
Section 6.3: Orthogonal Projections

In this section, we summarize what we discussed in Section 6.2, and provide some appli-
cations.
Theorem (orthonormal Decomposition) Let B= {~u1, ~u2, ..., ~up} be an orthonormal ba-

sis of a subspace W in Rn. Then, the orthogonal projection of any vector ~y onto ~ui and
orthogonal projection of any vector ~y onto W have the following expressions, respectively,

Proj~ui (~y) = (~y · ~ui) ~ui, i = 1, 2, ..., p

ProjW (~y) =
p∑
i=1

(~y · ~ui) ~ui =
p∑
i=1

Proj~ui (~y) ,

and
~y = ProjW (~y) + ~z, ~z ⊥ W.

Moreover, if we set U = [~u1, ~u2, ..., ~up]n×p to be a matrix whose columns are {~u1, ~u2, ..., ~up} ,
then

ProjW (~y) = UU
T~y. (1)

Proof. We only need to show (1). To this end, we see that

UUT~y = [~u1, ~u2, ..., ~up]



(~u1)

T

(~u2)
T

...

(~up)
T


p×n

~y

 = [~u1, ~u2, ..., ~up]n×p


(~u1)

T ~y

(~u2)
T ~y
...

(~up)
T ~y


p×1

= ~u1 (~u1)
T ~y + ~u2 (~u2)

T ~y + ...+ ~up (~up)
T ~y

=
(
(~u1)

T ~y
)
~u1 +

(
(~u2)

T ~y
)
~u2 + ...+

(
(~up)

T ~y
)
~up =

p∑
i=1

(~y · ~ui) ~ui = ProjW (~y) .

Theorem (The best approximation Theorem) Let W be a subspace. Then, for any
vector ~y, ProjW (~y) ∈ W is the best approximation to ~y by vectors in W . More precisely,
ProjW (~y) is the closest point in W to ~y, i.e.,

‖~y − ProjW (~y)‖ ≤ ‖~y − ~w‖ , for any ~w ∈ W. (2)

This closest distance is defined as the distance from ~y to W :

dist (~y,W ) = min {‖~y − ~w‖ : ~w ∈ W} = ‖~y − ProjW (~y)‖ .
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Proof. By definition, ~z = ~y−ProjW (~y) is orthogonal toW. For any ~w ∈ W, ~z is orthogonal
to ~w − ProjW (~y) ∈ W.

‖~y − ~w‖2 = ‖(~y − ProjW (~y))− (~w − ProjW (~y))‖2

= ‖~z − (~w − ProjW (~y))‖2

= ‖~z‖2 + ‖~w − ProjW (~y)‖2 (by Pythagorean)

≥ ‖~z‖2 = ‖~y − ProjW (~y)‖2 .

Example 6.3.1. Let

~u1 =

 25
−1

 , ~u2 =
−21
1

 , ~y =
12
3

 , ~z =
−15
10

 , W = Span {~u1, ~u2} .

Determine whether ~y or ~z is closer to W.
Solution 1: We notice that ~u1 · ~u2 = 0. Thus, {~u1, ~u2} is an orthogonal basis, and

ProjW (~y) =

(
~y · ~u1
~u1 · ~u1

)
~u1 +

(
~y · ~u2
~u2 · ~u2

)
~u2

=
2 + 10− 3
4 + 25 + 1

~u1 +
−2 + 2 + 3
4 + 1 + 1

~u2

=
9

30

 25
−1

+ 1
2

−21
1


ProjW (~z) =

(
~z · ~u1
~u1 · ~u1

)
~u1 +

(
~z · ~u2
~u2 · ~u2

)
~u2

=
−2 + 25− 10
4 + 25 + 1

~u1 +
2 + 5 + 10

4 + 1 + 1
~u2

=
13

30

 25
−1

+ 17
6

−21
1


dist (~y,W ) = ‖~y − ProjW (~y)‖

=

∥∥∥∥∥∥
12
3

−
 9

30

 25
−1

+ 1
2

−21
1

∥∥∥∥∥∥ = 7

5

√
5

dist (~z,W ) = ‖~z − ProjW (~z)‖

=

∥∥∥∥∥∥
−15
10

−
13
30

 25
−1

+ 17
6

−21
1

∥∥∥∥∥∥ = 19

5

√
5

2



Ans: ~y is closer to W.
Solution 2: We first construct an orthonormal basis {~v1, ~v2} for W by

