
Section 5.1: Eigenvalues and Eigenvectors
Definition. Let A be a matrix (or linear transformation). A number λ is called an

eigenvalue of A if there exists a non-zero vector ~u such that

A (~u) = λ~u, or A~u− λ~u = ~0 . (1)

The vector ~u is called an eigenvector associated with this eigenvalue λ. The set of all eigen-
vectors associated with λ forms a subspace, and is called the eigenspace associated with
λ.
Remarks. (1) ~u 6= ~0 is crucial, since ~u = ~0 always satisfies Equ (1). (2) If ~u is an

eigenvector for λ, then so is c~u for any constant c. (3) Geometrically, in 3D, eigenvectors of
A are directions that are unchanged under transformation A.
We observe from Equ (1) that λ is an eigenvalue iff Equ (1) has a non-trivial solution,

i.e.,
(A− λI) ~u = A~u− λ~u = ~0 (2)

has a non-trivial solution. Therefire

eigenspace = Null (A− λI) .

By the inverse matrix theorem, we conclude that Equ (2) has a non-trivial solution iff

det (A− λI) = 0. (3)

Equ (3) is often referred as to "Characteristic Equation".
Finding eigenvalues and eigenvectors: Step #1. Solve Characteristic Equ (3) for λ.

Step #2. For each λ, find a basis for the eigenspace Null (A− λI) (i.e., solution set of Equ
(2)).
Example 5.1.1. Find all eigenvalues and their eigenspaces for

A =

[
3 −2
1 0

]
.

Solution:

A− λI =
[
3 −2
1 0

]
− λ

[
1 0
0 1

]
=

[
3 −2
1 0

]
−
[
λ 0
0 λ

]
=

[
3− λ −2
1 −λ

]
.

Write characteristic equation

det (A− λI) = (3− λ) (−λ)− (−2) = 0.

We find
λ2 − 3λ+ 2 = 0 =⇒ (λ− 1) (λ− 2) = 0 =⇒ λ = 1, λ = 2.
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There are two eigenvalues λ1 = 1, λ2 = 2. We next find eigenvectors associated with each
eigenvalue. For λ1 = 1,

~0 = (A− λ1I) ~x =
[
3− 1 −2
1 −1

] [
x1
x2

]
=

[
2 −2
1 −1

] [
x1
x2

]
,

or
x1 = x2.

The parametric vector form of solution set for (A− λ1I) ~x = ~0 :

~x =

[
x1
x2

]
=

[
x2
x2

]
= x2

[
1
1

]
, basis:

[
1
1

]
.

This is only (linearly independent) eigenvector for λ1 = 1.
The last step can be done slightly differently as follows. From solutions (for (A− λ1I) ~x =

~0 )
x1 = x2,

we know there is only one free variable x2. Therefore, there is only one generator in any
basis. To find it, we take x2 to be any nonzero number, for instance, x2 = 1, and compute
x1 = x2 = 1. We obtain

λ1 = 1, ~u1 =

[
x1
x2

]
=

[
1
1

]
.

For λ2 = 2,

~0 = (A− λ2I) ~x =
[
3− 2 −2
1 −2

] [
x1
x2

]
=

[
1 −2
1 −2

] [
x1
x2

]
,

or
x1 = 2x2.

To find a basis, we take x2 = 1, we have x1 = 2, and

λ2 = 2, ~u2 =

[
2
1

]
.

Example 5.1.2. Given that 2 is an eigenvalue for

A =

4 −1 6
2 1 6
2 −1 8

 .
Find a basis of its eigenspace.
Solution:

A− 2I =

4− 2 −1 6
2 1− 2 6
2 −1 8− 2

 =
2 −1 6
2 −1 6
2 −1 6

→
2 −1 6
0 0 0
0 0 0

 .
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Therefore, (A− 2I) ~x = ~0 becomes

2x1 − x2 + 6x3 = 0, or x2 = 2x1 + 6x3, (4)

where we select x1 and x3 as free variables only to avoid fractions. Solutions in parametric
form:

~x =

x1x2
x3

 =
 x1
2x1 + 6x3

x3

 = x1

12
0

+ x3

06
1

 .
A basis for the eigenspace:

~u1 =

12
0

 and ~u2 =

06
1

 .
Another way of solving Equ (4) may be a little easy. From Equ (4), we know that x1 an

x3 are free variables. We choose (x1, x3) = (1, 0) and (0, 1) , respectively,

x1 = 1, x3 = 0 =⇒ x2 = 2 =⇒ ~u1

x1 = 0, x3 = 1 =⇒ x2 = 6 =⇒ ~u2.

