small" V;
approaches to zero.
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(b) A1 <0 < A (saddle)
As t — o0, solutions follows the direction of "large" V5 ap-
proaches to oo.
As t — —oo, solutions follows the direction of "small" V;
approaches to zero.
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(c) 0 < A1 < A2 (source)
As t — o0, solutions follows the direction of "large" V5 ap-
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proaches to oo.
As t — —oo, solutions follows the direction of "small"
approaches to oo
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(d) one eigenvalue is zero (see homework #10,11)
— A< XA=0 (smk)
— 0=\ < Ay (source)
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2. A has a complex eigenvalue A = a + i with eigenvector V =
Vi + V5. Then

X = e ey (cos BtV) — sin ftVa) + ¢ (cos BtVa + sin 5t1)))]
= ™ [e1 cos BtV — ey sin StVa + ¢ cos BtVs + ¢ sin BtV
= €™ [(c1 cos Bt + cysin Bt) Vi + (co cos Bt — ¢y sin t) Va]

(a) a > 0 (spiral source)
solutions X (t) — oo ast — 00, X () - 0ast — —oo, in a
spiral fashion around the origin.
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(b) o < 0 (spiral sink)
solutions X (t) —» 0 ast — oo, X (t) — 00 as t — —o0, in a

spiral fashion
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(¢) a =0 (center)
X = (c1 cos Bt + cosin 5t) Vi + (g cos ft — ¢ sin 5t) Va

is periodic with frequency 5 and period T' = 27/p.



e Homework for Chapter 3: 2(ii)(iii), 4, 5,10, 11



