Section 6.3: Orthogonal Projections

In this section, we summarize what we discussed in Section 6.2, and provide some appli-
cations.

Theorem (orthonormal Decomposition) Let B={uy, us, ..., U, } be an orthonormal ba-
sis of a subspace W in R". Then, the orthogonal projection of any vector ¢ onto u; and
orthogonal projection of any vector ¢ onto W have the following expressions, respectively,

Proj; (§) = (§- @) d;, i=1,2,..,p
p

P
Projy (i) = > _ (§- ;)@ = »_ Projg, (i),
=1

i=1
and
iy = Projy, (¢) + Z, zZ1W.

Moreover, if we set U = [uy, Us, ..., ﬁp]nxp to be a matrix whose columns are {, Uy, ..., Uy},
then

Projy, () = UU"¥. (1)
Proof. We only need to show (1). To this end, we see that
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Theorem (The best approximation Theorem) Let W be a subspace. Then, for any

vector ¢/, Projw (¢) € W is the best approximation to ¢ by vectors in W. More precisely,
Projw () is the closest point in W to ¢/, i.e.,

17— Projw (7)|| < [|§ — @, for any uf € W. (2)
This closest distance is defined as the distance from i/ to W :

dist (§, W) = min {[|g — || : & € W} = || = Projw (4)]-
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Proof. By definition, 2 = §— Projw (¢) is orthogonal to W. For any @ € W, Z'is orthogonal
to W — Projw (¢) € W.

|7 — @l* = |7 — Projw () — (@ = Projw (7))|”
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= ||21* + ||@ — Projw
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Determine whether ¢ or z'is closer to W.
Solution 1: We notice that u; - @y = 0. Thus, {u;, @y} is an orthogonal basis, and
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Ans: 1/ is closer to W.
Solution 2: We first construct an orthonormal basis {#;, Uy} for W by
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Note that the second solution method works better if one needs to computer several
orthogonal projections.



Section 6.4: The Gram-Schmidt Process

The Gram-Schmidt process is an algorithm to produce an orthogonal /orthonormal basis.
Example 6.4.1 Find an orthonormal basis {07, v} for W =Span{¥, 7>}, where
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Sol: We choose 0 = 1/ ||Z1]| = Z1/v/45 . Next, let ' be the projection of Ty onto 71, i.e.,
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Theorem (The Gram-Schmidt process) B Given a basis {Z}, Zs, ..., 7, } for any sub-
space W of R", an orthonormal basis {7, 05, ..., U,} can be constructed as follows:
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Wy = Span {0y, v2} = Span {7, 72}
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Wi, = Span {v}, Vs, ..., U } = Span{Z, Zs, ..., Ty} .

Example 6.4.2. Find an orthonormal basis for the subspace W = Span {¥1, Z2, 3},
where
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Theorem (The QR Factorization): Let A be any m x n matrix A with rank(A) = n.
Then A can be factored as A = QR, where () is an m X n matrix whose columns form an
orthonormal basis for Col (A) and R is an n X n upper triangle matrix with positive entries
on its diagonal.

Proof: Using the Gram-Schmidt process, we can find an orthonormal basis {7, U, ..., ¥, }
for Col (A) . Let @ be its column matrix:



