Chapter 10 Closed orbits and Limit Sets

Consider nonlinear dynamical system

$$
X^{\prime}=F(X)
$$

with flow $\phi(t, X)$, i.e., $X(t)=\phi\left(t, X_{0}\right)$ is the solution with the initial value $X(0)=X_{0}$

In this chapter, we study the limit behavior of flow $\phi(t, X)$.

- Recall Liapunov Stability Theorem:
- A function defined in a neighborhood O of X_{0} satisfying
a $L\left(X_{0}\right)=0, L(X)>0$ for $X \neq X_{0}, X \in O$
b $\nabla L(X) \cdot F(X)<0$ for $X \in O \backslash\left\{X_{0}\right\}$
- Liapunov Stability Theorem: Let X_{0} be an equilibrium for $X=F(X)$. The equilibrium is asymptotically stable if there exists a smooth Liapunov function.
- Furthermore, for any $X \in O, \phi(t, X) \rightarrow X_{0}$ as $t \rightarrow \infty$.
- Definition: Basin of Attraction of an equilibrium X_{0} is $\left\{X: \phi(t, X) \rightarrow X_{0}\right.$ as $\left.t \rightarrow \infty\right\}$
- In Liapunov Stability Theorem, the set O lies inside of the Basin of Attraction of X_{0}.

Example. Consider, for parameter ε,

$$
\begin{aligned}
& x^{\prime}=(-x+2 y)(z+1) \\
& y^{\prime}=(-x-y)(z+1) \\
& z^{\prime}=-z^{3}
\end{aligned}
$$

Consider a Liapunov function in the form:

$$
L(x, y, z)=a x^{2}+b y^{2}+c z^{2}
$$

We see that

$$
\begin{aligned}
\nabla L \cdot F & =2(a x, b y, c z) \cdot F \\
& =2 a x(-x+2 y)(z+1)+2 b y(-x-y)(z+1)+2 c z\left(-z^{3}\right) \\
& =-2\left(a x^{2}+b y^{2}\right)(z+1)+(2 a-b) y x(z+1)-2 c z^{4}
\end{aligned}
$$

So if we choose $a=1, b=2, c=1$. Then for all $X=(x, y, z)$

$$
\begin{aligned}
& \nabla L \cdot F(X)=-2\left(a x^{2}+b y^{2}\right)(z+1)-2 c z^{4}<0 \\
& \text { if } z>-1
\end{aligned}
$$

Hence, the entire half plane $z>-1$ lies in the Basin of Attraction of O.

- Remark: By Choosing appropriate the Liapunov function, we may find larger area inside Basin of Attraction, or even describe it precisely.
- Closed orbit : Periodic solution. If $\phi\left(T, X_{0}\right)=X_{0}$, then this solution $X(t)=\phi\left(t, X_{0}\right)$ is periodic with period T
- ω - limit point of X : a point Y is called a $\omega-$ limit if there is a sequence $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that

$$
Y=\lim _{n \rightarrow \infty} \phi\left(t_{n}, X\right)
$$

- $\omega(X): \omega$ - limit set of $X=$ Set of all possible ω - limit points of X
- We also call ω - limit set of X " ω - limit set of the function $\phi(T, X)$ ". In particular,

$$
\omega-\text { limit set of } f(x)=\left\{y: y=\lim _{x_{n} \rightarrow \infty} f\left(x_{n}\right)\right\}
$$

