1 Section 6.1: Inner Product, Length and Orthogonality

Definition. Let

$$
\vec{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \text { and } \vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

be two vectors in R^{n}. The inner product, denoted by $\vec{u} \cdot \vec{v}$, is defined as

$$
\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

Example 6.1.1. Let

$$
\vec{u}=\left[\begin{array}{c}
3 \\
-5 \\
1 \\
2
\end{array}\right], \vec{v}=\left[\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right]
$$

Then

$$
\vec{u} \cdot \vec{v}=\left[\begin{array}{llll}
3 & -5 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right]=3 \cdot 2-5 \cdot 2+1 \cdot 0+2 \cdot(-1)=-1
$$

Properties of Inner Product:
(a) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$, (b) $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}$, (c) $(c \vec{u}) \cdot \vec{v}=c(\vec{u} \cdot \vec{v})$, (d) $\vec{u} \cdot \vec{u} \geq 0$, and $\vec{u} \cdot \vec{u}=0$ iff $\vec{u}=0$.

Definition. Length (or magnitude) of a vector \vec{u}, denoted by $\|\vec{u}\|$, is defined as

$$
\|\vec{u}\|=\sqrt{\vec{u} \cdot \vec{u}}=\sqrt{u_{1}^{2}+u_{2}^{2}+\ldots+u_{n}^{2}} .
$$

Example 6.1.2. For the same \vec{u} as in the previous example,

$$
\|\vec{u}\|=\sqrt{3^{2}+(-5)^{2}+1^{2}+2^{2}}=\sqrt{39}
$$

Properties (continues): (e) $\|c \vec{u}\|=|c|\|\vec{u}\|$.
Example 6.1.3. For the same \vec{u} as in the previous example,

$$
\|-2 \vec{u}\|=\sqrt{(-6)^{2}+(10)^{2}+(-2)^{2}+(-4)^{2}}=\sqrt{156}=2 \sqrt{39}=2\|\vec{u}\| .
$$

Definition. Distance between two vectors \vec{u} and \vec{v}, denoted by $\operatorname{dist}(\vec{u}, \vec{v})$, is defined as

$$
\operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\ldots+\left(u_{n}-v_{n}\right)^{2}}
$$

Example 6.1.4. Let

$$
\vec{u}=\left[\begin{array}{c}
3 \\
-5 \\
1 \\
2
\end{array}\right], \vec{v}=\left[\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right] .
$$

Then,

$$
\operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|=\left\|\left[\begin{array}{c}
3 \\
-5 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
1 \\
-6 \\
1 \\
3
\end{array}\right]\right\|=\sqrt{47} .
$$

Definition. The angle between two vectors \vec{u} and \vec{v}, denoted by $\langle\vec{u}, \vec{v}\rangle$, is defined by

$$
\cos \langle\vec{u}, \vec{v}\rangle=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}, \quad 0 \leq\langle\vec{u}, \vec{v}\rangle \leq \pi .
$$

Two vectors \vec{u} and \vec{v} are said to be orthogonal to each other if $\langle\vec{u}, \vec{v}\rangle=\pi / 2$, or $\vec{u} \cdot \vec{v}=0$. We use the notation $\vec{u} \perp \vec{v}$ when \vec{u} and \vec{v} are orthogonal.

Example 6.1.5. For the same \vec{u} and \vec{v} as in the previous example, find the angle $\langle\vec{u}, \vec{v}\rangle$.
Solution:

$$
\begin{aligned}
\cos \langle\vec{u}, \vec{v}\rangle & =\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{-1}{\sqrt{39} \sqrt{4+1+1}}=-0.065, \\
\langle\vec{u}, \vec{v}\rangle & =\arccos (-0.065)=1.6358(\mathrm{rad})=93.724^{\circ}
\end{aligned}
$$

Theorem (Pythagorean) In $R^{n}, \vec{u} \perp \vec{v}$ iff

$$
\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2} \quad \text { or } \quad\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2} .
$$

$$
\text { solid line }=\vec{u} \text {, dash line } \vec{v} \text {, dot line }=\vec{u}+\vec{v}
$$

Proof. We verify using direct computation and the fact $\vec{u} \cdot \vec{v}=0$:

$$
\begin{aligned}
L H S & =\|\vec{u}-\vec{v}\|^{2}=(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v}) \\
& =\vec{u} \cdot \vec{u}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v} \\
& =\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{v}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}=R H S .
\end{aligned}
$$

Definition. Let W be a subspace of R^{n}. A vector \vec{u} is said to be orthogonal to W, denoted by $\vec{u} \perp W$, if \vec{u} is orthogonal to every vector in W, i.e.,

$$
\vec{u} \cdot \vec{w}=0 \text { for any } \vec{w} \in W \quad(\vec{w} \in W \text { means } \vec{w} \text { belongs to } W)
$$

We call the subspace

$$
W^{\perp}=\{\vec{v} \mid \vec{v} \perp W\}
$$

the orthogonal complement space of W.
Example 6.1.6. In R^{2}, let W be a line passing through the origin. Then, its orthogonal complement, W^{\perp} is the line passing through the origin and perpendicular to W. In R^{3}, (a) let let W be a line passing through the origin, then W^{\perp} is the plane passing through the origin and perpendicular to W; (b) let W be a plane passing through the origin, then W^{\perp} is the line passing through the origin and perpendicular to W.

