
Section 6.5. Least-Squares Approximations
In this section, we consider linear systems

A~x = ~b (1)

when it is inconsistent. Recall that a system is inconsistent when the last row of its aug-
mented matrix is a pivot column. In other words, its augmented matrix has an Echelon
form

[
A,~b

]
−→


∗ ∗ ... ∗ b1
... ... ... ... ...
0 0 ... 0 bp
0 0 ... 0 0
... ... ... ... ...

 , bp 6= 0,

where
[
0 0 ... 0 bp

]
is the first non-zero row from the top. Note that as long as bp is not

zero, for instance, bp = 0.000001, the system is inconsistent. From a practical point of view,
due to data sampling errors or floating point errors within computers or programming, many
supposedly consistent systems could turn out to be inconsistent. In this section, we shall
learn a method that would produce the best possible approximation (in a certain sense) to
the linear system. When a system is consistent, this method would provide solutions to the
systems.
Definition Let Am×n be a m × n matrix and ~b ∈ Rm, a vector ŷ0 ∈ Rn is called a

least-squares approximation solution for linear system (1) if it minimizes
∥∥∥~b− A~x∥∥∥2 among

all ~x in Rn, i.e., ∥∥∥~b− Aŷ0∥∥∥2 ≤ ∥∥∥~b− A~x∥∥∥2 for all ~x ∈ Rn.

Note that if (1) is consistent, then a least-squares approximation solution is a solution
~x0 since ∥∥∥~b− A~x0∥∥∥2 = 0 ≤ ∥∥∥~b− A~x∥∥∥2 .
We also note that, since

dist
(
~b, Col (A)

)
= min

{∥∥∥~b− ~z∥∥∥ : ~z ∈ Col (A)} = min{∥∥∥~b− A~x∥∥∥ : ~x ∈ Rn} ,
a least-squares approximation solution is such that∥∥∥~b− Aŷ0∥∥∥ = dist(~b, Col (A)) .
This observation motivates us to find least-squares approximation solutions as follows.
Let b̂ =ProjCol(A)

(
~b
)
∈ Col (A) . By definition, this means that

A~x = b̂
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is consistent. Suppose that ŷ0 is a solution: Aŷ0 = b̂.Then,∥∥∥~b− Aŷ0∥∥∥ = ∥∥∥~b− b̂∥∥∥ = ∥∥∥~b− ProjCol(A) (~b)∥∥∥
≤
∥∥∥~b− ~z∥∥∥ (for ~z ∈ Col (A) , since ProjCol(A)

(
~b
)
is closest to ~b)

=
∥∥∥~b− A~x∥∥∥ (~z = A~x for any ~z ∈ Col (A) ).

This means that the solution ŷ0 is a least-squares approximation solution.
We can further simplify the above two-step procedure. Let b̂ =ProjCol(A)

(
~b
)
. Then,

since Col (A) = {A~x : all ~x ∈ Rn}

~b− b̂ ⊥ Col (A) =⇒
(
~b− b̂

)
· A~x = 0.

Suppose ŷ0 solves Aŷ0 = b̂. The above equation becomes(
~b− Aŷ0

)
· A~x = 0.

Using the fact that, for any two vectors ~u and ~v,

~u · ~v = ~uT~v ( one-row matrix times one-column matrix ),

we see, for any ~x ∈ Rn,(
AT
(
~b− Aŷ0

))
· ~x =

(
AT
(
~b− Aŷ0

))T
~x =

(
~b− Aŷ0

)T
A~x =

(
~b− Aŷ0

)
· A~x = 0.

In the above equation, if we take

~x =
(
AT
(
~b− Aŷ0

))
,

then

0 =
(
AT
(
~b− Aŷ0

))
· ~x =

(
AT
(
~b− Aŷ0

))
·
(
AT
(
~b− Aŷ0

))
=
∥∥∥(AT (~b− Aŷ0))∥∥∥2 =⇒ (

AT
(
~b− Aŷ0

))
= 0

This leads to the following linear system

0 =
(
AT
(
~b− Aŷ0

))
= AT~b− ATAŷ0 =⇒ AT~b = ATAŷ0.

