
Section 4.5 & 4.6: Dimension & Rank
Consider subspaces of the formH = Span {~v1, ~v2,..., ~vp} .When the generators ~v1, ~v2,..., ~vp

are linearly independent, they form a basis for H.
Theorem Let B = {~v1, ~v2,..., ~vp} be a basis of H. Then any set of more than p vectors

in H is linearly dependent.
Proof: Let T be the coordinate mapping associated with this basis B, i.e., for any vector

~x in H, there is a unique expression

~x = c1~v1 + c2~v2 + ...+ cp~vp.

Recall that this unique column vector of the linear relation is called the coordinate of ~x
relative to the basis B (or B−coordinate, in short), and is denoted by

[~x]B =


c1
c2
...
cp

 , B−coordinate of ~x,
The coordinate mapping associated with this basis is defined as

T (~x) = [~x]B : H → Rp.

Now, suppose C = {~u1, ~u2, ..., ~uq} be a subset of H with q > p. Then q vectors in Rp

T (~u1) , T (~u2) , ..., T (~uq)

are linearly dependent. In other words, there is a nontrivial solution for

x1T (~u1) + x2T (~u2) + ...+ xqT (~uq) = 0

or
T (x1~u1 + x2~u2 + ...+ xq~uq) = 0.

Since T is one-to-one, this leads to

x1~u1 + x2~u2 + ...+ xq~uq = 0.

Conclusion: From this Theorem, if H has two bases

B = {~v1, ~v2,..., ~vp} , C = {~u1, ~u2, ..., ~uq}

then p = q.
However, a subspace may have infinite many sets of basis, for instance, all of the following

sets are bases:

2~v1, ~v2,..., ~vp

(~v1 + 2~v2 + 5~v3) , ~v2,..., ~vp.
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Definition. Let H be a subspace of V with a basis B = {~v1, ~v2,..., ~vp} of p linearly
independent vectors. We call p, the number of vectors in a basis, the dimension of H, and
denote it by

p = dim (H) .

Example. In Rn, the standard basis B = {~e1, ~e2, ..., ~en} consists of n vectors. So,
dim(Rn) = n. For any vector

~x =


x1
x2
...
xn

 ∈ Rn, [~x]B =


x1
x2
...
xn

 .
Example. Consider R2. Let

~v1 =

[
1
2

]
, ~v2 =

[
−1
1

]
, ~e1 =

[
1
0

]
, ~e2 =

[
0
1

]
.

Find (a) [ ~e1]{~v1,~v2} and [ ~e2]{~v1,~v2} , (b) [ ~x]{~v1,~v2} for any ~x.
Solution: To find [ ~e1]{~v1,~v2} , we need to solve ~e1 = x~v1 + y ~v2, or[

1
0

]
= x

[
1
2

]
+ y

[
−1
1

]
.

We proceed by reducing the augmented matrix:[
1 −1 1
2 1 0

]
→
[
1 −1 1
0 3 −2

]
→
[
1 0 1/3
0 1 −2/3

]
.

Therefore,

~e1 =
1

3
~v1 +

(
−2
3

)
~v2, [ ~e1]{~v1,~v2} =

[
1/3
−2/3

]
.

This relation can be written as

~e1 =
1

3
~v1 +

(
−2
3

)
~v2 = [~v1, ~v2]

[
1/3
−2/3

]
= [~v1, ~v2] [ ~e1]{~v1,~v2} .

Similarly, by solving ~e2 = x~v1 + y ~v2, or by row operations[
1 −1 0
2 1 1

]
→
[
1 −1 0
0 3 1

]
→
[
1 0 1/3
0 1 1/3

]
,

we found

[ ~e2]{~v1,~v2} =

[
x
y

]
=

[
1/3
1/3

]
.
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We may also write the above relations as

~e2 = x~v1 + y ~v2 =
1

3
~v1 +

1

3
~v2 = [~v1, ~v2]

[
1/3
1/3

]
= [~v1, ~v2] [ ~e2]{~v1,~v2} .

From this, we see that the 2× 2 matrix with columns ~e1, ~e2,

[~e1, ~e2] =
[
[~v1, ~v2] [ ~e1]{~v1,~v2} , [~v1, ~v2] [ ~e2]{~v1,~v2}

]
= [~v1, ~v2]

[
[ ~e1]{~v1,~v2} , [ ~e2]{~v1,~v2}

]
= [~v1, ~v2]V,

where the matrix

V =
[
[ ~e1]{~v1,~v2} , [ ~e2]{~v1,~v2}

]
=

 1

3

1

3

−2
3

1

3


represents changes of coordinates from the standard basis to basis {~v1, ~v2} . In fact, for any

~x =

[
x1
x2

]
, we have

~x = x1~e1 + x2~e2 = x1

(
1

3
~v1 +

(
−2
3

)
~v2

)
+ x2

(
1

3
~v1 +

1

3
~v2

)
=

(
1

3
x1 +

1

3
x2

)
~v1 +

((
−2
3

)
x1 +

1

3
x2

)
~v2.

Using matrix notation,
~x = [~e1, ~e2] ~x = [~v1, ~v2]V ~x.

Hence,

[~x]{~v1,~v2} = V ~x =

[
1/3 1/3
−2/3 1/3

] [
x1
x2

]
=


1

3
x1 +

1

3
x2(

−2
3

)
x1 +

1

3
x2

 .
Theorem: LetH be a subspace of finite dimension. Then any set of linearly independent

vectors can be expanded into a basis.
Theorem (The Basis Theorem). Let dimV = p. Then any set of p vectors that spans

V automatically forms a basis.
Definition. The dimension of the column space of a matrix A is the same as RANK of

the matrix A, i.e.,

Rank (A) = dim (Col (A)) ( or simply R (A) ).

As we explained in the previous lecture,

Col (A) = Span {pivot columns of A} .

Recall that Rank (A) = number of pivots. So

dim (Col (A)) = number of pivots
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On the other hand, Null (A) can be expressed using parametric vector forms, in which the
number of free variables is equal to the number of independent generators. So

dim (Null (A)) = number of free variables = number of non-pivot columns

Example. Find Rank (A) and dim (Null (A)) if

A ∼


2 5 −3 −4 8
0 −3 2 5 −7
0 0 0 4 −6
0 0 0 0 0

 .
Solution: We see that column#1, #2, #4 are pivot. Therefore, these three columns

form a basis, and Rank (A) = 3. Since non-pivot columns correspond to free variables, in
this case, there are two free variables in the solution set for A~x = ~0, i.e., dim (Null (A)) = 2.
The above example demonstrates the following Dimension Theorem for Am×n

Rank (A) + dim (Null (A)) = n

(number of pivots) + (number of non-pivot columns) = number of columns.

Inverse Matrix Theorem (part 2) Let A be an n × n matrix. each of the following
statements is equivalent to A is invertible:

1. The columns of A form a basis of Rn.

2. Col (A) = Rn.

3. dim(Col (A)) = n

4. Rank (A) = n

5. Null (A) = {0}

6. dimNull (A) = 0
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