## Section 5.1: Eigenvalues and Eigenvectors

Definition. Let $A$ be a matrix (or linear transformation). A number $\lambda$ is called an eigenvalue of $A$ if there exists a non-zero vector $\vec{u}$ such that

$$
\begin{equation*}
A(\vec{u})=\lambda \vec{u} \text {, or } A \vec{u}-\lambda \vec{u}=\overrightarrow{0} . \tag{1}
\end{equation*}
$$

The vector $\vec{u}$ is called an eigenvector associated with this eigenvalue $\lambda$. The set of all eigenvectors associated with $\lambda$ forms a subspace, and is called the eigenspace associated with $\lambda$.

Remarks. (1) $\vec{u} \neq \overrightarrow{0}$ is crucial, since $\vec{u}=\overrightarrow{0}$ always satisfies Equ (1). (2) If $\vec{u}$ is an eigenvector for $\lambda$, then so is $c \vec{u}$ for any constant $c$. (3) Geometrically, in 3D, eigenvectors of $A$ are directions that are unchanged under transformation $A$.

We observe from Equ (1) that $\lambda$ is an eigenvalue iff Equ (1) has a non-trivial solution, i.e.,

$$
\begin{equation*}
(A-\lambda I) \vec{u}=A \vec{u}-\lambda \vec{u}=\overrightarrow{0} \tag{2}
\end{equation*}
$$

has a non-trivial solution. Therefire

$$
\text { eigenspace }=\operatorname{Null}(A-\lambda I) .
$$

By the inverse matrix theorem, we conclude that Equ (2) has a non-trivial solution iff

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{3}
\end{equation*}
$$

Equ (3) is often referred as to "Characteristic Equation".
Finding eigenvalues and eigenvectors: Step \#1. Solve Characteristic Equ (3) for $\lambda$. Step $\# 2$. For each $\lambda$, find a basis for the eigenspace $N u l l(A-\lambda I)$ (i.e., solution set of Equ (2)).

Example 5.1.1. Find all eigenvalues and their eigenspaces for

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]
$$

## Solution:

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
3-\lambda & -2 \\
1 & -\lambda
\end{array}\right] .
\end{aligned}
$$

Write characteristic equation

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)(-\lambda)-(-2)=0 .
$$

We find

$$
\lambda^{2}-3 \lambda+2=0 \quad \Longrightarrow \quad(\lambda-1)(\lambda-2)=0 \quad \Longrightarrow \lambda=1, \lambda=2 .
$$

There are two eigenvalues $\lambda_{1}=1, \lambda_{2}=2$. We next find eigenvectors associated with each eigenvalue. For $\lambda_{1}=1$,

$$
\overrightarrow{0}=\left(A-\lambda_{1} I\right) \vec{x}=\left[\begin{array}{cc}
3-1 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

or

$$
x_{1}=x_{2}
$$

The parametric vector form of solution set for $\left(A-\lambda_{1} I\right) \vec{x}=\overrightarrow{0}$ :

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \text { basis: }\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

This is only (linearly independent) eigenvector for $\lambda_{1}=1$.
The last step can be done slightly differently as follows. From solutions (for $\left(A-\lambda_{1} I\right) \vec{x}=$ $\overrightarrow{0}$ )

$$
x_{1}=x_{2},
$$

we know there is only one free variable $x_{2}$. Therefore, there is only one generator in any basis. To find it, we take $x_{2}$ to be any nonzero number, for instance, $x_{2}=1$, and compute $x_{1}=x_{2}=1$. We obtain

$$
\lambda_{1}=1, \quad \vec{u}_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

For $\lambda_{2}=2$,

$$
\overrightarrow{0}=\left(A-\lambda_{2} I\right) \vec{x}=\left[\begin{array}{cc}
3-2 & -2 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],
$$

or

$$
x_{1}=2 x_{2} .
$$

To find a basis, we take $x_{2}=1$, we have $x_{1}=2$, and

$$
\lambda_{2}=2, \quad \vec{u}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

Example 5.1.2. Given that 2 is an eigenvalue for

$$
A=\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]
$$

Find a basis of its eigenspace.

