Section 6.3: Orthogonal Projections

In this section, we summarize what we discussed in Section 6.2, and provide some applications.

Theorem (orthonormal Decomposition) Let $\mathcal{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ be an orthonormal basis of a subspace W in R^{n}. Then, the orthogonal projection of any vector \vec{y} onto \vec{u}_{i} and orthogonal projection of any vector \vec{y} onto W have the following expressions, respectively,

$$
\begin{aligned}
& \operatorname{Proj}_{\vec{u}_{i}}(\vec{y})=\left(\vec{y} \cdot \vec{u}_{i}\right) \vec{u}_{i}, \quad i=1,2, \ldots, p \\
& \operatorname{Proj}_{W}(\vec{y})=\sum_{i=1}^{p}\left(\vec{y} \cdot \vec{u}_{i}\right) \vec{u}_{i}=\sum_{i=1}^{p} \operatorname{Proj}_{\vec{u}_{i}}(\vec{y}),
\end{aligned}
$$

and

$$
\vec{y}=\operatorname{Proj}_{W}(\vec{y})+\vec{z}, \quad \vec{z} \perp W .
$$

Moreover, if we set $U=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right]_{n \times p}$ to be a matrix whose columns are $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$, then

$$
\begin{equation*}
\operatorname{Proj}_{W}(\vec{y})=U U^{T} \vec{y} . \tag{1}
\end{equation*}
$$

Proof. We only need to show (1). To this end, we see that

$$
\begin{aligned}
U U^{T} \vec{y} & =\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right]\left(\left[\begin{array}{c}
\left(\vec{u}_{1}\right)^{T} \\
\left(\vec{u}_{2}\right)^{T} \\
\ldots \\
\left(\vec{u}_{p}\right)^{T}
\end{array}\right]_{p \times n} \vec{y}\right)=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right]_{n \times p}\left[\begin{array}{c}
\left(\vec{u}_{1}\right)^{T} \vec{y} \\
\left(\vec{u}_{2}\right)^{T} \vec{y} \\
\ldots \\
\left(\vec{u}_{p}\right)^{T} \vec{y}
\end{array}\right]_{p \times 1} \\
& =\vec{u}_{1}\left(\vec{u}_{1}\right)^{T} \vec{y}+\vec{u}_{2}\left(\vec{u}_{2}\right)^{T} \vec{y}+\ldots+\vec{u}_{p}\left(\vec{u}_{p}\right)^{T} \vec{y} \\
& =\left(\left(\vec{u}_{1}\right)^{T} \vec{y}\right) \vec{u}_{1}+\left(\left(\vec{u}_{2}\right)^{T} \vec{y}\right) \vec{u}_{2}+\ldots+\left(\left(\vec{u}_{p}\right)^{T} \vec{y}\right) \vec{u}_{p}=\sum_{i=1}^{p}\left(\vec{y} \cdot \vec{u}_{i}\right) \vec{u}_{i}=\operatorname{Proj}_{W}(\vec{y}) .
\end{aligned}
$$

Theorem (The best approximation Theorem) Let W be a subspace. Then, for any vector $\vec{y}, \operatorname{Proj}_{W}(\vec{y}) \in W$ is the best approximation to \vec{y} by vectors in W. More precisely, $\operatorname{Proj}_{W}(\vec{y})$ is the closest point in W to \vec{y}, i.e.,

$$
\begin{equation*}
\left\|\vec{y}-\operatorname{Proj}_{W}(\vec{y})\right\| \leq\|\vec{y}-\vec{w}\|, \text { for any } \vec{w} \in W \tag{2}
\end{equation*}
$$

This closest distance is defined as the distance from \vec{y} to W :

$$
\operatorname{dist}(\vec{y}, W)=\min \{\|\vec{y}-\vec{w}\|: \vec{w} \in W\}=\left\|\vec{y}-\operatorname{Proj}_{W}(\vec{y})\right\|
$$

Proof. By definition, $\vec{z}=\vec{y}-\operatorname{Proj}_{W}(\vec{y})$ is orthogonal to W. For any $\vec{w} \in W, \vec{z}$ is orthogonal to $\vec{w}-\operatorname{Proj}_{W}(\vec{y}) \in W$.

$$
\begin{aligned}
\|\vec{y}-\vec{w}\|^{2} & =\left\|\left(\vec{y}-\operatorname{Proj}_{W}(\vec{y})\right)-\left(\vec{w}-\operatorname{Proj}_{W}(\vec{y})\right)\right\|^{2} \\
& =\left\|\vec{z}-\left(\vec{w}-\operatorname{Proj}_{W}(\vec{y})\right)\right\|^{2} \\
& =\|\vec{z}\|^{2}+\left\|\vec{w}-\operatorname{Proj}_{W}(\vec{y})\right\|^{2} \quad(\text { by Pythagorean) } \\
& \geq\|\vec{z}\|^{2}=\left\|\vec{y}-\operatorname{Proj}_{W}(\vec{y})\right\|^{2} .
\end{aligned}
$$

