Chapter 3 Phase Portraits for Planar Linear Systems

We shall develop an approach to solve linear systems in higher dimension. As an example, we look at planar systems from a different angle.

- Phase portrait of general autonomous planar systems

$$
X^{\prime}=F(X)=\binom{f(x, y)}{g(x, y)}
$$

is the direction fields in $x y$ - plane, in which at each point $X=(x, y)$ we assign a vector $F(X)$ of equal length.

- Canonical forms
- canonical form for matrices with two distinct real eigenvalues

$$
A=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

- canonical form for matrices with repeated real eigenvalues

$$
A=\left(\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{1}
\end{array}\right), \text { or }\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{1}
\end{array}\right)
$$

- canonical form for matrices with complex eigenvalues $\lambda=\alpha+i \beta$

$$
A=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)
$$

- Theorem: For any 2×2 matrix, there is an invertible matrix T such that $T^{-1} A T$ is in a canonical form. Moreover,
- If $T^{-1} A T=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, then $T=\left(V_{1} V_{2}\right)$, where V_{i} is an eigenvector associated with λ_{i}.
- if $T^{-1} A T=\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right)$, then $T=\left(V_{1} V_{2}\right)$, where $V=V_{1}+i V_{2}$ is an complex eigenvector associated with $\lambda=\alpha+i \beta$. Reason:Since $A V=\lambda V$, or

$$
\begin{aligned}
A V_{1}+i A V_{2} & =(\alpha+i \beta)\left(V_{1}+i V_{2}\right) \\
& =\alpha V_{1}-\beta V_{2}+i\left(\beta V_{1}+\alpha V_{2}\right)
\end{aligned}
$$

so

$$
A V_{1}=\alpha V_{1}-\beta V_{2}, \quad A V=\beta V_{1}+\alpha V_{2}
$$

and thus

$$
\begin{aligned}
A T & =\left(A V_{1}, A V_{2}\right) \\
& =\left(\alpha V_{1}-\beta V_{2}, \beta V_{1}+\alpha V_{2}\right)=T\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right) .
\end{aligned}
$$

- Linear transformation, diagonalization, and changes of coordinates
- For any matrix $T=\left(V_{1} V_{2}\right)$, we call $X=T W$ is a linear transformation from $W=\binom{u}{v}$ space to $X=\binom{x}{y}$ space
- for any vectors basis vectors V_{1} and V_{2}, we call $W=\binom{u}{v}$ coordinate with respect to the basis $\left\{V_{1}, V_{2}\right\}$ of the vector $\left(u V_{1}+v V_{2}\right)$
- for instance, $X=\binom{x}{y}$ is the coordinate of X with respect to the standard basis $\left\{\binom{1}{0},\binom{0}{1}\right\}$
- Since $\binom{x}{y}=X=T W=\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right)\binom{u}{v}=u V_{1}+v V_{2}$, we can see that $W=\binom{u}{v}$ is actually coordinate of $X=\binom{x}{y}$ with respect to the basis $\left\{V_{1}, V_{2}\right\}$
- So a linear transformation $T=\left(V_{1} V_{2}\right)$ is also called a change of coordinate: It changes the coordinate $W=\binom{u}{v}$ with respect to the basis $\left\{V_{1}, V_{2}\right\}$ to the coordinate for the standard basis $X=\binom{x}{y}$.
- Now

$$
W^{\prime}=T^{-1} X^{\prime}=T^{-1} A X=\left(T^{-1} A T\right) W
$$

- So T maps a solution curve for $W^{\prime}=\left(T^{-1} A T\right) W$ to a solution curve of $X^{\prime}=A X$, and vice versa.
- In other words, if $W=\binom{u(t)}{v(t)}$ solves $W^{\prime}=\left(T^{-1} A T\right) W$, then $X=$ $T W$ solves $X^{\prime}=A X$.
- According to the Theorem above, $T^{-1} A T$ has three basic canonical forms.

From these discussion, we can easily find solutions and phase portraits:

- Solving Planar linear systems $X^{\prime}=A X$

1. A has two distinct real eigenvalue $\lambda_{1}<\lambda_{2}$. Then their associated eigenvector V_{1} and V_{2} are linearly independent. using the linear transformation $T=\left(V_{1} V_{2}\right), T^{-1} A T$ is in the canonical form

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

- General solutions of this canonical system is

$$
u=c_{1} e^{\lambda_{1} t}, v=c_{2} e^{\lambda_{2} t}
$$

or in vector form

$$
W=\binom{u(t)}{v(t)}=c_{1} e^{\lambda_{1} t}\binom{1}{0}+c_{2} e^{\lambda_{2} t}\binom{0}{1} .
$$

- General solutions for the original system $X^{\prime}=A X$ is then

$$
X=T W=\left(V_{1} V_{2}\right) W=c_{1} e^{\lambda_{1} t} V_{1}+c_{2} e^{\lambda_{2} t} V_{2}
$$

2. A has a pair of complex eigenvalues $\lambda=\alpha+i \beta$ and $\bar{\lambda}=\alpha-i \beta$. Let $V=V_{1}+i V_{2}$ be a complex eigenvector associated with λ (both V_{1} and V_{2} are real vectors). Then $T^{-1} A T$ is in the canonical form

$$
\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)
$$

- General solutions of this canonical system is

$$
W=c_{1} W_{1}+c_{2} W_{2}=e^{\alpha t}\binom{c_{1} \cos \beta t+c_{2} \sin \beta t}{-c_{1} \sin \beta t+c_{2} \cos \beta t}
$$

where

$$
\begin{aligned}
& W_{1}=e^{\alpha t} \cos \beta t\binom{1}{0}-e^{\alpha t} \sin \beta t\binom{0}{1}=e^{\alpha t}\binom{\cos \beta t}{-\sin \beta t} \\
& W_{2}=e^{\alpha t} \sin \beta t\binom{1}{0}+e^{\alpha t} \cos \beta t\binom{0}{1}=e^{\alpha t}\binom{\sin \beta t}{\cos \beta t}
\end{aligned}
$$

