
Section 6.2: Orthogonal Sets
Definition. A set of vectors {~u1, ~u2, ..., ~up} is said to be an orthogonal set if each vector

is orthogonal to others, i.e., ~ui ⊥ ~uj for any i 6= j.
Example 6.2.1. Show that (a) in Rn, the standard basis {~e1, ~e2, ..., ~en} is an orthogonal

set, and (b) the following set is an orthogonal set:

~u1 =

31
1

 , ~u2 =
−12
1

 , ~u3 =
−1−4
7

 .
Solution. (a) ~ei · ~ej = 0 if i 6= j. (b) we check by direct calculations:

~u1 · ~u2 =

31
1

 ·
−12
1

 = 0,
~u1 · ~u3 =

31
1

 ·
−1−4
7

 = 0
~u2 · ~u3 =

−12
1

 ·
−1−4
7

 = 0.
Theorem. Any orthogonal set is linearly independent.

Proof. Suppose {~u1, ~u2, ..., ~up} is an orthogonal set, and suppose

c1~u1 + c2~u2 + ...+ cp~up = ~0.

We dot-multiplying ~ui on both sides of the equation and obtain

ci~ui · ~ui = 0 =⇒ ci = 0.

Definition. A basis of a subspace is said to be an orthogonal basis if it is an orthogonal
set.
Theorem. Let B= {~u1, ~u2, ..., ~up} be an orthogonal basis for a subspace W. Then, for

each ~w ∈ W, its coordinate [~w]B relative to this orthogonal basis can be expressed as

[~w]B =


c1
c2
...
cp

 , ci =
~w · ~ui
‖~ui‖2

, i = 1, 2, ..., p. (1)

In other words,
~w = c1~u1 + c2~u2 + ...+ cp~up, (2)
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Proof. Consider expression (2). All we need to do is to derive formula for ci in (1). To this
end, we dot-multiply (2) by ~ui :

~w · ~ui = (c1~u1 + c2~u2 + ...+ cp~up) · ~ui = ci~ui · ~ui

since ~uj · ~ui = 0 unless j = i. It follows that

~w · ~ui = ci~ui · ~ui =⇒ ci =
~w · ~ui
‖~ui‖2

.

Example 6.2.2. We know from Example 1 that

~u1 =

31
1

 , ~u2 =
−12
1

 , ~u3 =
−1−4
7


form an orthogonal basis for R3. Find the coordinate of

~w =

 61
−8

 relative to this basis.

Solution. Note that if the basis were not orthogonal, then we have to proceed as follows:
solving linear system:

c1~u1 + c2 ~u2 + c3~u3 = ~w

or 3 −1 −11 2 −4
1 1 7

c1c2
c3

 =
 61
−8

 .
Since the basis is indeed orthogonal, we use formula (1):

c1 =
~w · ~u1
‖~u1‖2

=

31
1

 ·
 61
−8

÷
∥∥∥∥∥∥
31
1

∥∥∥∥∥∥
2

= 1

c2 =
~w · ~u2
‖~u2‖2

=

−12
1

 ·
 61
−8

÷
∥∥∥∥∥∥
−12
1

∥∥∥∥∥∥
2

= −2

c3 =
~w · ~u3
‖~u2‖3

=

−1−4
7

 ·
 61
−8

÷
∥∥∥∥∥∥
−1−4
7

∥∥∥∥∥∥
2

= −1
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[~w]{~u1,~u2,~u3} =

 1−2
−1

 .
Orthogonal Projections.
Given a vector ~u, the orthogonal projection of ~y onto ~u, denoted by ŷ =Proj~u (~y) , is

defined as the vector parallel to ~u such that

~y = ŷ + ~z, ~z ⊥ ~u, ŷ//~u.

Since ŷ is parallel to ~u, we have ŷ = α~u. Hence

~y = α~u+ ~z, ~z ⊥ ~u.

Dot-multiplying by ~u, we find

~y · ~u = (α~u+ ~z) · ~u = α~u · ~u =⇒ α =
~y · ~u
~u · ~u.

Proj~u (~y) = α~u =

(
~y · ~u
~u · ~u

)
~u (3)

In general, for any given subspace W, ŷ =ProjW (~y) is defined as the vector in W such
that

(~y − ŷ) ⊥ W.

In other words, any vector ~y can be decomposed into two components: one is the projection
ŷ on W (which is in W ) and another component perpendicular to W. Suppose that W has
an orthogonal basis B= {~u1, ~u2, ..., ~up} . Then we may write, since ŷ ∈ W,

ŷ = ProjW (~y) = c1~u1 + c2~u2 + ...+ cp~up

~y = ŷ + ~z = c1~u1 + c2~u2 + ...+ cp~up + ~z, ~z ⊥ W.

By dot-multiplying by ~ui, we find

~y · ~ui = (c1~u1 + c2~u2 + ...+ cp~up + ~z) · ~ui = ci~ui · ~ui =⇒ ci =
~y · ~ui
~ui · ~ui

.