Example 6.3.1. Let

$$
\vec{u}_{1}=\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right], \vec{y}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{z}=\left[\begin{array}{c}
-1 \\
5 \\
10
\end{array}\right], W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}
$$

Determine whether \vec{y} or \vec{z} is closer to W.
Solution 1: We notice that $\vec{u}_{1} \cdot \vec{u}_{2}=0$. Thus, $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is an orthogonal basis, and

$$
\begin{aligned}
\operatorname{Proj}_{W}(\vec{y}) & =\left(\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}\right) \vec{u}_{1}+\left(\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}}\right) \vec{u}_{2} \\
& =\frac{2+10-3}{4+25+1} \vec{u}_{1}+\frac{-2+2+3}{4+1+1} \vec{u}_{2} \\
& =\frac{9}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] \\
\operatorname{Proj}_{W}(\vec{z}) & =\left(\frac{\vec{z} \cdot \vec{u}_{1}}{\overrightarrow{u_{1}} \cdot \vec{u}_{1}}\right) \vec{u}_{1}+\left(\frac{\vec{z} \cdot \vec{u}_{2}}{\overrightarrow{\vec{u}_{2}} \cdot \vec{u}_{2}}\right) \vec{u}_{2} \\
& =\frac{-2+25-10}{4+25+1} \vec{u}_{1}+\frac{2+5+10}{4+1+1} \vec{u}_{2} \\
& =\frac{13}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{17}{6}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{dist}(\vec{y}, W)=\left\|\vec{y}-\operatorname{Proj}_{W}(\vec{y})\right\|
$$

$$
=\left\|\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left(\frac{9}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right)\right\|=\frac{7}{5} \sqrt{5}
$$

$$
\operatorname{dist}(\vec{z}, W)=\left\|\vec{z}-\operatorname{Proj}_{W}(\vec{z})\right\|
$$

$$
=\left\|\left[\begin{array}{c}
-1 \\
5 \\
10
\end{array}\right]-\left(\frac{13}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{17}{6}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right)\right\|=\frac{19}{5} \sqrt{5}
$$

Ans: \vec{y} is closer to W.
Solution 2: We first construct an orthonormal basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ for W by

$$
\vec{v}_{1}=\frac{1}{\left\|\vec{u}_{1}\right\|} \vec{u}_{1}=\frac{1}{\sqrt{30}}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right], \quad \vec{v}_{2}=\frac{1}{\left\|\vec{u}_{2}\right\|} \vec{u}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] .
$$

Set

$$
U=\left[\vec{v}_{1}, \vec{v}_{2}\right]=\left[\begin{array}{cc}
\frac{2}{\sqrt{30}} & \frac{-2}{\sqrt{6}} \\
\frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}}
\end{array}\right] .
$$

Then,

$$
U U^{T}=\left[\begin{array}{cc}
\frac{2}{\sqrt{30}} & \frac{-2}{\sqrt{6}} \\
\frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{2}{\sqrt{30}} & \frac{5}{\sqrt{30}} & -\frac{1}{\sqrt{30}} \\
\frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{4}{5} & 0 & -\frac{2}{5} \\
0 & 1 & 0 \\
-\frac{2}{5} & 0 & \frac{1}{5}
\end{array}\right]
$$

According to (1),

$$
\begin{gathered}
\operatorname{Proj}_{W}(\vec{y})=U U^{T} \vec{y}=\left[\begin{array}{ccc}
\frac{4}{5} & 0 & -\frac{2}{5} \\
0 & 1 & 0 \\
-\frac{2}{5} & 0 & \frac{1}{5}
\end{array}\right]\left[\begin{array}{c}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{5} \\
2 \\
\frac{1}{5}
\end{array}\right] \\
\operatorname{Proj}_{W}(\vec{z})=U U^{T} \vec{z}=\left[\begin{array}{ccc}
\frac{4}{5} & 0 & -\frac{2}{5} \\
0 & 1 & 0 \\
-\frac{2}{5} & 0 & \frac{1}{5}
\end{array}\right]\left[\begin{array}{c}
-1 \\
5 \\
10
\end{array}\right]=\left[\begin{array}{c}
-\frac{24}{5} \\
5 \\
\frac{12}{5}
\end{array}\right] .
\end{gathered}
$$

Hence,

$$
\begin{gathered}
\operatorname{dist}(\vec{y}, W)=\left\|\vec{y}-\operatorname{Proj}_{W}(\vec{y})\right\|=\left\|\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
-\frac{2}{5} \\
2 \\
\frac{1}{5}
\end{array}\right]\right\|=\frac{7}{5} \sqrt{5} \\
\operatorname{dist}(\vec{z}, W)=\left\|\vec{z}-\operatorname{Proj}_{W}(\vec{z})\right\|=\left\|\left[\begin{array}{c}
-1 \\
5 \\
10
\end{array}\right]-\left[\begin{array}{c}
-\frac{24}{5} \\
5 \\
\frac{12}{5}
\end{array}\right]\right\|=\frac{19}{5} \sqrt{5}
\end{gathered}
$$

Note that the second solution method works better if one needs to computer several orthogonal projections.

