Section 6.2: Orthogonal Sets

Definition. A set of vectors $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ is said to be an orthogonal set if each vector is orthogonal to others, i.e., $\vec{u}_{i} \perp \vec{u}_{j}$ for any $i \neq j$.

Example 6.2.1. Show that (a) in R^{n}, the standard basis $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ is an orthogonal set, and (b) the following set is an orthogonal set:

$$
\vec{u}_{1}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right] .
$$

Solution. (a) $\vec{e}_{i} \cdot \vec{e} j=0$ if $i \neq j$.(b) we check by direct calculations:

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{2}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]=0, \\
& \vec{u}_{1} \cdot \vec{u}_{3}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]=0 \\
& \vec{u}_{2} \cdot \vec{u}_{3}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]=0 .
\end{aligned}
$$

Theorem. Any orthogonal set is linearly independent.
Proof. Suppose $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ is an orthogonal set, and suppose

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{p} \vec{u}_{p}=\overrightarrow{0} .
$$

We dot-multiplying \vec{u}_{i} on both sides of the equation and obtain

$$
c_{i} \vec{u}_{i} \cdot \vec{u}_{i}=0 \Longrightarrow c_{i}=0 .
$$

Definition. A basis of a subspace is said to be an orthogonal basis if it is an orthogonal set.

Theorem. Let $\mathcal{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for a subspace W. Then, for each $\vec{w} \in W$, its coordinate $[\vec{w}]_{\mathcal{B}}$ relative to this orthogonal basis can be expressed as

$$
[\vec{w}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \tag{1}\\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right], \quad c_{i}=\frac{\vec{w} \cdot \vec{u}_{i}}{\left\|\vec{u}_{i}\right\|^{2}}, i=1,2, \ldots, p
$$

In other words,

$$
\begin{equation*}
\vec{w}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{p} \vec{u}_{p} \tag{2}
\end{equation*}
$$

Proof. Consider expression (2). All we need to do is to derive formula for c_{i} in (1). To this end, we dot-multiply (2) by \vec{u}_{i} :

$$
\vec{w} \cdot \vec{u}_{i}=\left(c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{p} \vec{u}_{p}\right) \cdot \vec{u}_{i}=c_{i} \vec{u}_{i} \cdot \vec{u}_{i}
$$

since $\vec{u}_{j} \cdot \vec{u}_{i}=0$ unless $j=i$. It follows that

$$
\vec{w} \cdot \vec{u}_{i}=c_{i} \vec{u}_{i} \cdot \vec{u}_{i} \Longrightarrow c_{i}=\frac{\vec{w} \cdot \vec{u}_{i}}{\left\|\vec{u}_{i}\right\|^{2}}
$$

Example 6.2.2. We know from Example 1 that

$$
\vec{u}_{1}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]
$$

form an orthogonal basis for R^{3}. Find the coordinate of

$$
\vec{w}=\left[\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right] \quad \text { relative to this basis. }
$$

Solution. Note that if the basis were not orthogonal, then we have to proceed as follows: solving linear system:

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}=\vec{w}
$$

or

$$
\left[\begin{array}{ccc}
3 & -1 & -1 \\
1 & 2 & -4 \\
1 & 1 & 7
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right]
$$

Since the basis is indeed orthogonal, we use formula (1):

$$
\begin{gathered}
c_{1}=\frac{\vec{w} \cdot \vec{u}_{1}}{\left\|\vec{u}_{1}\right\|^{2}}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right] \div\left\|\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]\right\|^{2}=1 \\
c_{2}=\frac{\vec{w} \cdot \vec{u}_{2}}{\left\|\vec{u}_{2}\right\|^{2}}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right] \div\left\|\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]\right\|^{2}=-2 \\
c_{3}=\frac{\vec{w} \cdot \vec{u}_{3}}{\left\|\vec{u}_{2}\right\|^{3}}=\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right] \div\left\|\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]\right\|^{2}=-1
\end{gathered}
$$

$$
[\vec{w}]_{\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}}=\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right] .
$$

Orthogonal Projections.

