MTH 4810/6810 Applied Mathematics I Dr. Chao Huang

Chapter 1 First-Order Equations

We start with a brief review about basics of ODE:

$$
x^{\prime}=f(t, x)
$$

where $f(t, x)$ is a given two variable function. Some examples:

1. Simple population model: Assuming that the rate of change of a population is proportional to its size. Then

$$
x^{\prime}=a x
$$

$a(t)=$ size of population of a species at time t.
2. Logistic population model: In addition to simple growth assumption, we assume that there is a capacity limit N. Beyond this limit, the population will decrease:

$$
x^{\prime}=a x\left(1-\frac{x}{N}\right)
$$

3. Logistic population model with harvesting (Exercise: find general solution):

$$
x^{\prime}=a x\left(1-\frac{x}{N}\right)-h
$$

- h - rate of harvesting
- Review basic methods of analysing ODEs
- Analytical Method: Separation of Variables
* Example 1: Solve Logistic model

$$
x^{\prime}=a x\left(1-\frac{x}{N}\right)
$$

- Geometric Method: Directional fields
* Phase lines of autonomous systems $x^{\prime}=f(x)$
* equilibrium solutions: solutions of $f(x)=0$
* classification of equilibria: sink (stable), source, saddle
* Example 2: $x^{\prime}=a x$
- Sol: General solution is $x=k e^{a t}$
- Equilibrium solution is $x=0$.
- If $a>0$, unstable. If $a<0, x=k e^{a t} \rightarrow 0$ as $t \rightarrow \infty$, stable.
- When a changes from >0 to <0, the behavior of solutions change.
- So $a=0$ is called a bifurfaction point.
* Example 3 Re-consider logistic model. $x=0, N$ are equilibria.
- Draw phase line to determine $x=0$ is a source and $x=N$ is a sink if $a>0$.
- Converse If $a<0$.
- So $a=0$ is a bifurcation, since the behavior of solutions changes when a crosses $a=0$.
- In general, one can easily determine sink/source
* if $f^{\prime}\left(x_{0}\right)<0$, an equilibrium $x=x_{0}$ is a sink
* if $f^{\prime}\left(x_{0}\right)>0$, an equilibrium $x=x_{0}$ is a source
* But if $f^{\prime}\left(x_{0}\right)=0$, anything could happen: it could be a sink, or source, or saddle.
- Example 4 Discuss equilibria for $x^{\prime}=x-x^{3}$
- Consider ODEs depending on a parameter $a: x^{\prime}=f(a, x)$
- Question: How solutions change as the parameter a changes?
- Bifurcation diagrams for $x^{\prime}=f(a, x)$
- On $a x$ - plane, we graph the equation $f(a, x)=0$
- The is the curve of equilibrium solutions and is called the bifurcation diagram
- Let $x(a)$ be solutions.
- Bifurcation occurs when solutions $x(a)$ change in certain way
- For instance, number of solutions changes, types change (from sink to source, etc.).
- Example 5: Discuss bifurcation diagram for Logistic model with havesting (page 8)

$$
x^{\prime}=x(1-x)-h, \quad h>0 .
$$

* Equilibrium: $x(1-x)-h=0$

$$
x^{2}-x+h=0, \quad x=\frac{1 \pm \sqrt{1-4 h}}{2}
$$

* So when $1-4 h>0$, or $h<1 / 4$, there are two equilibrium solutions $0<x_{1}<1 / 2<x_{2}$
* Bifurcation diagram: $x^{2}-x+h=0$

* For each h, there are two solutions:
- $x_{1}(h)$ is the lower half of the parabola (source)
- This is because $f^{\prime}(x)=1-2 x$. So $f^{\prime}\left(x_{1}\right)=1-2 x_{1}>0$
- $x_{2}(h)$ is the upper half of the parabola (sink)
- $f^{\prime}\left(x_{2}\right)=1-2 x_{2}<0$ (sink)
* when $h=1 / 4$, there is only one equilibrium solution $x_{0}=1 / 2$.
* Moreover, $f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)<0$. So $f \leq 0$, it is a saddle
* when $1-4 h<0$, or $h>1 / 4$, there is no equilibrium solution.
* Apparently, when across $h=1 / 4$, the behavior of solutions change. It is a bifurcation.
- Poincaré Map
- Consider ODE with periodic structures