## Solution:

$$
A-2 I=\left[\begin{array}{ccc}
4-2 & -1 & 6 \\
2 & 1-2 & 6 \\
2 & -1 & 8-2
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & -1 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, $(A-2 I) \vec{x}=\overrightarrow{0}$ becomes

$$
\begin{equation*}
2 x_{1}-x_{2}+6 x_{3}=0, \text { or } x_{2}=2 x_{1}+6 x_{3}, \tag{4}
\end{equation*}
$$

where we select $x_{1}$ and $x_{3}$ as free variables only to avoid fractions. Solutions in parametric form:

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
2 x_{1}+6 x_{3} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
6 \\
1
\end{array}\right] .
$$

A basis for the eigenspace:

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \text { and } \vec{u}_{2}=\left[\begin{array}{l}
0 \\
6 \\
1
\end{array}\right] .
$$

Another way of solving Equ (4) may be a little easy. From Equ (4), we know that $x_{1}$ an $x_{3}$ are free variables. We choose $\left(x_{1}, x_{3}\right)=(1,0)$ and $(0,1)$, respectively,

$$
\begin{aligned}
& x_{1}=1, x_{3}=0 \Longrightarrow x_{2}=2 \Longrightarrow \vec{u}_{1} \\
& x_{1}=0, x_{3}=1 \Longrightarrow x_{2}=6 \Longrightarrow \vec{u}_{2}
\end{aligned}
$$

Example 5.1.3. Find eigenvalues: (a)

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
3 & -1 & 6 \\
0 & 0 & 6 \\
0 & 0 & 2
\end{array}\right], \quad A-\lambda I=\left[\begin{array}{ccc}
3-\lambda & -1 & 6 \\
0 & -\lambda & 6 \\
0 & 0 & 2-\lambda
\end{array}\right] . } \\
& \operatorname{det}(A-\lambda I)=(3-\lambda)(-\lambda)(2-\lambda)=0
\end{aligned}
$$

The eigenvalues are $3,0,2$, exactly the diagonal elements. (b)

$$
\begin{gathered}
B=\left[\begin{array}{lll}
4 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 4
\end{array}\right], \quad B-\lambda I=\left[\begin{array}{ccc}
4-\lambda & 0 & 0 \\
2 & 1-\lambda & 0 \\
1 & 0 & 4-\lambda
\end{array}\right] \\
\operatorname{det}(B-\lambda I)=(4-\lambda)^{2}(1-\lambda)=0
\end{gathered}
$$

The eigenvalues are $4,1,4$ ( 4 is a double root), exactly the diagonal elements.
Theorem. (1) The eigenvalues of a triangle matrix are its diagonal elements.
(2) Eigenvectors for different eigenvalues are linearly independent. More precisely, suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are p different eigenvalues of a matrix $A$. Then, a set of
a basis of $\operatorname{Null}\left(A-\lambda_{1} I\right)$, a basis of $\operatorname{Null}\left(A-\lambda_{2} I\right), \ldots$, a basis of $N u l l\left(A-\lambda_{p} I\right)$ is linearly independent.

Proof. (2) For simplicity, we assume $p=2: \lambda_{1} \neq \lambda_{2}$ are two different eigenvalues. Suppose that $\vec{u}_{1}$ is an eigenvector of $\lambda_{1}$ and $\vec{u}_{2}$ is an eigenvector of $\lambda_{2}$ To show independence, we need to show that the only solution to

$$
x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}=\overrightarrow{0}
$$

is $x_{1}=x_{2}=0$. Indeed, if $x_{1} \neq 0$, then

$$
\begin{equation*}
\vec{u}_{1}=\frac{x_{2}}{x_{1}} \vec{u}_{2} . \tag{5}
\end{equation*}
$$

We now apply $A$ to the above equation. It leads to

$$
\begin{equation*}
A \vec{u}_{1}=\frac{x_{2}}{x_{1}} A \vec{u}_{2} \Longrightarrow \lambda_{1} \vec{u}_{1}=\frac{x_{2}}{x_{1}} \lambda_{2} \vec{u}_{2} . \tag{6}
\end{equation*}
$$

Equ (5) and Equ (6) are contradictory to each other: by Equ (5),

$$
\begin{aligned}
& \text { Equ }(5) \Longrightarrow \lambda_{1} \vec{u}_{1}=\frac{x_{2}}{x_{1}} \lambda_{1} \vec{u}_{2} \\
& \text { Equ }(6) \Longrightarrow \lambda_{1} \vec{u}_{1}=\frac{x_{2}}{x_{1}} \lambda_{2} \vec{u}_{2},
\end{aligned}
$$

or

$$
\frac{x_{2}}{x_{1}} \lambda_{1} \vec{u}_{2}=\lambda_{1} \vec{u}_{1}=\frac{x_{2}}{x_{1}} \lambda_{2} \vec{u}_{2} .
$$

Therefor $\lambda_{1}=\lambda_{2}$, a contradiction to the assumption that they are different eigenvalues.

