Section 4.1-4.4: Vector Spaces and Subspaces

Definition $1 A$ vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition " + " and scalar multiplication, satisfying the following properties:

1. $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
2. $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
3. There is a $\overrightarrow{0}$ in V such that $\vec{u}+\overrightarrow{0}=\overrightarrow{0}+\vec{u}$
4. For any vector \vec{u} in V, there is a vector $-\vec{u}$ such that $\vec{u}+(-\vec{u})=\overrightarrow{0}$
5. For any real number $c, c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v}$
6. $(c+d) \vec{u}=c \vec{u}+d \vec{u}$
7. $c(d \vec{u})=(c d) \vec{u}$
8. $1 \vec{u}=\vec{u}$

Examples of vectors spaces

1. R^{n} with usual addition and scalar multiplication
2. $M_{m n}=$ set of all $m \times n$ matrices
3. $P=$ set of all polynomials
4. $P_{n}=$ set of all polynomials with degree less than or equal to n
5. $C(a, b)=$ set of all continuous function
6. $C^{n}(a, b)=$ set of all continuous function with up to nth order continuous derivatives
7. All solutions of ODE $y^{\prime}+p(t) y=0$
8. All solutions of $\mathrm{ODE} y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$

Definition $2 A$ subspace $W \subset V$ of a vector space V is a subset that is closed under operations, i.e.,
(1) $\vec{x}, \vec{y} \in W \Longrightarrow \vec{x}+\vec{y} \in W$,
(2) $\vec{x} \in W, k$ constant $\Longrightarrow k \vec{x} \in W$

Example 3 (1) $\{0\}$ and V are always subspaces, called trivial subspaces
(2) The only other trivial subspace in R^{n}. In R^{2}, the only non-trivial subspaces are lines passing through the origin.
(3) In R^{3}, either a line passing through the origin or a plane passing through the origin is a subspace.
(4)Let A be a matrix. The solution set of $A \vec{x}=\overrightarrow{0}$ is a subspace.
(5) $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is a subspace.
(6) Any subspace in R^{n} is a subspace spanned by no more than n vectors.
(7) $P_{n} \subset P \subset C^{n}(a, b) \subset C(a, b)$

Definition $4 A$ set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ in V is called linearly independent if the only solution of

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\ldots+x_{p} \vec{v}_{p}=0
$$

is $x_{1}=x_{2}=\ldots=x_{p}=0$.
Theorem $5\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is linearly independent iff at least one is a linear combination of the rest.

Definition 6 Let

$$
H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}
$$

H be a subspace of V. We call $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ a basis for H if $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is linearly independent.

Example 7 In R^{n}, the columns of I_{n} form the standard basis:

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \ldots, \vec{e}_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

If $\vec{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$, then $\vec{x}=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+, \ldots, x_{n} \vec{e}_{n}$.
Theorem 8 Suppose $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$. Then a subset of $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ form a basis.
Definition 9 Let $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$. Then the number of vectors of a basis is called dimension of H, and is denoted as $\operatorname{dim} H$.

Definition 10 (a) Let $A=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{p}\right]_{m \times p}$ be matrix that has p column vectors $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{p}$. We call the space spanned by columns

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{p}\right\}
$$

the column space.
(b) The null space N ull (A) of A is a subspace of all solution $A \vec{x}=\overrightarrow{0}$:

$$
\operatorname{Null}(A)=\{\vec{x} \mid A \vec{x}=\overrightarrow{0}\} .
$$

(c) If a subspace H is spanned by p vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$, i.e.,

$$
H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}
$$

then we said that H is generated by $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$, and these $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are called a set of generators for H. If in addition, generators $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are the linearly independent, then we call the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ a basis for H. The number of vectors in basis is called the dimension of H. In particular,

$$
\operatorname{dim}(\operatorname{Null}(A))=\text { number of free variables. }
$$

Example 11 Find a basis for (a) $\operatorname{Null}(A)$ and (b) $\operatorname{Col}(A)$ if

$$
A=\left[\begin{array}{cccccc}
-3 & 6 & -1 & -1 & 1 & -7 \\
1 & -2 & 2 & 2 & 3 & -1 \\
2 & -4 & 5 & 5 & 8 & -4
\end{array}\right]
$$