Example 5.1.3. Find eigenvalues: (a)

A =

3 −1 6
0 0 6
0 0 2

 , A− λI =

3− λ −1 6
0 −λ 6
0 0 2− λ

 .
det (A− λI) = (3− λ) (−λ) (2− λ) = 0

The eigenvalues are 3, 0, 2, exactly the diagonal elements. (b)

B =

4 0 0
2 1 0
1 0 4

 , B − λI =

4− λ 0 0
2 1− λ 0
1 0 4− λ


det (B − λI) = (4− λ)2 (1− λ) = 0.

The eigenvalues are 4, 1, 4 (4 is a double root), exactly the diagonal elements.
Theorem. (1) The eigenvalues of a triangle matrix are its diagonal elements.
(2) Eigenvectors for different eigenvalues are linearly independent. More precisely, sup-

pose that λ1, λ2, ..., λp are p different eigenvalues of a matrix A. Then, a set of

a basis of Null (A− λ1I) , a basis of Null (A− λ2I) , ..., a basis of Null (A− λpI)

is linearly independent.
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Proof. (2) For simplicity, we assume p = 2 : λ1 6= λ2 are two different eigenvalues. Suppose
that ~u1 is an eigenvector of λ1 and ~u2 is an eigenvector of λ2 To show independence, we need
to show that the only solution to

x1~u1 + x2~u2 = ~0

is x1 = x2 = 0. Indeed, if x1 6= 0, then

~u1 =
x2
x1
~u2. (5)

We now apply A to the above equation. It leads to

A~u1 =
x2
x1
A~u2 =⇒ λ1~u1 =

x2
x1
λ2~u2. (6)

Equ (5) and Equ (6) are contradictory to each other: by Equ (5),

Equ (5) =⇒ λ1~u1 =
x2
x1
λ1~u2

Equ (6) =⇒ λ1~u1 =
x2
x1
λ2~u2,

or
x2
x1
λ1~u2 = λ1~u1 =

x2
x1
λ2~u2.

Therefor λ1 = λ2, a contradiction to the assumption that they are different eigenvalues.

Section 5.2: Characteristic Equations
As we discussed in the previous section, the key to find eigenvalues and eigenvectors is

to solve the Characteristic Equation (3)

det (A− λI) = 0.

For 2× 2 matrix,

A− λI =
[
a− λ b
c d− λ

]
,

det (A− λI) = (a− λ) (d− λ)− bc
= λ2 + (−a− d)λ+ (ad− bc)

is a guadratic function (i.e., a polynomial of degree 2). In general, for any n× n matrix A,

A− λI =


a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann − λ

 ,

4



det (A− λI) = (a11 − λ) det

a22 − λ · · · a2n
· · · · · · · · ·
an2 · · · ann − λ

+ ...

Therefore, det (A− λI) is a polynomial of degree n, and is often called the characteristic
polynomial of A. Consequently, there are total of n (the number of rows in the matrix A)
eigenvalues (real or complex, after taking account for multiplicity). Finding roots for higher
order polynomials may be very diffi cult.
Example 5.2.1. Find all eigenvalues for

A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 1 1

 .
Solution:

A− λI =


5− λ −2 6 −1
0 3− λ −8 0
0 0 5− λ 4
0 0 1 1− λ

 ,

det (A− λI) = (5− λ) det

3− λ −8 0
0 5− λ 4
0 1 1− λ


= (5− λ) (3− λ) det

[
5− λ 4
1 1− λ

]
= (5− λ) (3− λ) [(5− λ) (1− λ)− 4] = 0.

There are 4 roots:

(5− λ) = 0 =⇒ λ = 5

(3− λ) = 0 =⇒ λ = 3

(5− λ) (1− λ)− 4 = 0 =⇒ λ2 − 6λ+ 1 = 0

=⇒ λ =
6±
√
36− 4
2

= 3± 2
√
2.

Question: Suppose that B is obtained from A by elementary row operations. Do A and
B has the same eigenvalues? (Ans: No)
Example 5.2.2.

A =

[
1 1
0 2

]
R2+R1→R2→

[
1 1
1 3

]
= B

A has eigenvalues 1 and 2. For B, the characteristic equation is

det (B − λI) =
[
1− λ 1
1 3− λ

]
= (1− λ) (3− λ)− 1 = λ2 − 4λ+ 2.
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The eigenvalues are

λ =
4±
√
16− 8
2

=
4±
√
8

2
= 2±

√
2.