$$
x^{\prime}=f(t, x)
$$

- where $f(t, x)=f(t+T, x)$ has period T.
- For instance, $x^{\prime}=f(t, x)=a x(1-x)-h(1+\sin (2 \pi t))$
* $f(t, x)$ is periodic with $T=1$ for variable t
- In this periodic case, if we can find solutions for t in one period $[0, T]$, then we can construct solutions for all times:
* Let $x_{1}(t)$ be a solution for t in $[0, T]$. We then solve IVP

$$
\begin{aligned}
x^{\prime} & =f(t, x) \\
x(0) & =x_{1}(T)
\end{aligned}
$$

* Denote the solution as $x_{2}(t): x_{2}(0)=x_{1}(T)$
* Combine x_{1} and x_{2} :

$$
x(t)=\left\{\begin{array}{cc}
x_{1}(t) & \text { if } 0 \leq t \leq T \\
x_{2}(t-T) & \text { if } T \leq t \leq 2 T
\end{array}\right.
$$

* We can verify $x(t)$ also solves ODE in $[T, 2 T]$:
- Since $x(t)=x_{2}(t-T)$,
- $x^{\prime}(t)=x_{2}^{\prime}(t-T)=f\left(t-T, x_{2}(t-T)\right)=f\left(t, x_{2}(t-T)\right)=$ $f(t, x(t))$
* Repeat this process: solve x_{3} by

$$
\begin{aligned}
x^{\prime} & =f(t, x) \\
x(0) & =x_{2}(T)
\end{aligned}
$$

* then solve x_{n+1} by

$$
\begin{aligned}
x^{\prime} & =f(t, x) \\
x(0) & =x_{n}(T)
\end{aligned}
$$

* Construct $x(t)$ as

$$
x(t)=\left\{\begin{array}{cc}
x_{1}(t) & \text { if } 0 \leq t \leq T \\
x_{n+1}(t-T) & \text { if } n T \leq t \leq(n+1) T
\end{array}, n=0,1, \ldots\right.
$$

- So, solutions in $[0, T]$ play a significant role in studying ODEs
- For any x_{0}, we solve IVP

$$
\begin{aligned}
x^{\prime} & =f(t, x) \\
x(0) & =x_{0}
\end{aligned}
$$

- and compute $x(T)$. This value depends on x_{0}. The map $x_{0} \longmapsto$ $x(T)$ is called the Poincaré map
- Poincaré map is denoted by $p\left(x_{0}\right)=x(T)$
- If $p\left(x_{0}\right)=x_{0}$, i.e., $x(1)=x_{0}=x(0)$, the solution $x(t)$ is periodic with period T.
- So: a solution with initial value $x(0)=x_{0}$ iff $p\left(x_{0}\right)=x_{0}$ (or x_{0} is a fixed point)
- Flows $\phi\left(t, x_{0}\right)$ of ODE
- In general, for any x_{0}, we solve IVP

$$
\begin{aligned}
x^{\prime} & =f(t, x) \\
x(0) & =x_{0}
\end{aligned}
$$

- Solution is denoted as

$$
x=\phi\left(t, x_{0}\right)
$$

- this is a two variable function $\left(t, x_{0}\right) \longmapsto \phi\left(t, x_{0}\right)$
- We call it the flow associated with ODE.
- Example 6:
- (a) for $x^{\prime}=a x, \phi\left(t, x_{0}\right)=x_{0} e^{a t}$
$-(\mathrm{b})$ for $x^{\prime}=a x(1-x), \phi\left(t, x_{0}\right)=x_{0} e^{a t} /\left(1-x_{0}+x_{0} e^{a t}\right)$
- When $f(t, x)$ is periodic in t, then

$$
p\left(x_{0}\right)=\phi\left(T, x_{0}\right)
$$

is called the Poincaré map.

- Looking for periodic solutions $=$ finding pixed points of the Poincaré map.
- Homework (due $9 / 16$, before class starts)
- Exercise\#1 Find general solution for

$$
x^{\prime}=a x\left(1-\frac{x}{N}\right)-h
$$

(You need to discuss different cases for various constants a, N, h. Solutions may be different depending on certain relationship between these constants.)

- Exercise\#2 For the above legistic model with harvesting, $N=$ $2, h=1$, i.e.,

$$
x^{\prime}=a x\left(1-\frac{x}{2}\right)-1
$$

discuss its bifurcation and draw its bifurcation diagram. (hint: the graph of $a x\left(1-\frac{x}{2}\right)-1=0$ is shown below)

- From textbook: \#2ace, 3ac, 4, 6, 10