Solution: (a) We need to solve $A \vec{x}=\overrightarrow{0}$. We first perform row operations:

$$
\begin{aligned}
A & =\left[\begin{array}{cccccc}
-3 & 6 & -1 & -1 & 1 & -7 \\
1 & -2 & 2 & 2 & 3 & -1 \\
2 & -4 & 5 & 5 & 8 & -4
\end{array}\right] \xrightarrow{R_{1} \rightarrow R_{2}}\left[\begin{array}{ccccc}
1 & -2 & 2 & 2 & 3 \\
-1 & -1 \\
-3 & 6 & -1 & -1 & 1 \\
-7 \\
2 & -4 & 5 & 5 & 8 \\
-4
\end{array}\right] \\
& \left.\xrightarrow{R_{2}+3 R_{1} \rightarrow R_{2}}\left[\begin{array}{ccccccc}
1 & -2 & 2 & 2 & 3 & -1 \\
0 & 0 & 5 & 5 & 10 & -10 \\
R_{3}-2 R_{1} \rightarrow R_{3} \\
0 & 0 & 1 & 1 & 2 & -2
\end{array}\right] \xrightarrow{R_{2}-5 R_{3} \rightarrow R_{2}} \begin{array}{ccccccc}
1 & -2 & 0 & 0 & 1 & 1 \\
R_{1}-2 R_{3} \rightarrow R_{1} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 & -2
\end{array}\right] \\
& \xrightarrow{R_{2}-5 R_{3} \rightarrow R_{2}}\left[\begin{array}{cccccc}
1 & -2 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

The corresponding system equivalent to $A \vec{x}=\overrightarrow{0}$ becomes

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{5}+x_{6} & =0 \\
x_{3}+x_{4}+2 x_{5}-2 x_{6} & =0 .
\end{aligned}
$$

Since $\# 2, \# 4, \# 5, \# 6$ are non-pivot columns, $x_{2}, x_{4}, x_{5}, x_{6}$ are free variables, and they can be solved as

$$
\begin{aligned}
& x_{1}=2 x_{2}-x_{5}-x_{6} \\
& x_{3}=-x_{4}-2 x_{5}+2 x_{6},
\end{aligned}
$$

and solution has the parametric form

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-x_{5}-x_{6} \\
x_{2} \\
-x_{4}-2 x_{5}+2 x_{6} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
0 \\
1 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
2 \\
0 \\
0 \\
1
\end{array}\right] .
$$

These 4 vectors are linearly independent and form a basis, and

$$
\operatorname{Null}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
2 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

and $\operatorname{dim}(\operatorname{Null}(A))=4$.
(b) From (a)

$$
A=\left[\begin{array}{cccccc}
-3 & 6 & -1 & -1 & 1 & -7 \\
1 & -2 & 2 & 2 & 3 & -1 \\
2 & -4 & 5 & 5 & 8 & -4
\end{array}\right] \longrightarrow\left[\begin{array}{cccccc}
1 & -2 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=B
$$

Since in B, \vec{b}_{1} and \vec{b}_{3}, the pivot columns of B, are linearly independent, and since $\vec{b}_{2}, \vec{b}_{4}, \vec{b}_{5}, \vec{b}_{6}$ are all linear combination of \vec{b}_{1} and \vec{b}_{3}, we see that \vec{b}_{1} and \vec{b}_{3} form a basis and

$$
\operatorname{Col}(B)=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{3}\right\} .
$$