- General solutions of the original system is

$$
X=T W=c_{1} T W_{1}+c_{2} T W_{2}
$$

where

$$
\begin{aligned}
& X_{1}=T W_{1}=e^{\alpha t}\left(\cos \beta t V_{1}-\sin \beta t V_{2}\right) \\
& X_{2}=T W_{2}=e^{\alpha t}\left(\cos \beta t V_{2}+\sin \beta t V_{1}\right)
\end{aligned}
$$

3. A has a repeated eigenvalue $\lambda_{1}=\lambda_{2}$ with an eigenvector V_{1}. Then

$$
\begin{aligned}
X & =c_{1} e^{\lambda_{1} t} V_{1}+c_{2} e^{\lambda_{1} t}\left(V_{2}+t V_{1}\right) \\
& =e^{\lambda_{1} t}\left[c_{1} V_{1}+c_{2} V_{2}+c_{2} t V_{1}\right]
\end{aligned}
$$

where V_{2} is a solution of $\left(A-\lambda_{1} I\right) V_{2}=V_{1}$

- Phase Portraits of linear systems
- In the following discussion, we may assume canonical forms, i.e., $V_{1}=$ $\binom{1}{0}, V_{2}=\binom{0}{1}$.

1. A has two distinct real eigenvalue $\lambda_{1}<\lambda_{2}$ with associated eigenvectors V_{1} and V_{2}. Then

$$
\begin{aligned}
X & =c_{1} e^{\lambda_{1} t} V_{1}+c_{2} e^{\lambda_{2} t} V_{2} \\
& =e^{\lambda_{2} t}\left(c_{1} e^{\left(\lambda_{1}-\lambda_{2}\right) t} V_{1}+c_{2} V_{2}\right) \rightarrow c_{2} e^{\lambda_{2} t} V_{2} \text { as } t \rightarrow \infty \\
X & =c_{1} e^{\lambda_{1} t} V_{1}+c_{2} e^{\lambda_{2} t} V_{2} \\
& =e^{\lambda_{1} t}\left(c_{1} V_{1}+c_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t} V_{2}\right) \rightarrow c_{1} e^{\lambda_{1} t} V_{2} \text { as } t \rightarrow-\infty
\end{aligned}
$$

So asymptotically, it behaves as
(a) $\lambda_{1}<\lambda_{2}<0$ (sink)

As $t \rightarrow \infty$, solutions follows the direction of "large" V_{2} approaches to zero.
As $t \rightarrow-\infty$, solutions follows the direction of "small" V_{1} approaches to zero.

(b) $\lambda_{1}<0<\lambda_{2}$ (saddle)

As $t \rightarrow \infty$, solutions follows the direction of "large" V_{2} approaches to ∞.
As $t \rightarrow-\infty$, solutions follows the direction of "small" V_{1} approaches to zero.

(c) $0<\lambda_{1}<\lambda_{2}$ (source)

As $t \rightarrow \infty$, solutions follows the direction of "large" V_{2} ap-
proaches to ∞.
As $t \rightarrow-\infty$, solutions follows the direction of "small" V_{1} approaches to ∞

(d) one eigenvalue is zero (see homework $\# 10,11$)

$$
\begin{aligned}
& -\lambda_{1}<\lambda_{2}=0(\text { sink }) \\
& -0=\lambda_{1}<\lambda_{2}(\text { source })
\end{aligned}
$$

2. A has a complex eigenvalue $\lambda=\alpha+i \beta$ with eigenvector $V=$ $V_{1}+i V_{2}$.Then

$$
\begin{aligned}
X & =e^{\alpha t}\left[c_{1}\left(\cos \beta t V_{1}-\sin \beta t V_{2}\right)+c_{2}\left(\cos \beta t V_{2}+\sin \beta t V_{1}\right)\right] \\
& =e^{\alpha t}\left[c_{1} \cos \beta t V_{1}-c_{1} \sin \beta t V_{2}+c_{2} \cos \beta t V_{2}+c_{2} \sin \beta t V_{1}\right] \\
& =e^{\alpha t}\left[\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) V_{1}+\left(c_{2} \cos \beta t-c_{1} \sin \beta t\right) V_{2}\right]
\end{aligned}
$$

(a) $\alpha>0$ (spiral source)
solutions $X(t) \rightarrow \infty$ as $t \rightarrow \infty, X(t) \rightarrow 0$ as $t \rightarrow-\infty$, in a spiral fashion around the origin.

(b) $\alpha<0$ (spiral sink)
solutions $X(t) \rightarrow 0$ as $t \rightarrow \infty, X(t) \rightarrow \infty$ as $t \rightarrow-\infty$, in a spiral fashion

(c) $\alpha=0$ (center)

$$
X=\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) V_{1}+\left(c_{2} \cos \beta t-c_{1} \sin \beta t\right) V_{2}
$$

is periodic with frequency β and period $T=2 \pi / \beta$.

- Homework for Chapter 3: 2(ii)(iii), $4,5,10,11$