Example 6.1.7. Let

$$
W=\operatorname{Span}\left\{\vec{u}=\left[\begin{array}{c}
1 \\
-2 \\
1 \\
2
\end{array}\right], \vec{v}=\left[\begin{array}{c}
2 \\
1 \\
-8 \\
-1
\end{array}\right]\right\}
$$

Find and describe W^{\perp}.
Solution. We are looking for all \vec{x} in R^{4} such that

$$
\begin{aligned}
& \vec{x} \cdot \vec{u}=0 \\
& \vec{x} \cdot \vec{v}=0
\end{aligned}
$$

or

$$
\left[\begin{array}{l}
\vec{x} \cdot \vec{u} \\
\vec{x} \cdot \vec{v}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Let A be the matrix of rows \vec{u} and \vec{v}, i.e.,

$$
A=\left[\begin{array}{l}
\vec{u}^{T} \\
\vec{v}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
1 & -2 & 1 & 2 \\
2 & 1 & -8 & -1
\end{array}\right] .
$$

Then, W^{\perp} consists of all vectors \vec{x} such that

$$
A \vec{x}=\left[\begin{array}{c}
\vec{u}^{T} \\
\vec{v}^{T}
\end{array}\right] \vec{x}=\left[\begin{array}{c}
\vec{u} \cdot \vec{x} \\
\vec{v} \cdot \vec{x}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

In other words,

$$
W^{\perp}=\operatorname{Null}(A) .
$$

In general, let

$$
W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\} \text { be a subspace in } R^{n} .
$$

Then

$$
W^{\perp}=\operatorname{Null}(A), \quad A=\left(\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \ldots & \vec{u}_{p}
\end{array}\right]_{n \times p}\right)^{T}=\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vec{u}_{2}^{T} \\
\vdots \\
\vec{u}_{p}^{T}
\end{array}\right]_{p \times n} .
$$

We now proceed to describe $W^{\perp}=\operatorname{Null}(A)$ using row operations.

$$
\begin{aligned}
A= & {\left[\begin{array}{cccc}
1 & -2 & 1 & 2 \\
2 & 1 & -8 & -1
\end{array}\right] \xrightarrow{R_{2}-2 R_{1} \rightarrow R_{2}}\left[\begin{array}{cccc}
1 & -2 & 1 & 2 \\
0 & 5 & -10 & -5
\end{array}\right] } \\
& R_{2} / 5 \rightarrow R_{2} \\
& R_{1}+\underset{\rightarrow}{2 R_{2}} \rightarrow R_{1}
\end{aligned}\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & -2 & -1
\end{array}\right] . ~ \$
$$

So, $x_{1}=x_{3}-x_{4}, x_{2}=2 x_{3}+x_{4}$. The parametric form is $\left(\right.$ with $\left.x_{3}=s, x_{4}=t\right)$

$$
\vec{x}=\left[\begin{array}{c}
x_{3}-x_{4} \\
2 x_{3}+x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=s\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]
$$

and

$$
W^{\perp}=\operatorname{Null}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]\right\}
$$

Now let A be a $m \times n$ matrix that has m row vectors,

$$
A=\left[\begin{array}{c}
\vec{v}_{1} \\
\vec{v}_{2} \\
\vdots \\
\vec{v}_{m}
\end{array}\right], \quad \vec{v}_{i} \text { be a row vector, i.e., }\left(\vec{v}_{i}\right)^{T}=\vec{u}_{i} \text { is a column vector. }
$$

Then, the "row space" of A is defined by

$$
\operatorname{Row}(A)=\operatorname{Span}\{\text { rows of } A\}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}
$$

where a vector is understood as a row, i.e., $1 \times n$ matrix. If we would like to interpret row vectors as column vectors, then

$$
\begin{aligned}
\operatorname{Row}(A) & =\left(\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}\right)^{T}=\operatorname{Span}\left\{\left(\vec{v}_{1}\right)^{T},\left(\vec{v}_{2}\right)^{T}, \ldots,\left(\vec{v}_{m}\right)^{T}\right\} \\
& =\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}\right\}
\end{aligned}
$$

From the above example, we can easily see that

$$
\operatorname{Row}(A)^{\perp}=N u l\left(\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vec{u}_{2}^{T} \\
\vdots \\
\vec{u}_{m}^{T}
\end{array}\right]_{m \times n}\right)=\operatorname{Nul}\left(\left[\begin{array}{c}
\vec{v}_{1} \\
\vec{v}_{2} \\
\vdots \\
\vec{v}_{m}
\end{array}\right]_{m \times n}\right)=\operatorname{Null}(A) .
$$

Analogously, since columns of $A=$ rows of A^{T}, or

$$
\operatorname{Col}(A)=\operatorname{Row}\left(A^{T}\right)
$$

we have

$$
\operatorname{Col}(A)^{\perp}=\operatorname{Row}\left(A^{T}\right)^{\perp}=\operatorname{Null}\left(A^{T}\right) .
$$

