
1 Section 6.1: Inner Product, Length and Orthogonal-
ity

Definition. Let

~u =


u1
u2
...
un

 and ~v =


v1
v2
...
vn


be two vectors in Rn. The inner product, denoted by ~u · ~v, is defined as

~u · ~v = ~uT~v = [u1, u2, ..., un]


v1
v2
...
vn

 = u1v1 + u2v2 + ...+ unvn.

Example 6.1.1. Let

~u =


3
−5
1
2

 , ~v =

2
1
0
−1

 .
Then

~u · ~v =
[
3 −5 1 2

] 
2
1
0
−1

 = 3 · 2− 5 · 2 + 1 · 0 + 2 · (−1) = −1.
Properties of Inner Product:
(a) ~u · ~v = ~v · ~u, (b) (~u+ ~v) · ~w = ~u · ~w + ~v · ~w, (c) (c~u) · ~v = c (~u · ~v) , (d) ~u · ~u ≥ 0, and

~u · ~u = 0 iff ~u = 0.
Definition. Length (or magnitude) of a vector ~u, denoted by ‖~u‖ , is defined as

‖~u‖ =
√
~u · ~u =

√
u21 + u22 + ...+ u2n.

Example 6.1.2. For the same ~u as in the previous example,

‖~u‖ =
√
32 + (−5)2 + 12 + 22 =

√
39.

Properties (continues): (e) ‖c~u‖ = |c| ‖~u‖ .
Example 6.1.3. For the same ~u as in the previous example,

‖−2~u‖ =
√
(−6)2 + (10)2 + (−2)2 + (−4)2 =

√
156 = 2

√
39 = 2 ‖~u‖ .
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Definition. Distance between two vectors ~u and ~v, denoted by dist (~u,~v) , is defined as

dist (~u,~v) = ‖~u− ~v‖ =
√
(u1 − v1)2 + (u2 − v2)2 + ...+ (un − vn)2.

Example 6.1.4. Let

~u =


3
−5
1
2

 , ~v =

2
1
0
−1

 .
Then,

dist (~u,~v) = ‖~u− ~v‖ =

∥∥∥∥∥∥∥∥

3
−5
1
2

−

2
1
0
−1


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥

1
−6
1
3


∥∥∥∥∥∥∥∥ =
√
47.

Definition. The angle between two vectors ~u and ~v, denoted by 〈~u,~v〉, is defined by

cos〈~u,~v〉 = ~u · ~v
‖~u‖ ‖~v‖ , 0 ≤ 〈~u,~v〉 ≤ π.

Two vectors ~u and ~v are said to be orthogonal to each other if 〈~u,~v〉 = π/2, or ~u ·~v = 0.We
use the notation ~u ⊥ ~v when ~u and ~v are orthogonal.
Example 6.1.5. For the same ~u and ~v as in the previous example, find the angle 〈~u,~v〉.
Solution:

cos〈~u,~v〉 = ~u · ~v
‖~u‖ ‖~v‖ =

−1√
39
√
4 + 1 + 1

= −0.06 5,

〈~u,~v〉 = arccos (−0.06 5) = 1. 635 8(rad) = 93. 724o

Theorem (Pythagorean) In Rn, ~u ⊥ ~v iff

‖~u − ~v‖2 = ‖~u ‖2 + ‖ ~v‖2 or ‖~u + ~v‖2 = ‖~u ‖2 + ‖ ~v‖2 .
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Proof. We verify using direct computation and the fact ~u · ~v = 0 :

LHS = ‖~u − ~v‖2 = (~u − ~v) · (~u − ~v)

= ~u · ~u − ~u · ~v − ~v · ~u + ~v · ~v
= ~u · ~u + ~v · ~v = ‖~u ‖2 + ‖ ~v‖2 = RHS.

Definition. Let W be a subspace of Rn. A vector ~u is said to be orthogonal to W,
denoted by ~u ⊥W, if ~u is orthogonal to every vector in W, i.e.,

~u · ~w = 0 for any ~w ∈ W (~w ∈ W means ~w belongs to W ).

We call the subspace
W⊥ = {~v | ~v ⊥ W}

the orthogonal complement space of W.
Example 6.1.6. In R2, letW be a line passing through the origin. Then, its orthogonal

complement, W⊥ is the line passing through the origin and perpendicular to W. In R3, (a)
let let W be a line passing through the origin, then W⊥ is the plane passing through the
origin and perpendicular to W ; (b) let W be a plane passing through the origin, then W⊥

is the line passing through the origin and perpendicular to W.
Example 6.1.7. Let

W = Span

~u =

1
−2
1
2

 , ~v =

2
1
−8
−1

 .


Find and describe W⊥.
Solution. We are looking for all ~x in R4 such that

~x · ~u = 0
~x · ~v = 0

or [
~x · ~u
~x · ~v

]
=

[
0

0

]
.

Let A be the matrix of rows ~u and ~v, i.e.,

A =

[
~uT

~vT

]
=

[
1 −2 1 2
2 1 −8 −1

]
.

Then, W⊥ consists of all vectors ~x such that

A~x =

[
~uT

~vT

]
~x =

[
~u · ~x
~v · ~x

]
=

[
0

0

]
.
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In other words,
W⊥ = Null (A) .

In general, let
W = Span {~u1, ~u2, ..., ~up} be a subspace in Rn.

Then

W⊥ = Null (A) , A =
(
[~u1 ~u2 ... ~up]n×p

)T
=


~uT1
~uT2
...
~uTp


p×n

.

We now proceed to describe W⊥ = Null (A) using row operations.

A =

[
1 −2 1 2
2 1 −8 −1

]
R2−2R1→R2→

[
1 −2 1 2
0 5 −10 −5

]
R2/5→ R2

R1 + 2R2 → R1→
[
1 0 −1 1
0 1 −2 −1

]
.

So, x1 = x3 − x4, x2 = 2x3 + x4. The parametric form is (with x3 = s, x4 = t)

~x =


x3 − x4
2x3 + x4

x3
x4

 = s


1
2
1
0

+ t


−1
1
0
1

 ,
and

W⊥ = Null (A) = Span



1
2
1
0

 ,

−1
1
0
1




Now let A be a m× n matrix that has m row vectors,

A =


~v1
~v2
...
~vm

 , ~vi be a row vector, i.e., (~vi)
T = ~ui is a column vector.

Then, the "row space" of A is defined by

Row (A) = Span {rows of A} = Span {~v1, ~v2, ..., ~vm} ,
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where a vector is understood as a row, i.e., 1 × n matrix. If we would like to interpret row
vectors as column vectors, then

Row (A) = (Span {~v1, ~v2, ..., ~vm})T = Span
{
(~v1)

T , (~v2)
T , ..., (~vm)

T
}

= Span {~u1, ~u2, ..., ~um}

From the above example, we can easily see that

Row (A)⊥ = Nul



~uT1
~uT2
...
~uTm


m×n

 = Nul



~v1
~v2
...
~vm


m×n

 = Null (A) .

Analogously, since columns of A = rows of AT , or

Col (A) = Row
(
AT
)
,

we have
Col (A)⊥ = Row

(
AT
)⊥
= Null

(
AT
)
.
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