Given a vector \vec{u}, the orthogonal projection of \vec{y} onto \vec{u}, denoted by $\hat{y}=\operatorname{Proj}_{\vec{u}}(\vec{y})$, is defined as the vector parallel to \vec{u} such that

$$
\vec{y}=\hat{y}+\vec{z}, \quad \vec{z} \perp \vec{u}, \hat{y} / / \vec{u} .
$$

Since \hat{y} is parallel to \vec{u}, we have $\hat{y}=\alpha \vec{u}$. Hence

$$
\vec{y}=\alpha \vec{u}+\vec{z}, \quad \vec{z} \perp \vec{u} .
$$

Dot-multiplying by \vec{u}, we find

$$
\begin{gather*}
\vec{y} \cdot \vec{u}=(\alpha \vec{u}+\vec{z}) \cdot \vec{u}=\alpha \vec{u} \cdot \vec{u} \Longrightarrow \alpha=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} . \\
\operatorname{Proj}_{\vec{u}}(\vec{y})=\alpha \vec{u}=\left(\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\right) \vec{u} \tag{3}
\end{gather*}
$$

In general, for any given subspace $W, \hat{y}=\operatorname{Proj}_{W}(\vec{y})$ is defined as the vector in W such that

$$
(\vec{y}-\hat{y}) \perp W .
$$

In other words, any vector \vec{y} can be decomposed into two components: one is the projection \hat{y} on W (which is in W) and another component perpendicular to W. Suppose that W has an orthogonal basis $\mathcal{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$. Then we may write, since $\hat{y} \in W$,

$$
\begin{aligned}
& \hat{y}=\operatorname{Proj}_{W}(\vec{y})=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{p} \vec{u}_{p} \\
& \vec{y}=\hat{y}+\vec{z}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{p} \vec{u}_{p}+\vec{z}, \quad \vec{z} \perp W .
\end{aligned}
$$

By dot-multiplying by \vec{u}_{i}, we find

$$
\vec{y} \cdot \vec{u}_{i}=\left(c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{p} \vec{u}_{p}+\vec{z}\right) \cdot \vec{u}_{i}=c_{i} \vec{u}_{i} \cdot \vec{u}_{i} \Longrightarrow c_{i}=\frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}} .
$$

Therefore,

$$
\begin{equation*}
\hat{y}=\operatorname{Proj}_{W}(\vec{y})=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{p} \vec{u}_{p}, \quad c_{i}=\frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}} . \tag{4}
\end{equation*}
$$

Example 6.2.3. Let

$$
\vec{u}_{1}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \quad \vec{y}=\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]
$$

From Example 1 above, we know that \vec{u}_{1} and \vec{u}_{2} form an orthogonal basis for $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$. Find (a) $\operatorname{Proj}_{\vec{u}_{1}}(\vec{y})$, (b) $\operatorname{Proj}_{\vec{u}_{2}}(\vec{y})$, (c) $\operatorname{Proj}_{W}(\vec{y})$.

Solution. (1) By (3),

$$
\operatorname{Proj}_{\vec{u}_{1}}(\vec{y})=\left(\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}\right) \vec{u}_{1}=\frac{6+3-1}{11}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=\frac{8}{11}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

(2) Analogously,

$$
\operatorname{Proj}_{\vec{u}_{2}}(\vec{y})=\left(\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}}\right) \vec{u}_{2}=\frac{-2+6-1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]=\frac{3}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

(3) Using (4) and answer from part (1) \& (2)
$\operatorname{Proj}_{W}(\vec{y})=\left(\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}\right) \vec{u}_{1}+\left(\frac{\vec{y} \cdot \vec{u}_{2}}{\overrightarrow{u_{2}} \cdot \vec{u}_{2}}\right) \vec{u}_{2}=\operatorname{Proj}_{\vec{u}_{1}}(\vec{y})+\operatorname{Proj}_{\vec{u}_{2}}(\vec{y})=\frac{8}{11}\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]+\frac{3}{\sqrt{6}}\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$

We conclude from this example that, in general, suppose that W has an orthogonal basis $\mathcal{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$. Then

$$
\operatorname{Proj}_{W}(\vec{y})=\operatorname{Proj}_{\vec{u}_{1}}(\vec{y})+\operatorname{Proj}_{\vec{u}_{2}}(\vec{y})+\ldots+\operatorname{Proj}_{\vec{u}_{p}}(\vec{y}) .
$$