~v1 =
1

‖~u1‖
~u1 =

1√
30

 25
−1

 , ~v2 =
1

‖~u2‖
~u2 =

1√
6

−21
1

 .
Set

U = [~v1, ~v2] =


2√
30

−2√
6

5√
30

1√
6

− 1√
30

1√
6

 .
Then,

UUT =


2√
30

−2√
6

5√
30

1√
6

− 1√
30

1√
6



2√
30

5√
30
− 1√

30
−2√
6

1√
6

1√
6

 =

4

5
0 −2

5
0 1 0

−2
5
0

1

5


According to (1),

ProjW (~y) = UU
T~y =


4

5
0 −2

5
0 1 0

−2
5
0

1

5


12
3

 =

−2
5
2
1

5



ProjW (~z) = UU
T~z =


4

5
0 −2

5
0 1 0

−2
5
0

1

5


−15
10

 =

−24
5
5
12

5

 .
Hence,

dist (~y,W ) = ‖~y − ProjW (~y)‖ =

∥∥∥∥∥∥∥∥∥
12
3

−

−2
5
2
1

5


∥∥∥∥∥∥∥∥∥ =

7

5

√
5

dist (~z,W ) = ‖~z − ProjW (~z)‖ =

∥∥∥∥∥∥∥∥∥
−15
10

−

−24
5
5
12

5


∥∥∥∥∥∥∥∥∥ =

19

5

√
5
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Note that the second solution method works better if one needs to computer several
orthogonal projections.
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Section 6.4: The Gram-Schmidt Process
The Gram-Schmidt process is an algorithm to produce an orthogonal/orthonormal basis.
Example 6.4.1 Find an orthonormal basis {~v1, ~v2} for W =Span{~x1, ~x2} , where

~x1 =

36
0

 , ~x2 =
12
2

 .
Sol: We choose ~v1 = ~x1/ ‖~x1‖ = ~x1/

√
45 . Next, let ~p be the projection of ~x2 onto ~v1, i.e.,

~p = (~x2 · ~v1)~v1 =
(
15√
45

)
1√
45

36
0

 =
12
0

 .
We know that ~x2 − ~p is orthogonal to ~v1. So ~v2 = (~x2 − ~p) / ‖~x2 − ~p‖ , or

~v2 =

12
2

−
12
0

 /2 =
00
1

 .
Theorem (The Gram-Schmidt process) Given a basis {~x1, ~x2, ..., ~xp} for any sub-

space W of Rn, an orthonormal basis {~v1, ~v2, ..., ~vp} can be constructed as follows:

~v1 =
~x1
‖~x1‖

, W1 = Span {~v1} = Span {~x1}

~u2 = ~x2 − Pr ojW1~x2 = ~x2 − (~x2 · ~v1)~v1,

~v2 =
~u2
‖~u2‖

W2 = Span {~v1, ~v2} = Span {~x1, ~x2}

~u3 = ~x3 − Pr ojW2~x3 = ~x3 − (~x3 · ~v1)~v1 − (~x3 · ~v2)~v2,

~v3 =
~u3
‖~u3‖

W3 = Span {~v1, ~v2, ~v3} = Span {~x1, ~x2, ~x3} ,
for any k = 1, 2, 3, ..., p,

~uk = ~xk − Pr ojWk−1~xk = ~xk − (~xk · ~v1)~v1 − ...− (~xk · ~vk−1)~vk−1,

~vk =
~uk
‖~uk‖
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Wk = Span {~v1, ~v2, ..., ~vk} = Span {~x1, ~x2, ..., ~xk} .
Example 6.4.2. Find an orthonormal basis for the subspace W = Span {~x1, ~x2, ~x3} ,

where

~x1 =


1
1
1
1

 , ~x2 =

0
1
1
1

 , ~x3 =

0
0
1
1

 .
Sol:

~v1 =
~x1
‖~x1‖

=
1

2


1
1
1
1

 .

~u2 = ~x2 − (~x2 · ~v1)~v1 =


0
1
1
1

− (32
)
1

2


1
1
1
1

 = 1

4


−3
1
1
1



~v2 =
~u2
‖~u2‖

=
1

2
√
3


−3
1
1
1



~u3 = ~x3 − (~x3 · ~v1)~v1 − (~x3 · ~v2)~v2 =
1

3


0
−2
1
1

−−

~v3 =
~u3
‖~u3‖

=
1√
6


0
−2
1
1

 .

Theorem (The QR Factorization): Let A be any m×n matrix A with rank(A) = n.
Then A can be factored as A = QR, where Q is an m × n matrix whose columns form an
orthonormal basis for Col (A) and R is an n× n upper triangle matrix with positive entries
on its diagonal.
Proof: Using the Gram-Schmidt process, we can find an orthonormal basis {~v1, ~v2, ..., ~vn}

for Col (A) . Let Q be its column matrix:

Q = [~v1 ~v2 ... ~vn]
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