## Section 5.2: Characteristic Equations

As we discussed in the previous section, the key to find eigenvalues and eigenvectors is to solve the Characteristic Equation (3)

$$
\operatorname{det}(A-\lambda I)=0
$$

For $2 \times 2$ matrix,

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right] \\
\operatorname{det}(A-\lambda I) & =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}+(-a-d) \lambda+(a d-b c)
\end{aligned}
$$

is a guadratic function (i.e., a polynomial of degree 2). In general, for any $n \times n$ matrix $A$,

$$
A-\lambda I=\left[\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right]
$$

$$
\operatorname{det}(A-\lambda I)=\left(a_{11}-\lambda\right) \operatorname{det}\left[\begin{array}{ccc}
a_{22}-\lambda & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots \\
a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right]+\ldots
$$

Therefore, $\operatorname{det}(A-\lambda I)$ is a polynomial of degree $n$, and is often called the characteristic polynomial of $A$. Consequently, there are total of $n$ (the number of rows in the matrix $A$ ) eigenvalues (real or complex, after taking account for multiplicity). Finding roots for higher order polynomials may be very difficult.

Example 5.2.1. Find all eigenvalues for

$$
A=\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

## Solution:

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 1 & 1-\lambda
\end{array}\right] \\
\operatorname{det}(A-\lambda I) & =(5-\lambda) \operatorname{det}\left[\begin{array}{ccc}
3-\lambda & -8 & 0 \\
0 & 5-\lambda & 4 \\
0 & 1 & 1-\lambda
\end{array}\right] \\
& =(5-\lambda)(3-\lambda) \operatorname{det}\left[\begin{array}{cc}
5-\lambda & 4 \\
1 & 1-\lambda
\end{array}\right] \\
& =(5-\lambda)(3-\lambda)[(5-\lambda)(1-\lambda)-4]=0
\end{aligned}
$$

There are 4 roots:

$$
\begin{aligned}
&(5-\lambda)=0 \\
&(3-\lambda) \Longrightarrow \lambda \\
& \Longrightarrow \lambda=5 \\
&(5-\lambda)(1-\lambda)-4=0 \\
& \Longrightarrow \lambda^{2}-6 \lambda+1=0 \\
& \Longrightarrow \lambda=\frac{6 \pm \sqrt{36-4}}{2}=3 \pm 2 \sqrt{2}
\end{aligned}
$$

Question: Suppose that $B$ is obtained from $A$ by elementary row operations. Do $A$ and $B$ has the same eigenvalues? (Ans: No)

## Example 5.2.2.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] \xrightarrow{R_{2}+R_{1} \rightarrow R_{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]=B
$$

A has eigenvalues 1 and 2 . For $B$, the characteristic equation is

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right] \\
& =(1-\lambda)(3-\lambda)-1=\lambda^{2}-4 \lambda+2
\end{aligned}
$$

The eigenvalues are

$$
\lambda=\frac{4 \pm \sqrt{16-8}}{2}=\frac{4 \pm \sqrt{8}}{2}=2 \pm \sqrt{2}
$$

Definition. Two $n \times n$ matrices $A$ and $B$ are called similar, and is denoted as $A \sim B$, if there exists an invertible matrix $P$ such that $A=P B P^{-1}$.

Claim. If $A$ and $B$ are similar, then they have exact the same characteristic polynomial and consequently the same eigenvalues.

Indeed, if $A=P B P^{-1}$, then $P(B-\lambda I) P^{-1}=P B P^{-1}-\lambda P I P^{-1}=(A-\lambda I)$. Therefore,

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(P(B-\lambda I) P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(B-\lambda I) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(B-\lambda I)
$$

Caution: If $A \sim B$, and if $\lambda_{0}$ is an eigenvalue, then an corresponding eigenvector for $A$ may not be an eigenvector for $B$. In other words, $A$ and $B$ have the same eigenvalues but different eigenvectors.