Definition. Two n× n matrices A and B are called similar, and is denoted as A ∼ B,
if there exists an invertible matrix P such that A = PBP−1.
Claim. If A and B are similar, then they have exact the same characteristic polynomial

and consequently the same eigenvalues.
Indeed, if A = PBP−1, then P (B − λI)P−1 = PBP−1 − λPIP−1 = (A− λI) . There-

fore,

det (A− λI) = det
(
P (B − λI)P−1

)
= det (P ) det (B − λI) det

(
P−1

)
= det (B − λI) .

Caution: If A ∼ B, and if λ0 is an eigenvalue, then an corresponding eigenvector for
A may not be an eigenvector for B. In other words, A and B have the same eigenvalues but
different eigenvectors.
Example 5.2.3. Though row operation alone will not perserve eigenvalues, a pair of

row and column operation do maintain similarity. We first observe that if P is a type 1 (row)
elementary matrix,

P =

[
1 0
a 1

]
R1+aR2→R2←−

[
1 0
0 1

]
,

then its inverse P−1 is a type 1 (column) elementary matrix obtained from the identity
matrix by an elementary column operation that is of the same kind with "opposite sign" to
the previous row operation, i.e.,

P−1 =

[
1 0
−a 1

]
C1−aC2→C1←−

[
1 0
0 1

]
.

We call the column operation
C1 − aC2 → C1

is "inverse" to the row operation
R1 + aR2 → R2.

Now we perform a row operation on A followed immediately by the column operation
inverse to the row operation

A =

[
1 1
0 2

]
R1+R2→R2→

[
1 1
1 3

]
(left multiply by P )

C1−C2→C1→
[
0 1
−2 3

]
= B (right multiply by P−1.)

We can verify that A and B are similar through P (with a = 1)

PAP−1 =

[
1 0
1 1

] [
1 1
0 2

] [
1 0
−1 1

]
=

[
1 1
1 3

] [
1 0
−1 1

]
=

[
0 1
−2 3

]
.
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Now, λ1 = 1 is an eigenvalue. Then,

(A− 1) ~u =
[
1− 1 1
0 2− 1

] [
1
0

]
=

[
0 1
0 1

] [
1
0

]
=

[
0
0

]
=⇒ ~u =

[
1
0

]
is an eigenvector for A.

But

(B − 1) ~u =
[
0− 1 1
−2 3− 1

] [
1
0

]
=

[
−1 1
−2 2

] [
1
0

]
=

[
−1
−2

]
=⇒ ~u =

[
1
0

]
is NOT an eigenvector for B.

In fact,

(B − 1)~v =
[
−1 1
−2 2

] [
1
−1

]
=

[
0
0

]
.

So, ~v =
[
1
−1

]
is an eigenvector for B.

Example 5.2.4. Find eigenvalues of A if

A ∼ B =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 4

 .
Solution: Eigenvalues of B are λ = 5, 3, 5, 4. These are also the eigenvalues of A.

Section 5.3: Diagonalization
Diagonal matrix: only diagonal entries are non-zero

D =


a1 0 · · · 0
0 a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · an

 . (7)

Obviously,

D~e1 =


a1 0 · · · 0
0 a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · an



1
0
· · ·
0

 =

a1
0
· · ·
0

 = a1~e1.
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D~e1 = a1~e1, i.e., ~e1 is an eigenvector associated with a1.

In general,
D~ei = ai~ei.

For any diagonal matrix, eigenvalues are all diagonal entries, and ~ei is an eigenvector as-
sociated with ai (ith entry). For the purpose of calculating eigenvalues and eigenvectors,
diagonal matrices are easiest. Diagonalization is a process to find a diagonal matrix that is
similar to a given non-diagonal matrix.
Example 5.3.1. Consider

A =

[
7 2
−4 1

]
, D =

[
5 0
0 3

]
, P =

[
1 1
−1 −2

]
.

(a) Verify A = PDP−1; (b) Find Dk and Ak; (c) Find eigenvalues and eigenvectors for A.
Solution: (a) It suffi ces to show that AP = PD and that P is invertible. Direct

calculations lead to
detP = −1 6= 0 =⇒ P is invertible

AP =

[
5 3
−5 −6

]
, PD =

[
5 3
−5 −6

]
.

(b)

D2 =

[
5 0
0 3

] [
5 0
0 3

]
=

[
52 0
0 32

]
, Dk =

[
5k 0
0 3k

]
.