- Illustration about sequential limit

- α - limit point of X : a point Y is called a $\alpha-$ limit if there is a sequence $t_{n} \rightarrow-\infty$ as $n \rightarrow \infty$ such that

$$
Y=\lim _{n \rightarrow-\infty} \phi\left(t_{n}, X\right)
$$

- $\alpha(X): \alpha-$ limit set $=$ Set of all possible $\alpha-$ limit points of X
- Limit set means $\omega(X)$ or $\alpha(X)$
- Invariant set: A set G is called invariant if for any $X \in G, \phi(t, X) \in G$ for all t.
- Positively Invariant set: A set G is called Positively invariant if for any $X \in G, \phi(t, X) \in G$ for all $t>0$.
- Negatively Invariant set: A set G is called Negatively invariant if for any $X \in G, \phi(t, X) \in G$ for all $t<0$.
- Any limit set is invariant:
- For instance, suppose $Y \in \omega(X)$. If $\phi\left(t_{n}, X\right) \rightarrow Y$, then $\phi\left(t+t_{n}, X\right)=$ $\phi\left(t, \phi\left(t_{n}, X\right)\right) \rightarrow \phi(t, Y)$. So $\phi(t, Y) \in \omega(X)$

Example 1: Consider the system

$$
\begin{aligned}
x^{\prime} & =\frac{1}{2} x-y-\frac{1}{2}\left(x^{3}+x y^{2}\right) \\
y^{\prime} & =x+\frac{1}{2} y-\frac{1}{2}\left(y^{3}+x^{2} y\right)
\end{aligned}
$$

Introducing the polar coordinate system $x=r \cos \theta, y=r \sin \theta$

$$
\begin{aligned}
& x^{\prime}=r^{\prime} \cos \theta-r \theta^{\prime} \sin \theta \\
& y^{\prime}=r^{\prime} \sin \theta+r \theta^{\prime} \cos \theta
\end{aligned}
$$

So

$$
\begin{aligned}
x^{\prime} \cos \theta & =r^{\prime} \cos ^{2} \theta-r \theta^{\prime} \sin \theta \cos \theta \\
y^{\prime} \sin \theta & =r^{\prime} \sin ^{2} \theta+r \theta^{\prime} \cos \theta \sin \theta
\end{aligned}
$$

Adding together, we see

$$
x^{\prime} \cos \theta+y^{\prime} \sin \theta=r^{\prime} \cos ^{2} \theta+r^{\prime} \sin ^{2} \theta=r^{\prime}
$$

So

$$
\begin{aligned}
r^{\prime} & =x^{\prime} \cos \theta+y^{\prime} \sin \theta \\
& =\left(\frac{1}{2} x-y-\frac{1}{2}\left(x^{3}+x y^{2}\right)\right) \cos \theta+\left(x+\frac{1}{2} y-\frac{1}{2}\left(y^{3}+x^{2} y\right)\right) \sin \theta \\
& =\left(\frac{1}{2} r \cos \theta-r \sin \theta-\frac{1}{2} r^{3} \cos \theta\right) \cos \theta+\left(r \cos \theta+\frac{1}{2} r \sin \theta-\frac{1}{2} r^{3} \sin \theta\right) \sin \theta \\
& =\left(\frac{1}{2} r \cos ^{2} \theta-r \sin \theta \cos \theta-\frac{1}{2} r^{3} \cos ^{2} \theta\right)+\left(r \cos \theta \sin \theta+\frac{1}{2} r \sin ^{2} \theta-\frac{1}{2} r^{3} \sin ^{2} \theta\right) \\
& =\frac{1}{2}\left(r-r^{3}\right)
\end{aligned}
$$

Next, from

$$
x^{\prime}=r^{\prime} \cos \theta-r \theta^{\prime} \sin \theta
$$

we see

$$
\begin{aligned}
\left(\frac{1}{2} x-y-\frac{1}{2}\left(x^{3}+x y^{2}\right)\right) & =\frac{1}{2}\left(r-r^{3}\right) \cos \theta-r \theta^{\prime} \sin \theta \\
\left(\frac{1}{2} r \cos \theta-r \sin \theta-\frac{1}{2} r^{3} \cos \theta\right) & =\frac{1}{2} r \cos \theta-\frac{1}{2} r^{3} \cos \theta-r \theta^{\prime} \sin \theta \\
-r \sin \theta & =-r \theta^{\prime} \sin \theta \\
\theta^{\prime} & =1
\end{aligned}
$$

We thus arrive at

$$
\begin{aligned}
r^{\prime} & =\frac{1}{2}\left(r-r^{3}\right) \\
\theta^{\prime} & =1
\end{aligned}
$$

$r=1, \theta=t$ is an solution, which is the unit circle under the polar coordinate system. We call it a closed orbit.