Example 5.2.3. Though row operation alone will not perserve eigenvalues, a pair of row and column operation do maintain similarity. We first observe that if $P$ is a type 1 (row) elementary matrix,

$$
P=\left[\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right] \stackrel{R_{1}+a R_{2} \rightarrow R_{2}}{\longleftrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
$$

then its inverse $P^{-1}$ is a type 1 (column) elementary matrix obtained from the identity matrix by an elementary column operation that is of the same kind with "opposite sign" to the previous row operation, i.e.,

$$
P^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-a & 1
\end{array}\right] \stackrel{C_{1}-a C_{2} \rightarrow C_{1}}{\longleftrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

We call the column operation

$$
C_{1}-a C_{2} \rightarrow C_{1}
$$

is "inverse" to the row operation

$$
R_{1}+a R_{2} \rightarrow R_{2}
$$

Now we perform a row operation on $A$ followed immediately by the column operation inverse to the row operation

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right] \quad(\text { left multiply by } P) \\
& \left.\xrightarrow{C_{1}-C_{2} \rightarrow C_{1}}\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right]=B \text { (right multiply by } P^{-1} .\right)
\end{aligned}
$$

We can verify that $A$ and $B$ are similar through $P$ (with $a=1$ )

$$
\begin{aligned}
P A P^{-1} & =\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right] .
\end{aligned}
$$

Now, $\lambda_{1}=1$ is an eigenvalue. Then,

$$
\begin{aligned}
(A-1) \vec{u} & =\left[\begin{array}{cc}
1-1 & 1 \\
0 & 2-1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Longrightarrow \vec{u}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { is an eigenvector for } A .
\end{aligned}
$$

But

$$
\begin{aligned}
(B-1) \vec{u} & =\left[\begin{array}{cc}
0-1 & 1 \\
-2 & 3-1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] \\
& \Longrightarrow \vec{u}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { is NOT an eigenvector for } B .
\end{aligned}
$$

In fact,

$$
\begin{aligned}
(B-1) \vec{v} & =\left[\begin{array}{cc}
-1 & 1 \\
-2 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\text { So, } \vec{v} & =\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { is an eigenvector for } B
\end{aligned}
$$

Example 5.2.4. Find eigenvalues of $A$ if

$$
A \sim B=\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

Solution: Eigenvalues of $B$ are $\lambda=5,3,5,4$. These are also the eigenvalues of $A$.

## Section 5.3: Diagonalization

Diagonal matrix: only diagonal entries are non-zero

$$
D=\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0  \tag{7}\\
0 & a_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n}
\end{array}\right]
$$

Obviously,

$$
D \vec{e}_{1}=\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
\cdots \\
0
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
0 \\
\cdots \\
0
\end{array}\right]=a_{1} \vec{e}_{1} .
$$

$$
D \vec{e}_{1}=a_{1} \vec{e}_{1} \text {, i.e., } \vec{e}_{1} \text { is an eigenvector associated with } a_{1} .
$$

In general,

$$
D \vec{e}_{i}=a_{i} \vec{e}_{i} .
$$

For any diagonal matrix, eigenvalues are all diagonal entries, and $\vec{e}_{i}$ is an eigenvector associated with $a_{i}$ (ith entry). For the purpose of calculating eigenvalues and eigenvectors, diagonal matrices are easiest. Diagonalization is a process to find a diagonal matrix that is similar to a given non-diagonal matrix.

Example 5.3.1. Consider

$$
A=\left[\begin{array}{cc}
7 & 2 \\
-4 & 1
\end{array}\right], D=\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right], P=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]
$$

(a) Verify $A=P D P^{-1}$; (b) Find $D^{k}$ and $A^{k}$; (c) Find eigenvalues and eigenvectors for $A$.