Definition. A set $\mathcal{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ is said to be an orthonormal set if it is an orthogonal set and if each vector is a unit vector, i.e.,

$$
\vec{u}_{i} \cdot \vec{u}_{j}=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Example 6.2.4. Show that

$$
\vec{u}_{1}=\frac{1}{\sqrt{11}}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \quad \vec{u}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \quad \vec{u}_{3}=\frac{1}{\sqrt{66}}\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]
$$

form an orthonormal set.
Solution. Direct computation show

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{1}=\vec{u}_{2} \cdot \vec{u}_{2}=\vec{u}_{3} \cdot \vec{u}_{3}=1 \\
& \vec{u}_{1} \cdot \vec{u}_{2}=\vec{u}_{2} \cdot \vec{u}_{3}=\vec{u}_{1} \cdot \vec{u}_{3}=0 .
\end{aligned}
$$

Theorem. Let $U=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right]$ be a $n \times n$ matrix with columns $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$. Suppose that the columns of U form an orthonormal set. Then

$$
U^{-1}=U^{T} \text {, i.e., } U U^{T}=U^{T} U=I .
$$

We call it orthonormal matrix.
Proof. We observe that U may be written as

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
u_{21} & u_{22} & \ldots & u_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
u_{n 1} & u_{n 2} & \ldots & u_{n n}
\end{array}\right]=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right], \quad \vec{u}_{j}=\left[\begin{array}{c}
u_{1 j} \\
u_{2 j} \\
\ldots \\
u_{n j}
\end{array}\right]
$$

and since $\left(\vec{u}_{1}\right)^{T}=\left[u_{11}, u_{21}, \ldots, u_{n 1}\right]$ is a row-vector,

$$
U^{T}=\left[\begin{array}{cccc}
u_{11} & u_{21} & \ldots & u_{n 1} \\
u_{12} & u_{22} & \ldots & u_{n 2} \\
\ldots & \ldots & \ldots & \ldots \\
u_{1 n} & u_{2 n} & \ldots & u_{n n}
\end{array}\right]=\left[\begin{array}{c}
\left(\vec{u}_{1}\right)^{T} \\
\left(\vec{u}_{2}\right)^{T} \\
\ldots \\
\left(\vec{u}_{n}\right)^{T}
\end{array}\right] .
$$

Since, by orthonormality, $\left(\vec{u}_{1}\right)^{T} \vec{u}_{1}=\vec{u}_{1} \cdot \vec{u}_{1}=1,\left(\vec{u}_{2}\right)^{T} \vec{u}_{1}=\vec{u}_{2} \cdot \vec{u}_{1}=0, \ldots$ we have

$$
U^{T} U=\left[\begin{array}{c}
\left(\vec{u}_{1}\right)^{T} \\
\left(\vec{u}_{2}\right)^{T} \\
\ldots \\
\left(\vec{u}_{n}\right)^{T}
\end{array}\right]\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right]=\left[\begin{array}{cccc}
\left(\vec{u}_{1}\right)^{T} \vec{u}_{1} & \left(\vec{u}_{1}\right)^{T} \vec{u}_{2} & \ldots & \left(\vec{u}_{1}\right)^{T} \vec{u}_{n} \\
\left(\vec{u}_{2}\right)^{T} \vec{u}_{1} & \left(\vec{u}_{2}\right)^{T} \vec{u}_{2} & \ldots & \left(\vec{u}_{2}\right)^{T} \vec{u}_{n} \\
\ldots & \ldots & \ldots & \ldots \\
\left(\vec{u}_{n}\right)^{T} \vec{u}_{1} & \left(\vec{u}_{n}\right)^{T} \vec{u}_{2} & \ldots & \left(\vec{u}_{n}\right)^{T} \vec{u}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

Note that the same technique may be used to calculate the inverse of a matrix $A=$ [$u_{1}, u_{2}, \ldots, u_{n}$], where the column vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ form an orthogonal set, but not orthonormal set. In this case,

$$
A^{T} A=\left[\begin{array}{cccc}
\left(\vec{u}_{1}\right)^{T} \vec{u}_{1} & \left(\vec{u}_{1}\right)^{T} \vec{u}_{2} & \ldots & \left(\vec{u}_{1}\right)^{T} \vec{u}_{n} \\
\left(\vec{u}_{2}\right)^{T} \vec{u}_{1} & \left(\vec{u}_{2}\right)^{T} \vec{u}_{2} & \ldots & \left(\vec{u}_{2}\right)^{T} \vec{u}_{n} \\
\ldots & \ldots & \ldots & \ldots \\
\left(\vec{u}_{n}\right)^{T} \vec{u}_{1} & \left(\vec{u}_{n}\right)^{T} \vec{u}_{2} & \ldots & \left(\vec{u}_{n}\right)^{T} \vec{u}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
\vec{u}_{1} \cdot \vec{u}_{1} & 0 & \ldots & 0 \\
0 & \vec{u}_{2} \cdot \vec{u}_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \vec{u}_{n} \cdot \vec{u}_{n}
\end{array}\right] .
$$

