
Chapter 3 Phase Portraits for Planar Linear Sys-
tems

We shall develop an approach to solve linear systems in higher dimension.
As an example, we look at planar systems from a di¤erent angle.

� Phase portrait of general autonomous planar systems

X 0 = F (X) =

�
f (x; y)

g (x; y)

�
is the direction �elds in xy � plane;in which at each point X = (x; y)
we assign a vector F (X) of equal length.

� Canonical forms

� canonical form for matrices with two distinct real eigenvalues

A =

�
�1 0
0 �2

�
� canonical form for matrices with repeated real eigenvalues

A =

�
�1 1
0 �1

�
; or

�
�1 0
0 �1

�
� canonical form for matrices with complex eigenvalues � = �+ i�

A =

�
� �
�� �

�
� Theorem: For any 2 � 2 matrix, there is an invertible matrix T such
that T�1AT is in a canonical form. Moreover,

� If T�1AT =
�
�1 0
0 �2

�
; then T = (V1 V2) ; where Vi is an eigen-

vector associated with �i:
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� if T�1AT =
�

� �
�� �

�
; then T = (V1 V2) ; where V = V1+iV2 is

an complex eigenvector associated with � = �+ i�. Reason:Since
AV = �V; or

AV1 + iAV2 = (�+ i�) (V1 + iV2)

= �V1 � �V2 + i (�V1 + �V2)

so
AV1 = �V1 � �V2; AV = �V1 + �V2

and thus

AT = (AV1; AV2)

= (�V1 � �V2; �V1 + �V2) = T
�

� �
�� �

�
:

� Linear transformation, diagonalization, and changes of coordinates

�For any matrix T = (V1 V2) ; we call X = TW is a linear trans-
formation from W =

�
u
v

�
space to X =

�
x
y

�
space

� for any vectors basis vectors V1 and V2; we callW =
�
u
v

�
coordinate

with respect to the basis fV1 ; V2g of the vector (uV1 + vV2)
� for instance, X =

�
x
y

�
is the coordinate of Xwith respect to the

standard basis
��

1
0

�
;
�
0
1

�	
� Since

�
x
y

�
= X = TW = (V1 V2)

�
u
v

�
= uV1 + vV2; we can see that

W =
�
u
v

�
is actually coordinate of X =

�
x
y

�
with respect to the

basis fV1 ; V2g
� So a linear transformation T = (V1 V2) is also called a change of
coordinate: It changes the coordinateW =

�
u
v

�
with respect to the

basis fV1 ; V2g to the coordinate for the standard basis X =
�
x
y

�
:

�Now
W 0 = T�1X 0 = T�1AX =

�
T�1AT

�
W

� So T maps a solution curve for W 0 = (T�1AT )W to a solution
curve of X 0 = AX; and vice versa.
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� In other words, if W =
�
u(t)
v(t)

�
solves W 0 = (T�1AT )W; then X =

TW solves X 0 = AX:

� According to the Theorem above, T�1AT has three basic canonical
forms.

From these discussion, we can easily �nd solutions and phase portraits:

� Solving Planar linear systems X 0 = AX

1. A has two distinct real eigenvalue �1 < �2. Then their associated
eigenvector V1 and V2 are linearly independent. using the linear
transformation T = (V1 V2) ; T�1AT is in the canonical form�

�1 0
0 �2

�
�General solutions of this canonical system is

u = c1e
�1t; v = c2e

�2t

or in vector form

W =

�
u (t)

v (t)

�
= c1e

�1t

�
1

0

�
+ c2e

�2t

�
0

1

�
:

�General solutions for the original system X 0 = AX is then

X = TW = (V1 V2)W = c1e
�1tV1 + c2e

�2tV2

2. A has a pair of complex eigenvalues � = � + i� and �� = � � i�:
Let V = V1+iV2 be a complex eigenvector associated with � (both
V1 and V2 are real vectors). Then T�1AT is in the canonical form�

� �
�� �

�
�General solutions of this canonical system is

W = c1W1 + c2W2 = e
�t

�
c1 cos �t+ c2 sin �t
�c1 sin �t+ c2 cos �t

�
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where

W1 = e
�t cos �t

�
1
0

�
� e�t sin �t

�
0
1

�
= e�t

�
cos �t
� sin �t

�
W2 = e

�t sin �t

�
1
0

�
+ e�t cos �t

�
0
1

�
= e�t

�
sin �t
cos �t

�
�General solutions of the original system is

X = TW = c1TW1 + c2TW2

where

X1 = TW1 = e
�t (cos �tV1 � sin �tV2)

X2 = TW2 = e
�t (cos �tV2 + sin �tV1)

3. A has a repeated eigenvalue �1 = �2 with an eigenvector V1:Then

X = c1e
�1tV1 + c2e

�1t (V2 + tV1)

= e�1t [c1V1 + c2V2 + c2tV1]

where V2 is a solution of (A� �1I)V2 = V1

� Phase Portraits of linear systems

� In the following discussion, we may assume canonical forms, i.e., V1 =�
1
0

�
; V2 =

�
0
1

�
:

1. A has two distinct real eigenvalue �1 < �2 with associated eigen-
vectors V1 and V2:Then

X = c1e
�1tV1 + c2e

�2tV2

= e�2t
�
c1e

(�1��2)tV1 + c2V2
�
! c2e

�2tV2 as t!1

X = c1e
�1tV1 + c2e

�2tV2

= e�1t
�
c1V1 + c2e

(�2��1)tV2
�
! c1e

�1tV2 as t! �1

So asymptotically, it behaves as
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(a) �1 < �2 < 0 (sink)
As t ! 1; solutions follows the direction of "large" V2 ap-
proaches to zero.
As t ! �1; solutions follows the direction of "small" V1
approaches to zero.
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(b) �1 < 0 < �2 (saddle)
As t ! 1; solutions follows the direction of "large" V2 ap-
proaches to 1.
As t ! �1; solutions follows the direction of "small" V1
approaches to zero.
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(c) 0 < �1 < �2 (source)
As t ! 1; solutions follows the direction of "large" V2 ap-
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proaches to 1.
As t ! �1; solutions follows the direction of "small" V1
approaches to 1

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­4

­2

2

4

x

y

(d) one eigenvalue is zero (see homework #10,11)

��1 < �2 = 0 (sink)
� 0 = �1 < �2 (source)

2. A has a complex eigenvalue � = � + i� with eigenvector V =
V1 + iV2:Then

X = e�t [c1 (cos �tV1 � sin �tV2) + c2 (cos �tV2 + sin �tV1)]
= e�t [c1 cos �tV1 � c1 sin �tV2 + c2 cos �tV2 + c2 sin �tV1]
= e�t [(c1 cos �t+ c2 sin �t)V1 + (c2 cos �t� c1 sin �t)V2]

(a) � > 0 (spiral source)
solutions X (t) ! 1 as t ! 1; X (t) ! 0 as t ! �1, in a
spiral fashion around the origin.
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(b) � < 0 (spiral sink)
solutions X (t) ! 0 as t ! 1; X (t) ! 1 as t ! �1, in a
spiral fashion
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(c) � = 0 (center)

X = (c1 cos �t+ c2 sin �t)V1 + (c2 cos �t� c1 sin �t)V2

is periodic with frequency � and period T = 2�=�:
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� Homework for Chapter 3: 2(ii)(iii), 4, 5,10, 11
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