Section 4.5 \& 4.6: Dimension \& Rank

Consider subspaces of the form $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$. When the generators $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are linearly independent, they form a basis for H.

Theorem Let $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ be a basis of H. Then any set of more than p vectors in H is linearly dependent.

Proof: Let T be the coordinate mapping associated with this basis B, i.e., for any vector \vec{x} in H, there is a unique expression

$$
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{p} \vec{v}_{p} .
$$

Recall that this unique column vector of the linear relation is called the coordinate of \vec{x} relative to the basis \mathcal{B} (or \mathcal{B}-coordinate, in short), and is denoted by

$$
[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right], \quad \mathcal{B}-\text { coordinate of } \vec{x}
$$

The coordinate mapping associated with this basis is defined as

$$
T(\vec{x})=[\vec{x}]_{\mathcal{B}}: H \rightarrow R^{p}
$$

Now, suppose $C=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{q}\right\}$ be a subset of H with $q>p$. Then q vectors in R^{p}

$$
T\left(\vec{u}_{1}\right), T\left(\vec{u}_{2}\right), \ldots, T\left(\vec{u}_{q}\right)
$$

are linearly dependent. In other words, there is a nontrivial solution for

$$
x_{1} T\left(\vec{u}_{1}\right)+x_{2} T\left(\vec{u}_{2}\right)+\ldots+x_{q} T\left(\vec{u}_{q}\right)=0
$$

or

$$
T\left(x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\ldots+x_{q} \vec{u}_{q}\right)=0 .
$$

Since T is one-to-one, this leads to

$$
x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\ldots+x_{q} \vec{u}_{q}=0
$$

Conclusion: From this Theorem, if H has two bases

$$
B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}, \quad C=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{q}\right\}
$$

then $p=q$.
However, a subspace may have infinite many sets of basis, for instance, all of the following sets are bases:

$$
\begin{aligned}
& 2 \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p} \\
& \left(\vec{v}_{1}+2 \vec{v}_{2}+5 \vec{v}_{3}\right), \vec{v}_{2}, \ldots, \vec{v}_{p}
\end{aligned}
$$

Definition. Let H be a subspace of V with a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ of p linearly independent vectors. We call p, the number of vectors in a basis, the dimension of H , and denote it by

$$
p=\operatorname{dim}(H)
$$

Example. In R^{n}, the standard basis $\mathcal{B}=\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ consists of n vectors. So, $\operatorname{dim}\left(R^{n}\right)=n$. For any vector

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in R^{n}, \quad[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Example. Consider R^{2}. Let

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Find (a) $\left[\vec{e}_{1}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}$ and $\left[\vec{e}_{2}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}$, (b) $[\vec{x}]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}$ for any \vec{x}.
Solution: To find $\left[\vec{e}_{1}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}$, we need to solve $\vec{e}_{1}=x \vec{v}_{1}+y \vec{v}_{2}$, or

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

We proceed by reducing the augmented matrix:

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 3 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 / 3 \\
0 & 1 & -2 / 3
\end{array}\right]
$$

Therefore,

$$
\vec{e}_{1}=\frac{1}{3} \vec{v}_{1}+\left(-\frac{2}{3}\right) \quad \vec{v}_{2}, \quad\left[\vec{e}_{1}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}=\left[\begin{array}{c}
1 / 3 \\
-2 / 3
\end{array}\right] .
$$

This relation can be written as

$$
\vec{e}_{1}=\frac{1}{3} \vec{v}_{1}+\left(-\frac{2}{3}\right) \vec{v}_{2}=\left[\vec{v}_{1}, \vec{v}_{2}\right]\left[\begin{array}{c}
1 / 3 \\
-2 / 3
\end{array}\right]=\left[\vec{v}_{1}, \vec{v}_{2}\right]\left[\vec{e}_{1}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}} .
$$

Similarly, by solving $\vec{e}_{2}=x \vec{v}_{1}+y \vec{v}_{2}$, or by row operations

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 / 3 \\
0 & 1 & 1 / 3
\end{array}\right]
$$

we found

$$
\left[\vec{e}_{2}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right] .
$$

We may also write the above relations as

$$
\vec{e}_{2}=x \vec{v}_{1}+y \vec{v}_{2}=\frac{1}{3} \vec{v}_{1}+\frac{1}{3} \vec{v}_{2}=\left[\vec{v}_{1}, \vec{v}_{2}\right]\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right]=\left[\vec{v}_{1}, \vec{v}_{2}\right]\left[\vec{e}_{2}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}} .
$$