Solution: (a) It suffices to show that $A P=P D$ and that $P$ is invertible. Direct calculations lead to

$$
\begin{gathered}
\operatorname{det} P=-1 \neq 0 \Longrightarrow P \text { is invertible } \\
A P=\left[\begin{array}{cc}
5 & 3 \\
-5 & -6
\end{array}\right], \quad P D=\left[\begin{array}{cc}
5 & 3 \\
-5 & -6
\end{array}\right] .
\end{gathered}
$$

$$
\begin{align*}
& D^{2}=\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
5^{2} & 0 \\
0 & 3^{2}
\end{array}\right], D^{k}=\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 3^{k}
\end{array}\right] .  \tag{b}\\
& A^{2}=P D P^{-1}\left(P D P^{-1}\right)=P D P^{-1} P D P^{-1}=P D^{2} P^{-1} \\
& A^{k}=P D^{k} P^{-1}
\end{align*}
$$

(d) Eigenvalues of $A=$ Eigenvalues of $D: \lambda_{1}=5, \lambda_{2}=3$. For $D$,

$$
\begin{align*}
& \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { is an eigenvectors for } \lambda_{1}=5: D \vec{e}_{1}=\lambda_{1} \vec{e}_{1}  \tag{8}\\
& \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { is an eigenvectors for } \lambda_{2}=3: D \vec{e}_{2}=\lambda_{2} \vec{e}_{2} \tag{9}
\end{align*}
$$

Since $A P=P D$, from (7), we see $A P \vec{e}_{i}=P D \vec{e}_{i}=a_{i} P \vec{e}_{i}$. In particular,

$$
\begin{aligned}
& A\left(P \vec{e}_{1}\right)=P D \vec{e}_{1} \stackrel{\text { by }(8)}{=} P\left(\lambda_{1} \vec{e}_{1}\right)=\lambda_{1}\left(P \vec{e}_{1}\right) \Longrightarrow P \vec{e}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { is an eigenvector } \\
& A\left(P \vec{e}_{2}\right)=P D \vec{e}_{2} \stackrel{\text { by }(9)}{=} P\left(\lambda_{2} \vec{e}_{2}\right)=\lambda_{2}\left(P \vec{e}_{2}\right) \Longrightarrow P \vec{e}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \text { is an eigenvector. }
\end{aligned}
$$

Conclusion: In general, if $D$ is a diagonal matrix with diagonal entries $a_{1}, a_{2}, \ldots, a_{n}$ (see (7)) and if $A P=P D$, then
$P \vec{e}_{i}$ is an eigenvector associated with $a_{i}$.

Definition. An $n \times n$ matrix $A$ is called diagonalizable if $A$ is similar to a diagonal matrix $D$.

Theorem (Diagonalization). Let $A$ be an $n \times n$ matrix. Suppose that $A$ has $n$ linearly independent eigenvectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$. Then, $A$ is diagonalizable and $A P=P D$, where

$$
P=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right], D=\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n}
\end{array}\right]=\left[a_{1} \vec{e}_{1}, a_{2} \vec{e}_{2}, \ldots, a_{n} \vec{e}_{n}\right]
$$

$a_{i}$ is the eigenvalue associated with $\vec{v}_{i}$, i.e., $A \vec{v}_{i}=a_{i} \vec{v}_{i}$.
Proof. We only need to verify that $A P=P D$ as follows:

$$
\begin{aligned}
& A P=A\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right]=\left[A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{n}\right]=\left[a_{1} \vec{v}_{1}, a_{2} \vec{v}_{2}, \ldots, a_{n} \vec{v}_{n}\right] \\
& P D=P\left[a_{1} \vec{e}_{1}, a_{2} \vec{e}_{2}, \ldots, a_{n} \vec{e}_{n}\right]=\left[a_{1} P \vec{e}_{1}, a_{2} P \vec{e}_{2}, \ldots, a_{n} P \vec{e}_{n}\right] .
\end{aligned}
$$

Now,

$$
P \vec{e}_{1}=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right]\left[\begin{array}{c}
1 \\
0 \\
\ldots \\
0
\end{array}\right]=\vec{v}_{1}, \quad P \vec{e}_{2}=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right]\left[\begin{array}{c}
0 \\
1 \\
\ldots \\
0
\end{array}\right]=\vec{v}_{2}, \ldots
$$