Consider any solution $(r(t), \theta(t))$ with the initial value $\left(r_{0}, \theta_{0}\right):(r(0), \theta(0))=$ $\left(r_{0}, \theta_{0}\right)$. If $0<r_{0}<1$, then

$$
r^{\prime}(0)=\frac{1}{2} r\left(1-r^{2}\right)=\frac{1}{2} r_{0}\left(1-r_{0}^{2}\right)>0
$$

So $r^{\prime}(t)$ will stay positive for all $t>0$. Hence, $r(t)$ will increases towards $r=1$ as $t \rightarrow \infty$. Otherwise, if initially $r_{0}>1, r^{\prime}(0)<0$, and it will decreases to $r=1$. So $\omega-$ limit set of any nonzero solution is this orbit $r=1$.

- Properties of limit sets:
- Any limit set is closed and and invariant
- If X and Z lie on the same solution, then they have the same limit sets: $\omega(X)=\omega(Z), \alpha(X)=\alpha(Z)$
- If G is closed, positively invariant set, and $Z \in G$, then $\omega(Z) \subset G$.
- If G is closed, negatively invariant set, and $Z \in G$, then $\alpha(Z) \subset G$.
- Local Sections
- Transverse line $l\left(X_{0}\right)$ at an non-equilibrium point X_{0} is a line passing X_{0} and is perpendicular to $F\left(X_{0}\right)$ (assume $F\left(X_{0}\right) \neq \overrightarrow{0}$)
- Transverse line may be parametrized using vector for of line equation:
$X=h(u)=X_{0}+u V_{0}, V_{0}$ is a unit vector in the direction of $l\left(X_{0}\right), V_{0} \cdot F\left(X_{0}\right)=0$
- Local section - A line segment S on $l\left(X_{0}\right)$ containing X_{0} and is not tangent to the vector field.
- At each point on S, there is a solution curve passing through it.
- One may "straighten" the local section and flows nearby to form "flow box"
- Flow Boxes
- Define mapping

$$
\psi(s, u)=\phi(s, h(u))
$$

- This mapping maps a rectangular box $[-\varepsilon, \varepsilon] \times[-\delta, \delta]$ to a neighborhood of local section S.
- The image $\psi([-\varepsilon, \varepsilon] \times[-\delta, \delta])$ is called a flow box
$-\psi(s, u)$ is a local conjugacy between the constant vector field and nonlinear vector field $F(X)$
- Closed orbit
- A periodic solution is called a closed orbit
- A closed orbit γ is called Stable if there exists a neighborhood G of γ and a sub-neighborhood $G_{1} \subset G$ such that any solution initiated from G_{1} will remain in G.
- A closed orbit γ is called Asymptotically Stable if it is stable and ω - limit set $\omega\left(X_{o}\right) \subset \gamma$, for any X_{0} near γ. In other words, all solution will tend to γ.
- The Poincaré Map
- Definition: Given a closed orbit γ and $X_{0} \in \gamma$. Let $S=l\left(X_{0}\right)$ be a local transverse section at X_{0}. For any $X \in S$ near X_{0}, the flow $\phi(t, X)$ may hit S at same time $s=t(X)$. The map $X \longmapsto \phi(s, X)$ is called the Poincaré Map

$$
P(X)=\phi(s, X), s \text { is the first time the flow } \phi(t, X) \text { hit } S
$$

