Section 4.1–4.4: Vector Spaces and Subspaces

Definition 1 A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition "+" and scalar multiplication, satisfying the following properties:

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- 3. There is a $\vec{0}$ in V such that $\vec{u} + \vec{0} = \vec{0} + \vec{u}$
- 4. For any vector \vec{u} in V, there is a vector $-\vec{u}$ such that $\vec{u} + (-\vec{u}) = \vec{0}$
- 5. For any real number c, $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
- 6. $(c+d)\vec{u} = c\vec{u} + d\vec{u}$
- 7. $c(d\vec{u}) = (cd)\vec{u}$
- 8. $1\vec{u} = \vec{u}$

Examples of vectors spaces

- 1. \mathbb{R}^n with usual addition and scalar multiplication
- 2. M_{mn} = set of all $m \times n$ matrices
- 3. P = set of all polynomials
- 4. P_n = set of all polynomials with degree less than or equal to n
- 5. C(a, b) = set of all continuous function
- 6. $C^{n}(a, b) = \text{set of all continuous function with up to nth order continuous derivatives}$
- 7. All solutions of ODE y' + p(t) y = 0
- 8. All solutions of ODE y'' + p(t)y' + q(t)y = 0

Definition 2 A subspace $W \subset V$ of a vector space V is a subset that is closed under operations, *i.e.*,

(1)
$$\vec{x}, \vec{y} \in W \implies \vec{x} + \vec{y} \in W$$
, (2) $\vec{x} \in W$, k constant $\implies k\vec{x} \in W$

Example 3 (1) $\{0\}$ and V are always subspaces, called trivial subspaces

(2) The only other trivial subspace in \mathbb{R}^n . In \mathbb{R}^2 , the only non-trivial subspaces are lines passing through the origin.

(3) In \mathbb{R}^3 , either a line passing through the origin or a plane passing through the origin is a subspace.

- (4)Let A be a matrix. The solution set of $A\vec{x} = \vec{0}$ is a subspace.
- (5) $Span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ is a subspace.
- (6) Any subspace in \mathbb{R}^n is a subspace spanned by no more than n vectors.

(7) $P_n \subset P \subset C^n(a,b) \subset C(a,b)$

Definition 4 A set of vectors $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ in V is called linearly independent if the only solution of

$$x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_p \vec{v}_p = 0$$

is $x_1 = x_2 = \dots = x_p = 0$.

Theorem 5 $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ is linearly independent iff at least one is a linear combination of the rest.

Definition 6 Let

$$H = Span \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_p \}$$

H be a subspace of *V*. We call $B = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_p}$ a basis for *H* if ${\vec{v}_1, \vec{v}_2, ..., \vec{v}_p}$ is linearly independent.

Example 7 In \mathbb{R}^n , the columns of I_n form the standard basis:

$$\vec{e}_1 = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \ \vec{e}_2 = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \dots, \ \vec{e}_n = \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix}.$$

If $\vec{x} = [x_1, x_2, ..., x_n]^T$, then $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + ..., x_n \vec{e}_n$.

Theorem 8 Suppose $H = Span \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_p \}$. Then a subset of $\{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_p \}$ form a basis.

Definition 9 Let $H = Span \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_p \}$. Then the number of vectors of a basis is called dimension of H, and is denoted as dim H.

Definition 10 (a) Let $A = [\vec{a}_1, \vec{a}_2, ..., \vec{a}_p]_{m \times p}$ be matrix that has p column vectors $\vec{a}_1, \vec{a}_2, ..., \vec{a}_p$. We call the space spanned by columns

$$Col(A) = Span\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_p\}$$

the column space.

(b) The null space Null (A) of A is a subspace of all solution $A\vec{x} = \vec{0}$:

$$Null(A) = \left\{ \vec{x} \mid A\vec{x} = \vec{0} \right\}.$$

(c) If a subspace H is spanned by p vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_p}$, i.e.,

$$H = Span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\},\$$

then we said that H is generated by $\vec{v}_1, \vec{v}_2, ..., \vec{v}_p$, and these $\vec{v}_1, \vec{v}_2, ..., \vec{v}_p$ are called a set of generators for H. If in addition, generators $\vec{v}_1, \vec{v}_2, ..., \vec{v}_p$ are the linearly independent, then we call the set $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ a basis for H. The number of vectors in basis is called the dimension of H. In particular,