This shows $A P=P D$.
Example 5.3.2. Diagonalize

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Solution: Step 1. Find all eigenvalues.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right]=-\lambda^{3}-3 \lambda^{2}+4 \\
& =-\left(\lambda^{3}+3 \lambda^{2}-4\right)=-\left[\lambda^{3}-\lambda^{2}+4 \lambda^{2}-4\right] \\
& =-\left[\lambda^{2}(\lambda-1)+4\left(\lambda^{2}-1\right)\right]=-\left[\lambda^{2}(\lambda-1)+4(\lambda+1)(\lambda-1)\right] \\
& =-(\lambda-1)\left[\lambda^{2}+4(\lambda+1)\right]=-(\lambda-1)\left[\lambda^{2}+4 \lambda+4\right]=-(\lambda-1)(\lambda+2)^{2} .
\end{aligned}
$$

Eigenvalues are $\lambda_{1}=1, \lambda_{2}=-2$ (this is a double root).
Step 2. Find all eigenvalues - find a basis for each eigenspace Null $\left(A-\lambda I_{i}\right)$. For $\lambda_{1}=1$,

$$
\begin{aligned}
A-\lambda_{1} I & =\left[\begin{array}{ccc}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc}
3 & 3 & 0 \\
-3 & -6 & -3 \\
0 & 3 & 3
\end{array}\right] \xrightarrow{R_{2}+R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc}
3 & 3 & 0 \\
0 & -3 & -3 \\
0 & 3 & 3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow x_{1}=x_{3}, x_{2}=-x_{3}
\end{aligned}
$$

$x_{3}$ is the free variable. Choose $x_{3}=1$, we obtain an eigenvector

$$
\vec{x}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

For $\lambda_{2}=-2$,

$$
A-\lambda_{2} I=\left[\begin{array}{ccc}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow x_{1}+x_{2}+x_{3}=0
$$

It follows that $x_{2}$ and $x_{3}$ are free variables. As we did before, we need to select $\left(x_{2}, x_{3}\right)$ to be $(1,0)$ and $(0,1)$. Choose $x_{2}=1, x_{3}=0 \Longrightarrow x_{1}=-x_{2}-x_{3}=-1$; choose $x_{2}=0$, $x_{3}=1 \Longrightarrow x_{1}=-x_{2}-x_{3}=-1$. We thus got two independent eigenvectors for $\lambda_{2}=-2$ :

$$
\vec{v}_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

Step 3. Assemble orderly $D$ and $P$ as follows: there are several choices to pair $D$ and $P$.

$$
\begin{aligned}
& \text { Choice\#1 : } D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right], P=\left[\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& \text { Choice\#2 : } D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right], P=\left[\vec{v}_{1}, \vec{v}_{3}, \vec{v}_{2}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
& \text { Choice\#3 : } D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right], P=\left[\vec{v}_{2}, \vec{v}_{3}, \vec{v}_{1}\right]=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Remark. Not every matrix is diagonalizable. For instance,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \operatorname{det}(A-\lambda I)=(\lambda-1)^{2}
$$

The only eigenvalue is $\lambda=1$; it has the multiplicity $m=2$. From

$$
A-I=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

we see that $\operatorname{Null}(A-I)$ has dimension 1, and the basis consists of one vector

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

In general, if $\lambda_{0}$ is an eigenvalue of multiplicity $m$ (i.e., the characteristic polynomial $\left.\operatorname{det}(A-\lambda I)=\left(\lambda-\lambda_{0}\right)^{m} Q(\lambda)\right)$, then

$$
\operatorname{dim}(N u l l(A-\lambda I)) \leq m .
$$

Theorem. Let $A$ be an $n \times n$ matrix with distinct real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ with multiplicity $m_{1}, m_{2}, \ldots, m_{p}$, respectively. Then,

1. $n_{i}=\operatorname{dim}\left(\operatorname{Null}\left(A-\lambda_{i} I\right)\right) \leq m_{i}$ and $m_{1}+m_{2}+\ldots+m_{p} \leq n$.
2. $A$ is diagonalizable iff $n_{i}=m_{i}$ and

$$
m_{1}+m_{2}+\ldots+m_{p}=n
$$

In this case, let $\mathcal{B}_{i}$ be a basis of $N u l l\left(A-\lambda_{i} I\right)$ for each $i$. Then

$$
P=\left[\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}\right], \quad D=\left[\begin{array}{ccc}
\lambda_{1} I_{m_{1}} & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & \lambda_{p} I_{m_{p}}
\end{array}\right], I_{m_{i}}=\left(m_{i} \times m_{i}\right) \text { identity }
$$

i.e., the first $m_{1}$ columns of $P$ are $\mathcal{B}_{1}$, the eigenvectors for $\lambda_{1}$, the next $m_{2}$ columns of $P$ are $\mathcal{B}_{2}$, then $\mathcal{B}_{3}$, etc. The last $m_{p}$ columns of $P$ are $\mathcal{B}_{p}$; the first $m_{1}$ diagonal entries of $D$ are $\lambda_{1}$, the next $m_{2}$ diagonal entries of $D$ are $\lambda_{2}$, and so on.
3. In particular, if $A$ has $n$ distinct eigenvalues, then $A$ is diagonalizable.