- Note that $P\left(X_{0}\right)=X_{0}$.
- In R^{2}, a transverse section S may be represented by $h(u)=$ $X_{0}+u V_{0}$. So when restricted on S, The Poincaré Map induces a mapping $P_{1}: R^{1} \rightarrow R^{1}$ as
$P_{1}(u)=v$, where v is the first time $\phi(t, h(u))$ hits S at $h(v):$ $P_{1}(h(u))=h(v), \quad P_{1}(0)=0$.
- If $\left|P_{1}^{\prime}(0)\right|<1$, then $P_{1}(u)=a u+O\left(u^{2}\right), a=P_{1}^{\prime}(0),|a|<1$. This means that after the first passage across S, for any point X near X_{0}, its distance to X_{0} decreases. Continuing, we see that $\phi(t, X) \rightarrow X_{0}$. Therefore, γ is asymptotically stable.
- Theorem: Let γ be a closed orbit and $X_{0} \in \gamma$. Let P be a Poincaré Map defined in a neighborhood of X_{0}. If $\left|P^{\prime}\left(X_{0}\right)\right|<1$, then γ is asymptotically stable.

Example: Consider system in the polar coordinate system

$$
\begin{aligned}
& r^{\prime}=r(1-r) \\
& \theta^{\prime}=1
\end{aligned}
$$

We know that $r=1$ is the closed orbit. The corresponding solution in $x y$ - plane is $(\cos t, \sin t)$. Let $X_{0}=(1,0) \in \gamma$. The positive x -axis is a local transverse section. For any $X=(x, 0), x>0$,

$$
P(x)=\phi(X, 2 \pi) .
$$

In fact, we can solve r by separation of variables:

$$
\begin{gathered}
\int\left(\frac{1}{r}+\frac{1}{1-r}\right) d r=\int \frac{d r}{r(1-r)}=\int d \theta \\
\ln r-\ln (1-r)=\theta+C
\end{gathered}
$$

or

$$
\frac{r}{1-r}=C e^{\theta}=C e^{t} \quad\left(\text { since } \theta^{\prime}=1\right)
$$

Since initially

$$
r(0)=\sqrt{x^{2}+y^{2}}=x
$$

we have

$$
C=\frac{x}{1-x}
$$

So

$$
r=\frac{C e^{t}}{1+C e^{t}}=\frac{\frac{x}{1-x} e^{t}}{1+\frac{x}{1-x} e^{t}}=\frac{x e^{t}}{1-x+x e^{t}}
$$

Therefore,

$$
\begin{gathered}
P(x)=\frac{x e^{2 \pi}}{1-x+x e^{2 \pi}} \\
P^{\prime}(x)=\frac{d}{d x}\left(\frac{x e^{2 \pi}}{1-x+x e^{2 \pi}}\right)=\frac{e^{2 \pi}}{\left(x e^{2 \pi}-x+1\right)^{2}}
\end{gathered}
$$

In particular at $X_{0}=(1,0), P^{\prime}(1)=1 / e^{2 \pi}<1$. So the orbit is asymptotically stable.

- Poincaré-Bendixson Theorem: Suppose that Ω is a closed and bounded limit set of a planar dynamical system. If Ω contains no equilibrium solution, then Ω is a closed orbit.
- Applications:
- Limit cycle - a closed obit γ that is included in a limit set.
* ω - limit cycle γ if $\gamma \subset \omega(X)$ for some X
* α - limit cycle γ if $\gamma \subset \alpha(X)$ for some X
- Limit cycle theorem: Let γ be a ω - limit cycle, and $\gamma=\omega(X)$ for some $X \notin \gamma$. Then the set $\{Y: \omega(Y)=\gamma\} \backslash \gamma$ is an open set. In other words, for Y near $X, \gamma=\omega(Y)$.
- Any closed and bounded positively (or negatively) invariant set contains either a limit cycle or an equilibrium.
- Let γ be a closed orbit and G be the open region inside and bounded by γ. Then G contains either an equilibrium.
- Homework: 1abc, 2, 5, 6 (for 6c, see the example in at the bottom of page 207)