 $\dim(Null(A)) = number of free variables.$

Example 11 Find a basis for (a) Null(A) and (b) Col(A) if

$$A = \begin{bmatrix} -3 & 6 & -1 & -1 & 1 & -7 \\ 1 & -2 & 2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 5 & 8 & -4 \end{bmatrix}.$$

Solution: (a) We need to solve $A\vec{x} = \vec{0}$. We first perform row operations:

$$A = \begin{bmatrix} -3 & 6 & -1 & -1 & 1 & -7 \\ 1 & -2 & 2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 5 & 8 & -4 \end{bmatrix} \xrightarrow{R_1 \to R_2} \begin{bmatrix} 1 & -2 & 2 & 2 & 3 & -1 \\ -3 & 6 & -1 & -1 & 1 & -7 \\ 2 & -4 & 5 & 5 & 8 & -4 \end{bmatrix}$$
$$\xrightarrow{R_2 + 3R_1 \to R_2} \begin{bmatrix} 1 & -2 & 2 & 2 & 3 & -1 \\ 0 & 0 & 5 & 5 & 10 & -10 \\ 0 & 0 & 1 & 1 & 2 & -2 \end{bmatrix} \xrightarrow{R_2 - 5R_3 \to R_2} \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 2 & -2 \end{bmatrix}$$
$$\xrightarrow{R_2 - 5R_3 \to R_2} \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

The corresponding system equivalent to $A\vec{x} = \vec{0}$ becomes

$$x_1 - 2x_2 + x_5 + x_6 = 0$$
$$x_3 + x_4 + 2x_5 - 2x_6 = 0$$

Since #2, #4, #5, #6 are non-pivot columns, x_2 , x_4 , x_5 , x_6 are free variables, and they can be solved as

$$x_1 = 2x_2 - x_5 - x_6$$

$$x_3 = -x_4 - 2x_5 + 2x_6,$$

and solution has the parametric form

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 2x_2 - x_5 - x_6 \\ x_2 \\ -x_4 - 2x_5 + 2x_6 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 0 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} -1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

These 4 vectors are linearly independent and form a basis, and

$$Null(A) = Span\left\{ \begin{bmatrix} 2\\1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\-1\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\-2\\0\\1\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\-2\\0\\1\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\2\\0\\1\\0\end{bmatrix} \right\},$$

and dim (Null(A)) = 4.

(b) From (a) (a)

$$A = \begin{bmatrix} -3 & 6 & -1 & -1 & 1 & -7 \\ 1 & -2 & 2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 5 & 8 & -4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = B$$

Since in B, $\vec{b_1}$ and $\vec{b_3}$, the pivot columns of B, are linearly independent, and since $\vec{b_2}, \vec{b_4}, \vec{b_5}, \vec{b_6}$ are all linear combination of \vec{b}_1 and \vec{b}_3 , we see that \vec{b}_1 and \vec{b}_3 form a basis and

$$Col(B) = Span\left\{\vec{b}_1, \vec{b}_3\right\}.$$

Note that row operations produce equivalent systems (i.e., systems have the same solutions), row operations will not change linear relations. More precisely, if $x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3 + x_4\vec{a}_4 + x_4\vec{a}_$ $x_5\vec{a}_5 + x_6\vec{a}_6 = \vec{0}$, then $x_1\vec{b}_1 + x_2\vec{b}_2 + x_3\vec{b}_3 + x_4\vec{b}_4 + x_5\vec{b}_5 + x_6\vec{b}_6 = \vec{0}$. We hence conclude (a) \vec{a}_1 and \vec{a}_3 are linearly independent, since \vec{b}_1 and \vec{b}_3 are linearly independent, and

(b) $\vec{a}_2, \vec{a}_4, \vec{a}_5, \vec{a}_6$ are linear combination of \vec{a}_1 and \vec{a}_3 (e.g. $\vec{a}_2 = 2\vec{a}_1 + 3\vec{a}_3$), since $\vec{b}_2, \vec{b}_4, \vec{b}_5, \vec{b}_6$ are linear combination of \vec{b}_1 and \vec{b}_3 (e.g., $\vec{b}_2 = 2\vec{b}_1 + 3\vec{b}_3$).

and consequently

$$Col(A) = Span\{\vec{a}_1, \vec{a}_3\}$$

and

$$\begin{bmatrix} -3\\1\\2 \end{bmatrix} \text{ and } \begin{bmatrix} -1\\2\\5 \end{bmatrix} \text{ form a basis.}$$

Summary. Basis of Col(A) = subset of pivot columns of A.Basis of Null(A) = vectors associated with free variables in a parametric vector form.