From this, we see that the 2×2 matrix with columns \vec{e}_{1}, \vec{e}_{2},
$\left[\vec{e}_{1}, \vec{e}_{2}\right]=\left[\left[\vec{v}_{1}, \vec{v}_{2}\right]\left[\vec{e}_{1}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}},\left[\vec{v}_{1}, \vec{v}_{2}\right]\left[\vec{e}_{2}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}\right]=\left[\vec{v}_{1}, \vec{v}_{2}\right]\left[\left[\vec{e}_{1}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}},\left[\vec{e}_{2}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}\right]=\left[\vec{v}_{1}, \vec{v}_{2}\right] V$,
where the matrix

$$
V=\left[\left[\vec{e}_{1}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}},\left[\vec{e}_{2}\right]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3}
\end{array}\right]
$$

represents changes of coordinates from the standard basis to basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. In fact, for any $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, we have

$$
\begin{aligned}
\vec{x} & =x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}=x_{1}\left(\frac{1}{3} \vec{v}_{1}+\left(-\frac{2}{3}\right) \vec{v}_{2}\right)+x_{2}\left(\frac{1}{3} \vec{v}_{1}+\frac{1}{3} \vec{v}_{2}\right) \\
& =\left(\frac{1}{3} x_{1}+\frac{1}{3} x_{2}\right) \vec{v}_{1}+\left(\left(-\frac{2}{3}\right) x_{1}+\frac{1}{3} x_{2}\right) \vec{v}_{2} .
\end{aligned}
$$

Using matrix notation,

$$
\vec{x}=\left[\vec{e}_{1}, \vec{e}_{2}\right] \vec{x}=\left[\vec{v}_{1}, \vec{v}_{2}\right] V \vec{x} .
$$

Hence,

$$
[\vec{x}]_{\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}=V \vec{x}=\left[\begin{array}{cc}
1 / 3 & 1 / 3 \\
-2 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} x_{1}+\frac{1}{3} x_{2} \\
\left(-\frac{2}{3}\right) x_{1}+\frac{1}{3} x_{2}
\end{array}\right]
$$

Theorem: Let H be a subspace of finite dimension. Then any set of linearly independent vectors can be expanded into a basis.

Theorem (The Basis Theorem). Let $\operatorname{dim} V=p$. Then any set of p vectors that spans V automatically forms a basis.

Definition. The dimension of the column space of a matrix A is the same as RANK of the matrix A, i.e.,

$$
\operatorname{Rank}(A)=\operatorname{dim}(\operatorname{Col}(A)) \quad(\quad \text { or simply } R(A))
$$

As we explained in the previous lecture,

$$
\operatorname{Col}(A)=\operatorname{Span}\{\text { pivot columns of } A\}
$$

Recall that $\operatorname{Rank}(A)=$ number of pivots. So

$$
\operatorname{dim}(\operatorname{Col}(A))=\text { number of pivots }
$$

On the other hand, $N u l l(A)$ can be expressed using parametric vector forms, in which the number of free variables is equal to the number of independent generators. So

$$
\operatorname{dim}(\operatorname{Null}(A))=\text { number of free variables }=\text { number of non-pivot columns }
$$

Example. Find $\operatorname{Rank}(A)$ and $\operatorname{dim}(N u l l(A))$ if

$$
A \sim\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & -7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: We see that column $\# 1, \# 2, \# 4$ are pivot. Therefore, these three columns form a basis, and $\operatorname{Rank}(A)=3$. Since non-pivot columns correspond to free variables, in this case, there are two free variables in the solution set for $A \vec{x}=\overrightarrow{0}$, i.e., $\operatorname{dim}(\operatorname{Null}(A))=2$.

The above example demonstrates the following Dimension Theorem for $A_{m \times n}$

$$
\operatorname{Rank}(A)+\operatorname{dim}(N u l l(A))=n
$$

(number of pivots) + (number of non-pivot columns) $=$ number of columns.
Inverse Matrix Theorem (part 2) Let A be an $n \times n$ matrix. each of the following statements is equivalent to A is invertible:

1. The columns of A form a basis of R^{n}.
2. $\operatorname{Col}(A)=R^{n}$.
3. $\operatorname{dim}(\operatorname{Col}(A))=n$
4. $\operatorname{Rank}(A)=n$
5. $\operatorname{Null}(A)=\{0\}$
6. $\operatorname{dim} \operatorname{Null}(A)=0$