A2 = PDP−1
(
PDP−1

)
= PDP−1PDP−1 = PD2P−1

Ak = PDkP−1

(d) Eigenvalues of A = Eigenvalues of D : λ1 = 5, λ2 = 3. For D,

~e1 =

[
1
0

]
is an eigenvectors forλ1 = 5 : D~e1 = λ1~e1 (8)

~e2 =

[
0
1

]
is an eigenvectors forλ2 = 3 : D~e2 = λ2~e2. (9)

Since AP = PD, from (7), we see AP~ei = PD~ei = aiP~ei. In particular,

A (P~e1) = PD~e1
by (8)
= P (λ1~e1) = λ1 (P~e1) =⇒ P~e1 =

[
1
−1

]
is an eigenvector

A (P~e2) = PD~e2
by (9)
= P (λ2~e2) = λ2 (P~e2) =⇒ P~e2 =

[
1
−2

]
is an eigenvector.

Conclusion: In general, if D is a diagonal matrix with diagonal entries a1, a2, ..., an (see
(7)) and if AP = PD, then

P~ei is an eigenvector associated with ai.
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Definition. An n × n matrix A is called diagonalizable if A is similar to a diagonal
matrix D.
Theorem (Diagonalization). Let A be an n× n matrix. Suppose that A has n linearly

independent eigenvectors {~v1, ~v2, ..., ~vn}. Then, A is diagonalizable and AP = PD, where

P = [~v1, ~v2, ..., ~vn] , D =


a1 0 · · · 0
0 a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · an

 = [a1~e1, a2~e2, ..., an~en]
ai is the eigenvalue associated with ~vi, i.e., A~vi = ai~vi.
Proof. We only need to verify that AP = PD as follows:

AP = A [~v1, ~v2, ..., ~vn] = [A~v1, A~v2, ..., A~vn] = [a1~v1, a2~v2, ..., an~vn]

PD = P [a1~e1, a2~e2, ..., an~en] = [a1P~e1, a2P~e2, ..., anP~en] .

Now,

P~e1 = [~v1, ~v2, ..., ~vn]


1
0
· · ·
0

 = ~v1, P~e2 = [~v1, ~v2, ..., ~vn]


0
1
· · ·
0

 = ~v2, ...

This shows AP = PD.

Example 5.3.2. Diagonalize

A =

 1 3 3
−3 −5 −3
3 3 1

 .
Solution: Step 1. Find all eigenvalues.

det (A− λI) = det

1− λ 3 3
−3 −5− λ −3
3 3 1− λ

 = −λ3 − 3λ2 + 4
= −

(
λ3 + 3λ2 − 4

)
= −

[
λ3 − λ2 + 4λ2 − 4

]
= −

[
λ2 (λ− 1) + 4

(
λ2 − 1

)]
= −

[
λ2 (λ− 1) + 4 (λ+ 1) (λ− 1)

]
= − (λ− 1)

[
λ2 + 4 (λ+ 1)

]
= − (λ− 1)

[
λ2 + 4λ+ 4

]
= − (λ− 1) (λ+ 2)2 .

Eigenvalues are λ1 = 1, λ2 = −2 (this is a double root).
Step 2. Find all eigenvalues —find a basis for each eigenspace Null (A− λIi). For λ1 = 1,

A− λ1I =

 0 3 3
−3 −6 −3
3 3 0

 R1→R2→

 3 3 0
−3 −6 −3
0 3 3

 R2+R1→R2→

3 3 0
0 −3 −3
0 3 3


→

1 0 −1
0 1 1
0 0 0

 =⇒ x1 = x3, x2 = −x3
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x3 is the free variable. Choose x3 = 1, we obtain an eigenvector

~x =

 1−1
1

 .
For λ2 = −2,

A− λ2I =

 3 3 3
−3 −3 −3
3 3 3

→
1 1 1
0 0 0
0 0 0

 =⇒ x1 + x2 + x3 = 0.

It follows that x2 and x3 are free variables. As we did before, we need to select (x2, x3)
to be (1, 0) and (0, 1) . Choose x2 = 1, x3 = 0 =⇒ x1 = −x2 − x3 = −1; choose x2 = 0,
x3 = 1 =⇒ x1 = −x2 − x3 = −1. We thus got two independent eigenvectors for λ2 = −2 :

~v2 =

x1x2
x3

 =
−11
0

 , ~v3 =
x1x2
x3

 =
−10
1

 .
Step 3. Assemble orderly D and P as follows: there are several choices to pair D and P.

Choice#1 : D =

1 0 0
0 −2 0
0 0 −2

 , P = [~v1, ~v2, ~v3] =
 1 −1 −1
−1 1 0
1 0 1


Choice#2 : D =

1 0 0
0 −2 0
0 0 −2

 , P = [~v1, ~v3, ~v2] =
 1 −1 −1
−1 0 1
1 1 0


Choice#3 : D =

−2 0 0
0 −2 0
0 0 1

 , P = [~v2, ~v3, ~v1] =
−1 −1 1
1 0 −1
0 1 1

 .
Remark. Not every matrix is diagonalizable. For instance,

A =

[
1 1
0 1

]
, det (A− λI) = (λ− 1)2 .