So

$$
\left[\begin{array}{cccc}
\vec{u}_{1} \cdot \vec{u}_{1} & 0 & \ldots & 0 \\
0 & \vec{u}_{2} \cdot \vec{u}_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \vec{u}_{n} \cdot \vec{u}_{n}
\end{array}\right]^{-1} \quad A^{T} A=I
$$

i.e.,

$$
\begin{aligned}
A^{-1} & =\left[\begin{array}{cccc}
\vec{u}_{1} \cdot \vec{u}_{1} & 0 & \ldots & 0 \\
0 & \vec{u}_{2} \cdot \vec{u}_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \vec{u}_{n} \cdot \vec{u}_{n}
\end{array}\right]^{-1} A^{T} \\
& =\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\overrightarrow{\vec{u}_{1} \cdot \vec{u}_{1}} & 1 & \ldots & 0 \\
0 & \frac{\vec{u}_{2} \cdot \vec{u}_{2}}{} & \ldots & \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \frac{1}{\vec{u}_{n} \cdot \vec{u}_{n}}
\end{array}\right]\left[\begin{array}{c}
\left(\vec{u}_{1}\right)^{T} \\
\left(\vec{u}_{2}\right)^{T} \\
\ldots \\
\left(\vec{u}_{n}\right)^{T}
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\vec{u}_{1}\right)^{T}}{\vec{u}_{1} \cdot \vec{u}_{1}} \\
\frac{\left(\vec{u}_{2}\right)^{T}}{\vec{u}_{2} \cdot \vec{u}_{2}} \\
\ldots \\
\frac{\left.\vec{u}_{n}\right)^{T}}{\vec{u}_{n} \cdot \vec{u}_{n}}
\end{array}\right] .
\end{aligned}
$$

Example 6.2.5. We know from previous examples that

$$
\vec{u}_{1}=\frac{1}{\sqrt{11}}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \quad \vec{u}_{3}=\frac{1}{\sqrt{66}}\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]
$$

form an orthonormal basis, but

$$
\vec{v}_{1}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]
$$

form only an orthogonal basis. Set

$$
\begin{gathered}
U=\left[\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right]=\left[\begin{array}{ccc}
\frac{3}{\sqrt{11}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{66}} \\
\frac{1}{\sqrt{11}} & \frac{2}{\sqrt{6}} & \frac{-4}{\sqrt{66}} \\
\frac{1}{\sqrt{11}} & \frac{1}{\sqrt{6}} & \frac{7}{\sqrt{66}}
\end{array}\right] \\
V=\left[\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right]=\left[\begin{array}{ccc}
3 & -1 & -1 \\
1 & 2 & -4 \\
1 & 1 & 7
\end{array}\right] .
\end{gathered}
$$

The first matrix U is an orthogonal matrix, and

$$
U^{-1}=U^{T}=\left[\begin{array}{ccc}
\frac{3}{\sqrt{11}} & \frac{1}{\sqrt{11}} & \frac{1}{\sqrt{11}} \\
-\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{66}} & -\frac{4}{\sqrt{66}} & \frac{7}{\sqrt{66}}
\end{array}\right] .
$$

The matrix is not an orthonormal matrix. However,

$$
V^{T} V=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 2 & 1 \\
-1 & -4 & 7
\end{array}\right]\left[\begin{array}{ccc}
3 & -1 & -1 \\
1 & 2 & -4 \\
1 & 1 & 7
\end{array}\right]=\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 66
\end{array}\right]
$$

Therefore,

$$
\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 66
\end{array}\right]^{-1} V^{T} V=I
$$

or

$$
\begin{aligned}
V^{-1} & =\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 66
\end{array}\right]^{-1} V^{T} \\
& =\left[\begin{array}{ccc}
11^{-1} & 0 & 0 \\
0 & 6^{-1} & 0 \\
0 & 0 & 66^{-1}
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 2 & 1 \\
-1 & -4 & 7
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{3}{11} & \frac{1}{11} & \frac{1}{11} \\
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
-\frac{1}{66} & -\frac{2}{33} & \frac{7}{66}
\end{array}\right] .
\end{aligned}
$$