Therefore,

ŷ = ProjW (~y) = c1~u1 + c2~u2 + ...+ cp~up, ci =
~y · ~ui
~ui · ~ui

. (4)

Example 6.2.3. Let

~u1 =

31
1

 , ~u2 =
−12
1

 , ~y =

 23
−1


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FromExample 1 above, we know that ~u1 and ~u2 form an orthogonal basis forW = Span {~u1, ~u2} .
Find (a) Proj~u1 (~y) , (b) Proj~u2 (~y) , (c) ProjW (~y) .
Solution. (1) By (3),

Proj~u1 (~y) =

(
~y · ~u1
~u1 · ~u1

)
~u1 =

6 + 3− 1
11

31
1

 = 8

11

31
1


(2) Analogously,

Proj~u2 (~y) =

(
~y · ~u2
~u2 · ~u2

)
~u2 =

−2 + 6− 1√
6

−12
1

 = 3√
6

−12
1


(3) Using (4) and answer from part (1) & (2)

ProjW (~y) =

(
~y · ~u1
~u1 · ~u1

)
~u1 +

(
~y · ~u2
~u2 · ~u2

)
~u2 = Proj~u1 (~y) + Proj~u2 (~y) =

8

11

31
1

+ 3√
6

−12
1


We conclude from this example that, in general, suppose thatW has an orthogonal

basis B= {~u1, ~u2, ..., ~up} . Then

ProjW (~y) = Proj~u1 (~y) + Proj~u2 (~y) + ...+ Proj~up (~y) .

Definition. A set B= {~u1, ~u2, ..., ~up} is said to be an orthonormal set if it is an orthogonal
set and if each vector is a unit vector, i.e.,

~ui · ~uj = δij =

{
1 if i = j

0 if i 6= j.

Example 6.2.4. Show that

~u1 =
1√
11

31
1

 , ~u2 = 1√
6

−12
1

 , ~u3 =
1√
66

−1−4
7


form an orthonormal set.
Solution. Direct computation show

~u1 · ~u1 = ~u2 · ~u2 = ~u3 · ~u3 = 1
~u1 · ~u2 = ~u2 · ~u3 = ~u1 · ~u3 = 0.

Theorem. Let U = [~u1, ~u2, ..., ~un] be a n×n matrix with columns ~u1, ~u2, ..., ~un. Suppose
that the columns of U form an orthonormal set. Then

U−1 = UT , i.e., UUT = UTU = I.
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We call it orthonormal matrix.
Proof. We observe that U may be written as

U =


u11 u12 ... u1n
u21 u22 ... u2n
... ... ... ...
un1 un2 ... unn

 = [~u1, ~u2, ..., ~un] , ~uj =


u1j
u2j
...
unj


and since (~u1)

T = [u11, u21, ..., un1] is a row-vector,

UT =


u11 u21 ... un1
u12 u22 ... un2
... ... ... ...
u1n u2n ... unn

 =

(~u1)

T

(~u2)
T

...

(~un)
T

 .
Since, by orthonormality, (~u1)

T ~u1 = ~u1 · ~u1 = 1, (~u2)T ~u1 = ~u2 · ~u1 = 0, ... we have

UTU =


(~u1)

T

(~u2)
T

...

(~un)
T

 [~u1, ~u2, ..., ~un] =

(~u1)

T ~u1 (~u1)
T ~u2 ... (~u1)

T ~un
(~u2)

T ~u1 (~u2)
T ~u2 ... (~u2)

T ~un
... ... ... ...

(~un)
T ~u1 (~un)

T ~u2 ... (~un)
T ~un

 =

1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1



Note that the same technique may be used to calculate the inverse of a matrix A =
[u1, u2, ..., un], where the column vectors ~u1, ~u2, ..., ~un form an orthogonal set, but not ortho-
normal set. In this case,

ATA =


(~u1)

T ~u1 (~u1)
T ~u2 ... (~u1)

T ~un
(~u2)

T ~u1 (~u2)
T ~u2 ... (~u2)

T ~un
... ... ... ...

(~un)
T ~u1 (~un)

T ~u2 ... (~un)
T ~un

 =

~u1 · ~u1 0 ... 0
0 ~u2 · ~u2 ... 0
... ... ... ...
0 0 ... ~un · ~un

 .
So 

~u1 · ~u1 0 ... 0
0 ~u2 · ~u2 ... 0
... ... ... ...
0 0 ... ~un · ~un


−1

ATA = I,
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i.e.,

A−1 =


~u1 · ~u1 0 ... 0
0 ~u2 · ~u2 ... 0
... ... ... ...
0 0 ... ~un · ~un


−1

AT

=



1

~u1 · ~u1
0 ... 0

0
1

~u2 · ~u2
... 0

... ... ... ...

0 0 ...
1

~un · ~un



(~u1)

T

(~u2)
T

...

(~un)
T

 =


(~u1)
T

~u1 · ~u1
(~u2)

T

~u2 · ~u2
...

(~un)
T

~un · ~un


.

Example 6.2.5. We know from previous examples that

~u1 =
1√
11

31
1

 , ~u2 = 1√
6

−12
1

 , ~u3 =
1√
66

−1−4
7


form an orthonormal basis, but

~v1 =

31
1

 , ~v2 =
−12
1

 , ~v3 =

−1−4
7


form only an orthogonal basis. Set

U = [~u1, ~u2, ~u3] =


3√
11

−1√
6

−1√
66

1√
11

2√
6

−4√
66

1√
11

1√
6

7√
66



V = [~v1, ~v2, ~v3] =

3 −1 −11 2 −4
1 1 7

 .
The first matrix U is an orthogonal matrix, and

U−1 = UT =


3√
11

1√
11

1√
11

− 1√
6

2√
6

1√
6

− 1√
66
− 4√

66

7√
66

 .
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The matrix is not an orthonormal matrix. However,

V TV =

 3 1 1
−1 2 1
−1 −4 7

3 −1 −11 2 −4
1 1 7

 =
11 0 0
0 6 0
0 0 66

 .
Therefore, 11 0 0

0 6 0
0 0 66

−1 V TV = I,

or

V −1 =

11 0 0
0 6 0
0 0 66

−1 V T

=

11−1 0 0
0 6−1 0
0 0 66−1

 3 1 1
−1 2 1
−1 −4 7



=


3

11

1

11

1

11

−1
6

1

3

1

6

− 1
66
− 2
33

7

66

 .
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