Chapter 3 Phase Portraits for Planar Linear Systems

We shall develop an approach to solve linear systems in higher dimension. As an example, we look at planar systems from a different angle.

• Phase portrait of general autonomous planar systems

$$X' = F(X) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

is the direction fields in xy - plane, in which at each point X = (x, y) we assign a vector F(X) of equal length.

- Canonical forms
 - canonical form for matrices with two distinct real eigenvalues

$$A = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right)$$

- canonical form for matrices with repeated real eigenvalues

$$A = \left(\begin{array}{cc} \lambda_1 & 1\\ 0 & \lambda_1 \end{array}\right), or \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_1 \end{array}\right)$$

– canonical form for matrices with complex eigenvalues $\lambda = \alpha + i\beta$

$$A = \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array}\right)$$

- Theorem: For any 2×2 matrix, there is an invertible matrix T such that $T^{-1}AT$ is in a canonical form. Moreover,
 - If $T^{-1}AT = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, then $T = (V_1 V_2)$, where V_i is an eigenvector associated with λ_i .

- if $T^{-1}AT = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$, then $T = (V_1 \ V_2)$, where $V = V_1 + iV_2$ is an complex eigenvector associated with $\lambda = \alpha + i\beta$. Reason:Since $AV = \lambda V$, or

$$AV_1 + iAV_2 = (\alpha + i\beta) (V_1 + iV_2)$$
$$= \alpha V_1 - \beta V_2 + i (\beta V_1 + \alpha V_2)$$

 \mathbf{SO}

$$AV_1 = \alpha V_1 - \beta V_2, \quad AV = \beta V_1 + \alpha V_2$$

and thus

$$AT = (AV_1, AV_2)$$

= $(\alpha V_1 - \beta V_2, \ \beta V_1 + \alpha V_2) = T \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$.

- Linear transformation, diagonalization, and changes of coordinates
 - For any matrix $T = (V_1 \ V_2)$, we call X = TW is a linear transformation from $W = {u \choose v}$ space to $X = {x \choose y}$ space
 - for any vectors basis vectors V_1 and V_2 , we call $W = \begin{pmatrix} u \\ v \end{pmatrix}$ coordinate with respect to the basis $\{V_1, V_2\}$ of the vector $(uV_1 + vV_2)$
 - for instance, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ is the coordinate of X with respect to the standard basis $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$
 - Since $\binom{x}{y} = X = TW = (V_1 \ V_2) \binom{u}{v} = uV_1 + vV_2$, we can see that $W = \binom{u}{v}$ is actually coordinate of $X = \binom{x}{y}$ with respect to the basis $\{V_1, V_2\}$
 - So a linear transformation $T = (V_1 \ V_2)$ is also called a change of coordinate: It changes the coordinate $W = {\binom{u}{v}}$ with respect to the basis $\{V_1, V_2\}$ to the coordinate for the standard basis $X = {\binom{x}{y}}$.
 - Now

$$W' = T^{-1}X' = T^{-1}AX = (T^{-1}AT)W$$

- So T maps a solution curve for $W' = (T^{-1}AT)W$ to a solution curve of X' = AX, and vice versa.

- In other words, if $W = {\binom{u(t)}{v(t)}}$ solves $W' = (T^{-1}AT)W$, then X = TW solves X' = AX.
- According to the Theorem above, $T^{-1}AT$ has three basic canonical forms.

From these discussion, we can easily find solutions and phase portraits:

- Solving Planar linear systems X' = AX
 - 1. A has two distinct real eigenvalue $\lambda_1 < \lambda_2$. Then their associated eigenvector V_1 and V_2 are linearly independent. using the linear transformation $T = (V_1 V_2)$, $T^{-1}AT$ is in the canonical form

$$\left(\begin{array}{cc}\lambda_1 & 0\\ 0 & \lambda_2\end{array}\right)$$

- General solutions of this canonical system is

$$u = c_1 e^{\lambda_1 t}, \ v = c_2 e^{\lambda_2 t}$$

or in vector form

$$W = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = c_1 e^{\lambda_1 t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{\lambda_2 t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

- General solutions for the original system X' = AX is then

$$X = TW = (V_1 \ V_2) W = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2$$

2. A has a pair of complex eigenvalues $\lambda = \alpha + i\beta$ and $\overline{\lambda} = \alpha - i\beta$. Let $V = V_1 + iV_2$ be a complex eigenvector associated with λ (both V_1 and V_2 are real vectors). Then $T^{-1}AT$ is in the canonical form

$$\left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array}\right)$$

- General solutions of this canonical system is

$$W = c_1 W_1 + c_2 W_2 = e^{\alpha t} \left(\begin{array}{c} c_1 \cos \beta t + c_2 \sin \beta t \\ -c_1 \sin \beta t + c_2 \cos \beta t \end{array} \right)$$

where

$$W_{1} = e^{\alpha t} \cos \beta t \begin{pmatrix} 1 \\ 0 \end{pmatrix} - e^{\alpha t} \sin \beta t \begin{pmatrix} 0 \\ 1 \end{pmatrix} = e^{\alpha t} \begin{pmatrix} \cos \beta t \\ -\sin \beta t \end{pmatrix}$$
$$W_{2} = e^{\alpha t} \sin \beta t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{\alpha t} \cos \beta t \begin{pmatrix} 0 \\ 1 \end{pmatrix} = e^{\alpha t} \begin{pmatrix} \sin \beta t \\ \cos \beta t \end{pmatrix}$$

