1 Section 6.1: Inner Product, Length and Orthogonality

Definition. Let

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \text{ and } \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

be two vectors in \mathbb{R}^n . The inner product, denoted by $\vec{u} \cdot \vec{v}$, is defined as

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = [u_1, u_2, ..., u_n] \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + ... + u_n v_n.$$

Example 6.1.1. Let

$$\vec{u} = \begin{bmatrix} 3\\-5\\1\\2 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 2\\1\\0\\-1 \end{bmatrix}.$$

Then

$$\vec{u} \cdot \vec{v} = \begin{bmatrix} 3 & -5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \end{bmatrix} = 3 \cdot 2 - 5 \cdot 2 + 1 \cdot 0 + 2 \cdot (-1) = -1.$$

Properties of Inner Product:

(a) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$, (b) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$, (c) $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})$, (d) $\vec{u} \cdot \vec{u} \ge 0$, and $\vec{u} \cdot \vec{u} = 0$ iff $\vec{u} = 0$.

Definition. Length (or magnitude) of a vector \vec{u} , denoted by $\|\vec{u}\|$, is defined as

$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}.$$

Example 6.1.2. For the same \vec{u} as in the previous example,

$$\|\vec{u}\| = \sqrt{3^2 + (-5)^2 + 1^2 + 2^2} = \sqrt{39}.$$

Properties (continues): (e) $\|c\vec{u}\| = |c| \|\vec{u}\|$.

Example 6.1.3. For the same \vec{u} as in the previous example,

$$\|-2\vec{u}\| = \sqrt{(-6)^2 + (10)^2 + (-2)^2 + (-4)^2} = \sqrt{156} = 2\sqrt{39} = 2\|\vec{u}\|.$$

Definition. Distance between two vectors \vec{u} and \vec{v} , denoted by $dist(\vec{u}, \vec{v})$, is defined as

$$dist(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Example 6.1.4. Let

$$\vec{u} = \begin{bmatrix} 3\\ -5\\ 1\\ 2 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 2\\ 1\\ 0\\ -1 \end{bmatrix}$$

Then,

$$dist\,(\vec{u},\vec{v}) = \|\vec{u} - \vec{v}\| = \left\| \begin{bmatrix} 3\\-5\\1\\2 \end{bmatrix} - \begin{bmatrix} 2\\1\\0\\-1 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 1\\-6\\1\\3 \end{bmatrix} \right\| = \sqrt{47}$$

Definition. The angle between two vectors \vec{u} and \vec{v} , denoted by $\langle \vec{u}, \vec{v} \rangle$, is defined by

$$\cos\langle \vec{u}, \vec{v} \rangle = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}, \quad 0 \le \langle \vec{u}, \vec{v} \rangle \le \pi.$$

Two vectors \vec{u} and \vec{v} are said to be orthogonal to each other if $\langle \vec{u}, \vec{v} \rangle = \pi/2$, or $\vec{u} \cdot \vec{v} = 0$. We use the notation $\vec{u} \perp \vec{v}$ when \vec{u} and \vec{v} are orthogonal.

Example 6.1.5. For the same \vec{u} and \vec{v} as in the previous example, find the angle $\langle \vec{u}, \vec{v} \rangle$. Solution:

$$\cos\langle \vec{u}, \vec{v} \rangle = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{-1}{\sqrt{39}\sqrt{4+1+1}} = -0.065,$$
$$\langle \vec{u}, \vec{v} \rangle = \arccos\left(-0.065\right) = 1.6358(rad) = 93.724^{\circ}$$

Theorem (Pythagorean) In \mathbb{R}^n , $\vec{u} \perp \vec{v}$ iff

solid line = \vec{u} , dash line \vec{v} , dot line = $\vec{u} + \vec{v}$

Proof. We verify using direct computation and the fact $\vec{u} \cdot \vec{v} = 0$:

$$LHS = \|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

= $\vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}$
= $\vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^2 + \|\vec{v}\|^2 = RHS.$

-

Definition. Let W be a subspace of \mathbb{R}^n . A vector \vec{u} is said to be orthogonal to W, denoted by $\vec{u} \perp W$, if \vec{u} is orthogonal to every vector in W, i.e.,

 $\vec{u} \cdot \vec{w} = 0$ for any $\vec{w} \in W$ ($\vec{w} \in W$ means \vec{w} belongs to W).

We call the subspace

$$W^{\perp} = \{ \vec{v} \mid \vec{v} \perp W \}$$

the orthogonal complement space of W.