Theorem The least-squares approximation solutions coincide with the solution set for

ATAŷ = AT~b.
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Any solution is a least-squares approximation.
Example 6.5.1. Find least-squares approximation solutions for

(a) A =

4 0
0 2
1 1

 , ~b =
 20
11



(b) A =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1


6×4

, ~b =


−3
−1
0
2
5
1

 .

Solution. (a) We computer ATA and AT~b :

ATA =

4 0
0 2
1 1

T 4 0
0 2
1 1

 = [4 0 1
0 2 1

]4 0
0 2
1 1

 = [17 1
1 5

]

AT~b =

[
4 0 1
0 2 1

] 20
11

 = [19
11

]
.

We then solve [
17 1
1 5

]
~y =

[
19
11

]
by performing row operations as follows:[

17 1 19
1 5 11

]
→
[
0 −84 −168
1 5 11

]
→
[
0 1 2
1 5 11

]
→
[
0 1 2
1 0 1

]
.

So,

y2 = 2

y1 = 1.

Ans for (a): Least squares solution is ~y0 = [1, 2]
T . One can verify that

∥∥∥A~y0 −~b∥∥∥2 =
∥∥∥∥∥∥
4 0
0 2
1 1

[1
2

]
−

 20
11

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
 24
−8

∥∥∥∥∥∥
2

= 84.

This means that it is impossible to solve

A~y = ~b or
∥∥∥A~y −~b∥∥∥ = 0.
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The best one can do is to make ∥∥∥A~y −~b∥∥∥ = √84 = 9. 165 2.
Solution: (b)

(b) A =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1


6×4

, ~b =


−3
−1
0
2
5
1

 .

Then

ATA =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



T 
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



=


1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 =

6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2



AT~b =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



T 
−3
−1
0
2
5
1

 =

1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



−3
−1
0
2
5
1

 =

4
−4
2
6

 .

We then solve
ATAŷ = AT~b

i.e., 
6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2

 ŷ =

4
−4
2
6

 .
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We solve it by row operations on augmented matrix:
6 2 2 2 4
2 2 0 0 −4
2 0 2 0 2
2 0 0 2 6

→

0 2 2 −4 −14
0 2 0 −2 −10
0 0 2 −2 −4
2 0 0 2 6



→


0 0 2 −2 −4
0 2 0 −2 −10
0 0 2 −2 −4
2 0 0 2 6

→

0 0 0 0 0
0 1 0 −1 −5
0 0 1 −1 −2
1 0 0 1 3

 .
y4 is the free variable, and

y1 = 3− y4
y2 = −5 + y4
y3 = −2 + y4.

There are infinite many least squares approximations. For instance, letting y4 = 0, we have

ŷ =


3
−5
−2
0

 ;
or y4 = 1,

~z =


2
−4
−1
1

 .
One can verify that

∥∥∥Aŷ − ~b
∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥∥


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



3
−5
−2
0

−

−3
−1
0
2
5
1



∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥


1
−1
1
−1
−2
2



∥∥∥∥∥∥∥∥∥∥∥∥
= 2
√
3.

For the second solution ~z,

∥∥∥A~z − ~b
∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥∥


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



2
−4
−1
1

−

−3
−1
0
2
5
1



∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥


1
−1
1
−1
−2
2



∥∥∥∥∥∥∥∥∥∥∥∥
= 2
√
3.
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Section 6.4. The Gram-Schmidt Algorithm
The Gram-Schmidt Algorithm is a process for producing an orthonormal basis for any

subspace in Rn. The idea of this algorithm is demonstrated below.
Example 6.4.1. Let W = Span {~v1, ~v2} , where

~v1 =

36
0

 , ~v2 =
12
2

 .
Construct an orthonormal basis for W.
Solution. We start with

~u1 =
~v1
‖~v1‖

=
1√
9 + 36

36
0

 = 1√
45

36
0

 = 1√
5

12
0

 .
Next, we need to construct a vector ~u2 satisfying

(1) ~u2 is orthogonal to ~u1 and is a unit vector

(2) ~u2 is in W = Span {~v1, ~v2} .

