Chapter 2 Planar Linear Systems

$$
\begin{aligned}
x^{\prime} & =a x+b y \\
y^{\prime} & =c x+d y
\end{aligned}
$$

Matrix form:

$$
\begin{gathered}
X^{\prime}=A X \\
X=\binom{x}{y}, A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{gathered}
$$

There are four parameters: a, b, c, d.

- Question: How these 4 parameters determine solutions of systems?

Basic facts we learned before:

1. Equilibrium solutions:

- If $\operatorname{det}(A) \neq 0$, then $X=0$ is the only equilibrium solution.
- If $\operatorname{det}(A)=0$, then solutions of $A X=0$ is a straight line.

2. Linearity Principle: If $X_{1}(t)$ and $X_{2}(t)$ are two solutions, then so are their linear combinations $X=\alpha X_{1}+\beta X_{2}$ for any constants α and β.
3. If λ is an eigenvalue of A and V is an eigenvector associated λ (i.e., $A V=\lambda V)$, then $X=e^{\lambda t} V$ satisfies the linear system.
4. When λ is a real eigenvalue, then $X=e^{\lambda t} V$ is a real solution.

- In the case there are two distinct real eigenvalues λ_{1} and λ_{2} with associated eigenvectors V_{1} and V_{2}, respectively, then the general solution is $X=c_{1} e^{\lambda_{1} t} V_{1}+c_{2} e^{\lambda_{2} t} V_{2}$
- $\lambda_{1}<\lambda_{2}<0$ sink, stable
- $\lambda_{1}<0<\lambda_{2}$ saddle, unstable
- $0<\lambda_{1}<\lambda_{2}$ source, unstable
- As $t \rightarrow \infty$, solutions follows V_{2}; as $t \rightarrow-\infty$, solutions follows V_{1}
- Phase portraits.
- Example: $a=b=d=1, c=4$

5. When λ is a complex eigenvalue, then $X=e^{\lambda t} V$ is a complex solution, which is not a solution of the system. However, its real part and imaginary part are two linearly independent solutions.

- Let $\lambda=\alpha \pm \beta i$. If $\alpha>0$, spiral source. If $\alpha<0$, spiral sink. If $a=0$ center.
- Example: $a=6, b=-1, c=5, d=4$

6. If λ is a repeated eigenvalue of A, then $X=e^{\lambda t}\left(V_{1}+t V\right)$ is a also a solution, where

$$
(A-\lambda I) V_{1}=V
$$

This is because

$$
\begin{aligned}
& X^{\prime}=\lambda e^{\lambda t} V_{1}+e^{\lambda t} V+\lambda t e^{\lambda t} V=e^{\lambda t}\left(\lambda V_{1}+V+\lambda t V\right) \\
&=e^{\lambda t}\left(\lambda V_{1}+V+\lambda t\right) \\
& A X=e^{\lambda t}\left(A V_{1}+t A V\right)=e^{\lambda t}\left(A V_{1}+\lambda t V\right) . \\
& A V_{1}=\lambda V_{1}+V \text { leads to } X^{\prime}=A X .
\end{aligned}
$$

7. Second-order ODE: $x^{\prime \prime}+b x^{\prime}+k x$ can be converted into a system of first-order equations.

- Homework: \#3, 6.