Example 6.1.6. In \mathbb{R}^2 , let W be a line passing through the origin. Then, its orthogonal complement, W^{\perp} is the line passing through the origin and perpendicular to W. In \mathbb{R}^3 , (a) let let W be a line passing through the origin, then W^{\perp} is the plane passing through the origin and perpendicular to W; (b) let W be a plane passing through the origin, then W^{\perp} is the line passing through the origin and perpendicular to W; (b) let W be a plane passing through the origin, then W^{\perp} is the line passing through the origin and perpendicular to W.

Example 6.1.7. Let

$$W = Span \left\{ \vec{u} = \begin{bmatrix} 1\\-2\\1\\2 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 2\\1\\-8\\-1 \end{bmatrix}. \right\}$$

Find and describe W^{\perp} .

Solution. We are looking for all \vec{x} in \mathbb{R}^4 such that

$$\vec{x} \cdot \vec{u} = 0$$
$$\vec{x} \cdot \vec{v} = 0$$

or

$$\begin{bmatrix} \vec{x} \cdot \vec{u} \\ \vec{x} \cdot \vec{v} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Let A be the matrix of rows \vec{u} and \vec{v} , i.e.,

$$A = \begin{bmatrix} \vec{u}^T \\ \vec{v}^T \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & -8 & -1 \end{bmatrix}.$$

Then, W^{\perp} consists of all vectors \vec{x} such that

$$A\vec{x} = \begin{bmatrix} \vec{u}^T \\ \vec{v}^T \end{bmatrix} \vec{x} = \begin{bmatrix} \vec{u} \cdot \vec{x} \\ \vec{v} \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

In other words,

$$W^{\perp} = Null(A).$$

In general, let

$$W = Span \{ \vec{u}_1, \vec{u}_2, ..., \vec{u}_p \}$$
 be a subspace in \mathbb{R}^n .

Then

$$W^{\perp} = Null(A), \quad A = \left(\begin{bmatrix} \vec{u}_1 \ \vec{u}_2 \ \dots \ \vec{u}_p \end{bmatrix}_{n \times p} \right)^T = \begin{bmatrix} \vec{u}_1^T \\ \vec{u}_2^T \\ \vdots \\ \vec{u}_p^T \end{bmatrix}_{p \times n}.$$

We now proceed to describe $W^{\perp} = Null(A)$ using row operations.

$$A = \begin{bmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & -8 & -1 \end{bmatrix} \overset{R_2 - 2R_1 \to R_2}{\longrightarrow} \begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & 5 & -10 & -5 \end{bmatrix}$$
$$\begin{array}{c} R_2/5 \to R_2 \\ R_1 + 2R_2 \to R_1 \\ \to \end{array} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -2 & -1 \end{bmatrix}.$$

So, $x_1 = x_3 - x_4$, $x_2 = 2x_3 + x_4$. The parametric form is (with $x_3 = s$, $x_4 = t$)

$$\vec{x} = \begin{bmatrix} x_3 - x_4 \\ 2x_3 + x_4 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix},$$

and

$$W^{\perp} = Null(A) = Span\left\{ \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix} \right\}$$

Now let A be a $m \times n$ matrix that has m row vectors,

$$A = \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vdots \\ \vec{v}_m \end{bmatrix}, \quad \vec{v}_i \text{ be a row vector, i.e., } (\vec{v}_i)^T = \vec{u}_i \text{ is a column vector.}$$

Then, the "row space" of A is defined by

$$Row (A) = Span \{ rows of A \} = Span \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_m \},\$$

where a vector is understood as a row, i.e., $1 \times n$ matrix. If we would like to interpret row vectors as column vectors, then

$$Row (A) = (Span \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_m \})^T = Span \{ (\vec{v}_1)^T, (\vec{v}_2)^T, ..., (\vec{v}_m)^T \}$$
$$= Span \{ \vec{u}_1, \vec{u}_2, ..., \vec{u}_m \}$$

From the above example, we can easily see that

$$Row (A)^{\perp} = Nul \left(\begin{bmatrix} \vec{u}_1^T \\ \vec{u}_2^T \\ \vdots \\ \vec{u}_m^T \end{bmatrix}_{m \times n} \right) = Nul \left(\begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vdots \\ \vec{v}_m \end{bmatrix}_{m \times n} \right) = Null (A).$$

Analogously, since columns of $A = \text{rows of } A^T$, or

$$Col(A) = Row(A^T),$$

we have

$$Col(A)^{\perp} = Row(A^{T})^{\perp} = Null(A^{T}).$$