The only eigenvalue is λ = 1; it has the multiplicity m = 2. From

A− I =
[
0 1
0 0

]
,

we see that Null(A− I) has dimension 1, and the basis consists of one vector[
1
0

]
.
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In general, if λ0 is an eigenvalue of multiplicity m (i.e., the characteristic polynomial
det (A− λI) = (λ− λ0)mQ (λ)), then

dim (Null (A− λI)) ≤ m.

Theorem. Let A be an n × n matrix with distinct real eigenvalues λ1, λ2, ..., λp with
multiplicity m1,m2, ...,mp, respectively. Then,

1. ni = dim (Null (A− λiI)) ≤ mi and m1 +m2 + ...+mp ≤ n.

2. A is diagonalizable iff ni = mi and

m1 +m2 + ...+mp = n.

In this case, let Bi be a basis of Null (A− λiI) for each i. Then

P = [B1, ...,Bp] , D =

λ1Im1 ... 0
... ... ...
0 ... λpImp

 , Imi
= (mi ×mi) identity

i.e., the first m1 columns of P are B1, the eigenvectors for λ1, the next m2 columns of
P are B2, then B3, etc. The last mp columns of P are Bp; the first m1 diagonal entries
of D are λ1, the next m2 diagonal entries of D are λ2, and so on.

3. In particular, if A has n distinct eigenvalues, then A is diagonalizable.

Note that there are multiple choices for assembling P. For instance, if A is 5 × 5, and
A has two eigenvalues λ1 = 1, λ2 = 2 with a basis {~a1,~a2} for Null (A− I) and a basis{
~b1,~b2,~b2

}
for Null (A− 2I) , respectively, then, we have several choices to select pairs of

(P,D) :

choice#1 : P =
[
~a1,~a2,~b1,~b2,~b2

]
, D =

[
I2 0
0 2I3

]

=


[
1 0
0 1

]
0

0

2 0 0
0 2 0
0 0 2


 =


1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2



choice#2 : P =
[
~a1,~b1,~b2,~a2,~b2

]
, D =


1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 2

 .
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Example 5.3.3. Diagonalize A

A =


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 −3

 .
Solution: Eigenvalues are λ1 = 5, m1 = 2 , λ2 = −3, m2 = 2. For λ1 = 5,

A− 5I =


0 0 0 0
0 0 0 0
1 4 −8 0
−1 −2 0 −8

 R4+R3→R4→


0 0 0 0
0 0 0 0
1 4 −8 0
0 2 −8 −8



→


0 0 0 0
0 0 0 0
1 4 −8 0
0 1 −4 −4

→

0 0 0 0
0 0 0 0
1 0 8 16
0 1 −4 −4


Therefore, x3 and x4 are free variable, and

x1 = −8x3 − 16x4
x2 = 4x3 + 4x4.

Choose (x3, x4) = (1, 0) =⇒ x1 = −8, x2 = 4; Choose (x3, x4) = (0, 1) =⇒ x1 = −16, x2 = 4.
We obtain two independent eigenvectors

−8
4
1
0

 ,

−16
4
0
1

 (for λ1 = 5).

For λ2 = −3,

A− (−3) I =


8 0 0 0
0 8 0 0
1 4 0 0
−1 −2 0 0

 R4+R3→R4→


8 0 0 0
0 8 0 0
1 4 0 0
0 2 0 0


R3 − 2R4 → R3
R2 − 4R4 → R2→


8 0 0 0
0 0 0 0
1 0 0 0
0 2 0 0

 R1−8R3→R1→


0 0 0 0
0 0 0 0
1 0 0 0
0 2 0 0

 .
Hence

x1 = 0, x2 = 0.
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Choose (x3, x4) = (1, 0) and (x3, x4) = (0, 1) , respectively, we have eigenvectors
0
0
1
0

 and


0
0
0
1

 (for λ2 = −3).

Assemble pairs (P,D) :

P =


−8 −16 0 0
4 4 0 0
1 0 1 0
0 1 0 1

 , D =


5 0 0 0
0 5 0 0
0 0 −3 0
0 0 0 −3


or

P =


−8 0 −16 0
4 0 4 0
1 1 0 0
0 0 1 1

 , D =


5 0 0 0
0 −3 0 0
0 0 5 0
0 0 0 −3

 .
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