Section 6.4: The Gram-Schmidt Process

The Gram-Schmidt process is an algorithm to produce an orthogonal/orthonormal basis.
Example 6.4.1 Find an orthonormal basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ for $W=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$, where

$$
\vec{x}_{1}=\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] .
$$

Sol: We choose $\vec{v}_{1}=\vec{x}_{1} /\left\|\vec{x}_{1}\right\|=\vec{x}_{1} / \sqrt{45}$. Next, let \vec{p} be the projection of \vec{x}_{2} onto \vec{v}_{1}, i.e.,

$$
\vec{p}=\left(\vec{x}_{2} \cdot \vec{v}_{1}\right) \vec{v}_{1}=\left(\frac{15}{\sqrt{45}}\right) \frac{1}{\sqrt{45}}\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] .
$$

We know that $\vec{x}_{2}-\vec{p}$ is orthogonal to \vec{v}_{1}. So $\vec{v}_{2}=\left(\vec{x}_{2}-\vec{p}\right) /\left\|\vec{x}_{2}-\vec{p}\right\|$, or

$$
\vec{v}_{2}=\left(\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\right) / 2=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Theorem (The Gram-Schmidt process) ■ Given a basis $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{p}\right\}$ for any subspace W of R^{n}, an orthonormal basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ can be constructed as follows:

$$
\begin{gathered}
\vec{v}_{1}=\frac{\vec{x}_{1}}{\left\|\vec{x}_{1}\right\|}, W_{1}=\operatorname{Span}\left\{\vec{v}_{1}\right\}=\operatorname{Span}\left\{\vec{x}_{1}\right\} \\
\vec{u}_{2}=\vec{x}_{2}-\operatorname{Pr} o j_{W_{1}} \vec{x}_{2}=\vec{x}_{2}-\left(\vec{x}_{2} \cdot \vec{v}_{1}\right) \vec{v}_{1}, \\
\vec{v}_{2}=\frac{\vec{u}_{2}}{\left\|\vec{u}_{2}\right\|} \\
W_{2}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\} \\
\vec{u}_{3}=\vec{x}_{3}-\operatorname{Pr} o j_{W_{2}} \vec{x}_{3}=\vec{x}_{3}-\left(\vec{x}_{3} \cdot \vec{v}_{1}\right) \vec{v}_{1}-\left(\vec{x}_{3} \cdot \vec{v}_{2}\right) \vec{v}_{2}, \\
\vec{v}_{3}=\frac{\vec{u}_{3}}{\left\|\vec{u}_{3}\right\|} \\
W_{3}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\},
\end{gathered}
$$

for any $k=1,2,3, \ldots, p$,

$$
\begin{aligned}
\vec{u}_{k} & =\vec{x}_{k}-\operatorname{Pr} o j_{W_{k-1}} \vec{x}_{k}=\vec{x}_{k}-\left(\vec{x}_{k} \cdot \vec{v}_{1}\right) \vec{v}_{1}-\ldots-\left(\vec{x}_{k} \cdot \vec{v}_{k-1}\right) \vec{v}_{k-1} \\
\vec{v}_{k} & =\frac{\vec{u}_{k}}{\left\|\vec{u}_{k}\right\|}
\end{aligned}
$$

$$
W_{k}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\} .
$$

Example 6.4.2. Find an orthonormal basis for the subspace $W=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$, where

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Sol:

$$
\begin{gathered}
\vec{v}_{1}=\frac{\vec{x}_{1}}{\left\|\vec{x}_{1}\right\|}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] . \\
\vec{u}_{2}=\vec{x}_{2}-\left(\vec{x}_{2} \cdot \vec{v}_{1}\right) \vec{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]-\binom{3}{2} \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \\
\vec{v}_{2}=\frac{\vec{u}_{2}}{\left\|\vec{u}_{2}\right\|}=\frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \\
\vec{u}_{3}=\vec{x}_{3}-\left(\vec{x}_{3} \cdot \vec{v}_{1}\right) \vec{v}_{1}-\left(\vec{x}_{3} \cdot \vec{v}_{2}\right) \vec{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]-- \\
\vec{v}_{3}=\frac{\vec{u}_{3}}{\left\|\vec{u}_{3}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right] .
\end{gathered}
$$

Theorem (The QR Factorization): Let A be any $m \times n$ matrix A with $\operatorname{rank}(A)=n$. Then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col}(A)$ and R is an $n \times n$ upper triangle matrix with positive entries on its diagonal.

Proof: Using the Gram-Schmidt process, we can find an orthonormal basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for $\operatorname{Col}(A)$. Let Q be its column matrix:

$$
Q=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right]
$$