Note that row operations produce equivalent systems (i.e., systems have the same solutions), row operations will not change linear relations. More precisely, if $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}+x_{4} \vec{a}_{4}+$ $x_{5} \vec{a}_{5}+x_{6} \vec{a}_{6}=\overrightarrow{0}$, then $x_{1} \vec{b}_{1}+x_{2} \vec{b}_{2}+x_{3} \vec{b}_{3}+x_{4} \vec{b}_{4}+x_{5} \vec{b}_{5}+x_{6} \vec{b}_{6}=\overrightarrow{0}$. We hence conclude
(a) \vec{a}_{1} and \vec{a}_{3} are linearly independent, since \vec{b}_{1} and \vec{b}_{3} are linearly independent, and
(b) $\vec{a}_{2}, \vec{a}_{4}, \vec{a}_{5}, \vec{a}_{6}$ are linear combination of \vec{a}_{1} and \vec{a}_{3} (e.g. $\vec{a}_{2}=2 \vec{a}_{1}+3 \vec{a}_{3}$), since $\vec{b}_{2}, \vec{b}_{4}, \vec{b}_{5}, \vec{b}_{6}$ are linear combination of \vec{b}_{1} and \vec{b}_{3} (e.g., $\vec{b}_{2}=2 \vec{b}_{1}+3 \vec{b}_{3}$).
and consequently

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{3}\right\}
$$

and

$$
\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right] \text { form a basis. }
$$

Summary. Basis of $\operatorname{Col}(A)=$ subset of pivot columns of A.Basis of $\operatorname{Null}(A)=$ vectors associated with free variables in a parametric vector form.

Example 12 Suppose that

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
1 & -2 & 0 & 0 & 1 & 1 \\
2 & -4 & 1 & 1 & 4 & 0 \\
-1 & 2 & 0 & 1 & 9 & 19 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{cccccc}
1 & -2 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 & -2 \\
0 & 0 & 0 & 1 & 10 & 20 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] . \\
\text { Then } \operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\right\} ? ? ?
\end{gathered}
$$

Correct answer

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\right\} .
$$

Section 4.4 Coordinate Systems

Suppose that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ form a basis for H. Then, for any $\vec{x} \in H$, we have the unique linear relation

$$
\begin{equation*}
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{p} \vec{v}_{p} . \tag{1}
\end{equation*}
$$

In fact, if there is another expression for the same \vec{x} :

$$
\vec{x}=d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}+\ldots+d_{p} \vec{v}_{p}
$$

then

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{p} \vec{v}_{p}=\vec{x}=d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}+\ldots+d_{p} \vec{v}_{p}
$$

and thus

$$
\left(c_{1}-d_{1}\right) \vec{v}_{1}+\left(c_{2}-d_{2}\right) \vec{v}_{2}+\ldots+\left(c_{p}-d_{p}\right) \vec{v}_{p}=0
$$

Since $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are linearly independent,

$$
\begin{aligned}
c_{1}-d_{1} & =0,\left(c_{2}-d_{2}\right)=0, \ldots, c_{p}-d_{p}=0 \\
& \Longrightarrow \\
c_{1} & =d_{1}, c_{2}=d_{2}, \ldots, c_{p}=d_{p}
\end{aligned}
$$

i.e., the relation is unique.

Definition 13 Let $B=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{p}\right\}$ be a basis for H. Then for any vector \vec{x} in H, there is a unique representation

$$
\vec{x}=x_{1} \vec{b}_{1}+x_{2} \vec{b}_{2}+\ldots+x_{p} \vec{b}_{p}
$$

We call the vector

$$
[\vec{x}]_{B}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]
$$

the coordinate of \vec{x} relative to the basis B, or B - coordinate of \vec{x}.
Example: Let $\mathrm{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$,

$$
\vec{b}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad[\vec{x}]_{B}=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\vec{v}
$$

Find (a) \vec{x} and (b) $[\vec{v}]_{B}$
Sol: (a) By the definition,

$$
\vec{x}=-2 \vec{b}_{1}+4 \vec{b}_{2}=-2\left[\begin{array}{l}
1 \\
0
\end{array}\right]+4\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
8
\end{array}\right]
$$

(b) To find B - coordinate of \vec{v}, we need to solve

$$
v_{1} \vec{b}_{1}+v_{2} \vec{b}_{2}=\vec{v}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

or

$$
\left[\begin{array}{ll}
\vec{b}_{1} & \vec{b}_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]
$$

The solution is

$$
[\vec{v}]_{B}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
2
\end{array}\right] .
$$

Definition 14 Let $B=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{p}\right\}$ be a basis of a subspace $H=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{p}\right\}$ in R^{n}. Then

$$
P_{B}=\left[\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{p}\right]
$$

is called the change of coordinate matrix from B to the standard basis, and for any \vec{x} in H

$$
\vec{x}=P_{B}[\vec{x}]_{B}=\left[\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{p}\right][\vec{x}]_{B}
$$