– General solutions of the original system is

$$X = TW = c_1 TW_1 + c_2 TW_2$$

where

$$X_1 = TW_1 = e^{\alpha t} \left(\cos \beta t V_1 - \sin \beta t V_2 \right)$$
$$X_2 = TW_2 = e^{\alpha t} \left(\cos \beta t V_2 + \sin \beta t V_1 \right)$$

3. A has a repeated eigenvalue $\lambda_1 = \lambda_2$ with an eigenvector V_1 . Then

$$X = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_1 t} \left(V_2 + t V_1 \right)$$
$$= e^{\lambda_1 t} \left[c_1 V_1 + c_2 V_2 + c_2 t V_1 \right]$$

where V_2 is a solution of $(A - \lambda_1 I) V_2 = V_1$

- Phase Portraits of linear systems
- In the following discussion, we may assume canonical forms, i.e., $V_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, V_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - 1. A has two distinct real eigenvalue $\lambda_1 < \lambda_2$ with associated eigenvectors V_1 and V_2 . Then

$$X = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2$$

= $e^{\lambda_2 t} \left(c_1 e^{(\lambda_1 - \lambda_2)t} V_1 + c_2 V_2 \right) \rightarrow c_2 e^{\lambda_2 t} V_2$ as $t \rightarrow \infty$

$$X = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2$$

= $e^{\lambda_1 t} \left(c_1 V_1 + c_2 e^{(\lambda_2 - \lambda_1) t} V_2 \right) \rightarrow c_1 e^{\lambda_1 t} V_2$ as $t \rightarrow -\infty$

So asymptotically, it behaves as

(a) $\lambda_1 < \lambda_2 < 0$ (sink)

As $t \to \infty$, solutions follows the direction of "large" V_2 approaches to zero.

As $t \to -\infty$, solutions follows the direction of "small" V_1 approaches to zero.

(b) $\lambda_1 < 0 < \lambda_2$ (saddle)

As $t \to \infty$, solutions follows the direction of "large" V_2 approaches to ∞ .

As $t \to -\infty$, solutions follows the direction of "small" V_1 approaches to zero.

(c) $0 < \lambda_1 < \lambda_2$ (source)

As $t \to \infty$, solutions follows the direction of "large" V_2 ap-

proaches to ∞ .

As $t \to -\infty$, solutions follows the direction of "small" V_1 approaches to ∞

			~ ~	y∱₄ [1 1	1 1	1	1	1
-	r F	K.	N N	[↑] ²	T 1	[" 1	1	7	7
	$\checkmark + \bigstar$	≪ +++ -3≪	-2 	-1 <i>L</i>	1	≠ ++ ≥ 2	-> ++ >>3	-> ++ -≱	-> +
				+					
		¥ ↓	¥ V	V ⁻² ↓	√ √)) \.)))		X

(d) one eigenvalue is zero (see homework #10,11) $- \lambda_1 < \lambda_2 = 0 \text{ (sink)}$

$$-0 = \lambda_1 < \lambda_2$$
 (source)

2. A has a complex eigenvalue $\lambda = \alpha + i\beta$ with eigenvector $V = V_1 + iV_2$. Then

$$X = e^{\alpha t} \left[c_1 \left(\cos \beta t V_1 - \sin \beta t V_2 \right) + c_2 \left(\cos \beta t V_2 + \sin \beta t V_1 \right) \right]$$

= $e^{\alpha t} \left[c_1 \cos \beta t V_1 - c_1 \sin \beta t V_2 + c_2 \cos \beta t V_2 + c_2 \sin \beta t V_1 \right]$
= $e^{\alpha t} \left[(c_1 \cos \beta t + c_2 \sin \beta t) V_1 + (c_2 \cos \beta t - c_1 \sin \beta t) V_2 \right]$

(a) $\alpha > 0$ (spiral source) solutions $X(t) \to \infty$ as $t \to \infty$, $X(t) \to 0$ as $t \to -\infty$, in a spiral fashion around the origin.

(b) $\alpha < 0$ (spiral sink) solutions $X(t) \to 0$ as $t \to \infty$, $X(t) \to \infty$ as $t \to -\infty$, in a spiral fashion

(c) $\alpha = 0$ (center)

$$X = (c_1 \cos \beta t + c_2 \sin \beta t) V_1 + (c_2 \cos \beta t - c_1 \sin \beta t) V_2$$

is periodic with frequency β and period $T = 2\pi/\beta$.

• Homework for Chapter 3: 2(ii)(iii), 4, 5,10, 11