Note that there are multiple choices for assembling $P$. For instance, if $A$ is $5 \times 5$, and $A$ has two eigenvalues $\lambda_{1}=1, \lambda_{2}=2$ with a basis $\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$ for $N u l l(A-I)$ and a basis $\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{2}\right\}$ for Null $(A-2 I)$, respectively, then, we have several choices to select pairs of $(P, D)$ :

$$
\left.\begin{array}{c}
\text { choice } \# 1: P=\left[\vec{a}_{1}, \vec{a}_{2}, \vec{b}_{1}, \vec{b}_{2}, \vec{b}_{2}\right], D=\left[\begin{array}{cc}
I_{2} & 0 \\
0 & 2 I_{3}
\end{array}\right] \\
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right] .
$$

Example 5.3.3. Diagonalize $A$

$$
A=\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
1 & 4 & -3 & 0 \\
-1 & -2 & 0 & -3
\end{array}\right]
$$

Solution: Eigenvalues are $\lambda_{1}=5, m_{1}=2, \lambda_{2}=-3, m_{2}=2$. For $\lambda_{1}=5$,

$$
\begin{aligned}
A-5 I= & {\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 4 & -8 & 0 \\
-1 & -2 & 0 & -8
\end{array}\right] \xrightarrow{R_{4}+R_{3} \rightarrow R_{4}}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 4 & -8 & 0 \\
0 & 2 & -8 & -8
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 4 & -8 & 0 \\
0 & 1 & -4 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 8 & 16 \\
0 & 1 & -4 & -4
\end{array}\right]
\end{aligned}
$$

Therefore, $x_{3}$ and $x_{4}$ are free variable, and

$$
\begin{aligned}
& x_{1}=-8 x_{3}-16 x_{4} \\
& x_{2}=4 x_{3}+4 x_{4} .
\end{aligned}
$$

Choose $\left(x_{3}, x_{4}\right)=(1,0) \Longrightarrow x_{1}=-8, x_{2}=4$; Choose $\left(x_{3}, x_{4}\right)=(0,1) \Longrightarrow x_{1}=-16, x_{2}=4$. We obtain two independent eigenvectors

$$
\left[\begin{array}{c}
-8 \\
4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-16 \\
4 \\
0 \\
1
\end{array}\right] \quad\left(\text { for } \lambda_{1}=5\right)
$$

For $\lambda_{2}=-3$,

$$
\begin{aligned}
& A-(-3) I= {\left[\begin{array}{cccc}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
1 & 4 & 0 & 0 \\
-1 & -2 & 0 & 0
\end{array}\right] \xrightarrow{R_{4}+R_{3} \rightarrow R_{4}}\left[\begin{array}{llll}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
1 & 4 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right] . } \\
& R_{3}-2 R_{4} \rightarrow R_{3} \\
& R_{2}-4 R_{4} \rightarrow R_{2}
\end{aligned}{\left[\begin{array}{llll}
8 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right] \xrightarrow{R_{1}-8 R_{3} \rightarrow R_{1}}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right] .}^{l} .
$$

Hence

$$
x_{1}=0, x_{2}=0
$$

Choose $\left(x_{3}, x_{4}\right)=(1,0)$ and $\left(x_{3}, x_{4}\right)=(0,1)$, respectively, we have eigenvectors

$$
\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \quad\left(\text { for } \lambda_{2}=-3\right)
$$

Assemble pairs $(P, D)$ :

$$
P=\left[\begin{array}{cccc}
-8 & -16 & 0 & 0 \\
4 & 4 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], \quad D=\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

or

$$
P=\left[\begin{array}{cccc}
-8 & 0 & -16 & 0 \\
4 & 0 & 4 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