In the Example above,

$$
P_{B}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right], \quad P_{B}[\vec{v}]_{B}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-4 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\vec{v}
$$

Theorem 15 Let B_{1} and B_{2} be two bases of H in R^{n}. Then for any \vec{x} in H,

$$
\vec{x}=P_{B_{1}}[\vec{x}]_{B_{1}}=P_{B_{2}}[\vec{x}]_{B_{2}}
$$

So if $H=R^{n}$, then

$$
[\vec{x}]_{B_{1}}=\left(P_{B_{1}}\right)^{-1} P_{B_{2}}[\vec{x}]_{B_{2}} .
$$

The matrix $\left(P_{B_{1}}\right)^{-1} P_{B_{2}}$ is called the change of coordinate matrix from B_{2} to B_{1}.
Example 16 Let

$$
\vec{b}_{1}=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \vec{x}=\left[\begin{array}{c}
3 \\
12 \\
7
\end{array}\right]
$$

(a) Find a basis B and dimension of $H=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$
(b) Determine if $\vec{x} \in H$. If so, find $[\vec{x}]_{B}$

Sol: (a) Since \vec{b}_{1} is not a multiple of \vec{b}_{2}, they are linearly independent. So $B=$ $\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ forms a basis and $\operatorname{dim} H=2$
(b) The basis changing matrix is

$$
P_{B}=\left[\begin{array}{cc}
3 & -1 \\
6 & 0 \\
2 & 1
\end{array}\right]
$$

So $\vec{x} \in H$ iff the following system is consistent:

$$
P_{B} \vec{y}=\vec{x}
$$

By row operation, the augmented matrix

$$
\left[P_{B}, \vec{x}\right]=\left[\begin{array}{ccc}
3 & -1 & 3 \\
6 & 0 & 12 \\
2 & 1 & 7
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, $\vec{x} \in H$, and

$$
[\vec{x}]_{B}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Theorem 17 (Coordinate mapping) Let H be a n-dimensional vector space. Then there is an 1-1 and onto linear transformation T from H to R^{n}. In this case, we say H is equivalent to R^{n}.

Proof: Let $B=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$ be a basis such that $H=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$. Define $T: H \rightarrow R^{n}$ by

$$
T(\vec{x})=[\vec{x}]_{B}
$$

Example 18 Let $B=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of P_{3}. Find $T: P_{3} \rightarrow R^{3}$.
Example 19 Let $B=\left\{1+2 t^{2}, 4+t+5 t^{2}, 3+2 t\right\}$ be a subset of P_{2}. (a) Show B forms a basis for P_{3} and $H=S$ pan $B=P$. (b) Find coordinate changing matrix from B to the standard basis $S=\left\{1\right.$. t. $\left.^{2}\right\}$.

Sol:

$$
\left[1+2 t^{2}\right]_{S}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[4+t+5 t^{2}\right]_{S}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right],[3+2 t]_{S}=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]
$$

For any quadratic function $f=a_{0}+a_{1} t+a_{2} t^{2}$, if

$$
\begin{aligned}
{[f]_{B} } & =\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2}
\end{array}\right], \text { i.e., } \\
f & =f_{0}\left(1+2 t^{2}\right)+f_{1}\left(4+t+5 t^{2}\right)+f_{2}(3+2 t)
\end{aligned}
$$

then

$$
\begin{aligned}
{\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right] } & =[f]_{S} \\
& =\left[f_{0}\left(1+2 t^{2}\right)+f_{1}\left(4+t+5 t^{2}\right)+f_{2}(3+2 t)\right]_{S} \\
& =\left[\begin{array}{lll}
1 & 4 & 3 \\
0 & 1 & 2 \\
2 & 5 & 0
\end{array}\right]\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2}
\end{array}\right]
\end{aligned}
$$

So

$$
P_{B}=\left[\begin{array}{ccc}
1 & 4 & 3 \\
0 & 1 & 2 \\
2 & 5 & 0
\end{array}\right], \quad[f]_{S}=P_{B}[f]_{B}
$$

1

