Chapter 2 Planar Linear Systems

$$x' = ax + by$$
$$y' = cx + dy$$

Matrix form:

$$X' = AX$$
$$X = \begin{pmatrix} x \\ y \end{pmatrix}, \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

There are four parameters: a, b, c, d.

• Question: How these 4 parameters determine solutions of systems?

Basic facts we learned before:

- 1. Equilibrium solutions:
 - If det $(A) \neq 0$, then X = 0 is the only equilibrium solution.
 - If det (A) = 0, then solutions of AX = 0 is a straight line.
- 2. Linearity Principle: If $X_1(t)$ and $X_2(t)$ are two solutions, then so are their linear combinations $X = \alpha X_1 + \beta X_2$ for any constants α and β .
- 3. If λ is an eigenvalue of A and V is an eigenvector associated λ (i.e., $AV = \lambda V$), then $X = e^{\lambda t} V$ satisfies the linear system.
- 4. When λ is a real eigenvalue, then $X = e^{\lambda t} V$ is a real solution.
 - In the case there are two distinct real eigenvalues λ_1 and λ_2 with associated eigenvectors V_1 and V_2 , respectively, then the general solution is $X = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2$
 - $\lambda_1 < \lambda_2 < 0$ sink, stable
 - $\lambda_1 < 0 < \lambda_2$ saddle, unstable
 - $0 < \lambda_1 < \lambda_2$ source, unstable
 - As $t \to \infty$, solutions follows V_2 ; as $t \to -\infty$, solutions follows V_1
 - Phase portraits.

- Example: a = b = d = 1, c = 4
- 5. When λ is a complex eigenvalue, then $X = e^{\lambda t}V$ is a complex solution, which is not a solution of the system. However, its real part and imaginary part are two linearly independent solutions.
 - Let $\lambda = \alpha \pm \beta i$. If $\alpha > 0$, spiral source. If $\alpha < 0$, spiral sink. If a = 0 center.
 - Example: a = 6, b = -1, c = 5, d = 4
- 6. If λ is a repeated eigenvalue of A, then $X = e^{\lambda t} (V_1 + tV)$ is a also a solution, where

$$(A - \lambda I) V_1 = V.$$

This is because

$$X' = \lambda e^{\lambda t} V_1 + e^{\lambda t} V + \lambda t e^{\lambda t} V = e^{\lambda t} (\lambda V_1 + V + \lambda t V)$$

= $e^{\lambda t} (\lambda V_1 + V + \lambda t V)$
 $AX = e^{\lambda t} (AV_1 + tAV) = e^{\lambda t} (AV_1 + \lambda t V).$

 $AV_1 = \lambda V_1 + V$ leads to X' = AX .

- 7. Second-order ODE: x'' + bx' + kxcan be converted into a system of first-order equations.
- Homework: #3, 6.