Suppose we already find this vector ~u2. Then, since both ~u1 and ~u2 are in W, we see

Span {~u1, ~u2} ⊂ W.

Note that Condition (1) implies that ~u1 and ~u2 are linearly independent, Span {~u1, ~u2} has
dimension 2. So

Span {~u1, ~u2} = W.
Thus, ~u1, ~u2 form an orthonormal basis. How to find such a vector ~u2? Recall the concept
of orthogonal decomposition:

~v2 = Proj~u1~v2 + ~z, z ⊥ ~u1.

Since ~u1 is in W, we see that

~z = ~v2 − Proj~u1~v2 = ~v2 − (~v2 · ~u1) ~u1

=

12
2

− 5√
5

1√
5

12
0


=

12
2

−
12
0

 =
00
2


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is in W. Thus, the vector

~u2 =
~z

‖~z‖ =

00
1

 .
is exactly what we want. So

1√
5

12
0

 ,
00
1


forms an orthonormal basis.
The Gram-Schmidt Algorithm: Suppose that {~x1, ~x2, ..., ~xp} forms a basis for the

subspace W = Span {~x1, ~x2, ..., ~xp} in Rn. Define

~u1 =
~x1

‖~x1‖2

~v2 = ~x2 − ~x2 · ~v1~v1 (= ~x2 − ProjSpan{~v1}~x2

~u2 =
~v2

‖~v2‖2

~v3 = ~x3 − (~x3 · ~u1) ~u1 − (~x3 · ~u2) ~u2 (= ~x3 − ProjSpan{~u1,~u1}~x3)

~u3 =
~v3

‖~v3‖2

...

~vi = ~xi − ProjSpan{~u1,~u2,...,~ui−1}~xi

~ui =
~vi

‖~vi‖2

...

~vp = ~xp − ProjSpan{~u1,~u2,...,~up−1}~xp = ~xp − [(~xp · ~u1) ~u1 + ...+ (~xp · ~up−1) ~up−1]

~up =
~vp

‖~vp‖2
.

Then

{~v1, ~v2, ..., ~vp} forms an orthogonal basis, and
{~u1, ~u2, ..., ~up} forms an orthogonal basis for W.

QR Factorization of Matrices.
Let A = [~x1, ~x2, ..., ~xp]n×p be a column matrix whose columns are linearly independent.

Then A can be factored as
A = QR

where Q is an orthonormal matrix

Q = [~u1, ~u2, ..., ~up]n×p
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whose columns {~u1, ~u2, ..., ~up} forms an orthonormal basis for Col (A), and

R is a (p× p) upper triangular invertible matrix with positive diagonal entries.

Proof. We use the Gram-Schmidt algorithm to produce {~u1, ~u2, ..., ~up}. One sees that

~vi = ~xi − ProjSpan{~u1,~u2,...,~ui−1}~xi = ~xi − [(~xi · ~u1) ~u1 + ...+ (~xi · ~ui−1) ~ui−1]

~ui =
~vi

‖~vi‖2
.

So ~xi is a linear combination of {~u1, ~u2, ..., ~ui} as

~xi = ~vi + (~xi · ~u1) ~u1 + ...+ (~xi · ~ui−1) ~ui−1
= (~xi · ~u1) ~u1 + ...+ (~xi · ~ui−1) ~ui−1 + ‖~vi‖ ~ui.

In particular, we have

~x1 = ‖~v1‖ ~u1
~x2 = (~x2 · ~u1) ~u1 + ‖~v2‖ ~u2
~x3 = (~x3 · ~u1) ~u1 + (~x3 · ~u2) ~u2 + ‖~v3‖ ~u3.

Thus,

A = [~x1, ~x2, ..., ~xp]n×p

= [~u1, ~u2, ..., ~up]n×p


‖~v1‖ (~x2 · ~u1) (~x3 · ~u1) · · · (~xp · ~u1)
0 ‖~v2‖ (~x3 · ~u2) · · · (~xp · ~u2)
0 0 ‖~v3‖ · · · (~xp · ~u3)
...

...
...

...
...

0 0 0 · · · ‖~vp‖


p×p

= QR.
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