Example 12 Suppose that

$$A = \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & 1 \\ 2 & -4 & 1 & 1 & 4 & 0 \\ -1 & 2 & 0 & 1 & 9 & 19 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & -2 \\ 0 & 0 & 0 & 1 & 10 & 20 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then Col (A) = Span $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$???

Correct answer

$$Col(A) = Span\left\{ \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix} \right\}.$$

Section 4.4 Coordinate Systems Suppose that $\vec{v}_1, \vec{v}_2, ..., \vec{v}_p$ form a basis for H. Then, for any $\vec{x} \in H$, we have the unique linear relation

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p. \tag{1}$$

In fact, if there is another expression for the same \vec{x} :

$$\vec{x} = d_1 \vec{v}_1 + d_2 \vec{v}_2 + \dots + d_p \vec{v}_p,$$

then

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_p \vec{v}_p = \vec{x} = d_1 \vec{v}_1 + d_2 \vec{v}_2 + \ldots + d_p \vec{v}_p,$$

and thus

$$(c_1 - d_1) \, \vec{v}_1 + (c_2 - d_2) \, \vec{v}_2 + \dots + (c_p - d_p) \, \vec{v}_p = 0$$

Since $\vec{v}_1, \vec{v}_{2,...}, \vec{v}_p$ are linearly independent,

$$c_1 - d_1 = 0, (c_2 - d_2) = 0, ..., c_p - d_p = 0,$$

 \implies
 $c_1 = d_1, c_2 = d_2, ..., c_p = d_p$

i.e., the relation is unique.

Definition 13 Let $B = \left\{ \vec{b}_1, \vec{b}_2, ..., \vec{b}_p \right\}$ be a basis for H. Then for any vector \vec{x} in H, there is a unique representation

$$\vec{x} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_p \vec{b}_p.$$

We call the vector

$$[\vec{x}]_B = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

the coordinate of \vec{x} relative to the basis B, or B – coordinate of \vec{x} .

Example: Let $B = \left\{ \vec{b}_1, \vec{b}_2 \right\}$, $\vec{b}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}$, $[\vec{x}]_B = \begin{bmatrix} -2\\4 \end{bmatrix} = \vec{v}$.

Find (a) \vec{x} and (b) $[\vec{v}]_B$

Sol: (a) By the definition,

$$\vec{x} = -2\vec{b}_1 + 4\vec{b}_2 = -2\begin{bmatrix}1\\0\end{bmatrix} + 4\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\8\end{bmatrix}$$

(b) To find B - coordinate of \vec{v} , we need to solve

$$v_1\vec{b}_1 + v_2\vec{b}_2 = \vec{v} = \begin{bmatrix} -2\\3 \end{bmatrix}$$

or

$$\begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

The solution is

$$\left[\vec{v}\right]_B = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

Definition 14 Let $B = \left\{ \vec{b}_1, \vec{b}_2, ..., \vec{b}_p \right\}$ be a basis of a subspace $H = Span \left\{ \vec{b}_1, \vec{b}_2, ..., \vec{b}_p \right\}$ in \mathbb{R}^n . Then

$$P_B = \left[\vec{b}_1, \vec{b}_2, ..., \vec{b}_p\right]$$

is called the change of coordinate matrix from B to the standard basis, and for any \vec{x} in H

$$\vec{x} = P_B \left[\vec{x} \right]_B = \left[\vec{b}_1, \vec{b}_2, \dots, \vec{b}_p \right] \left[\vec{x} \right]_B$$

In the Example above,

$$P_B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad P_B \begin{bmatrix} \vec{v} \end{bmatrix}_B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \vec{v}$$

Theorem 15 Let B_1 and B_2 be two bases of H in \mathbb{R}^n . Then for any \vec{x} in H,

$$\vec{x} = P_{B_1} \left[\vec{x} \right]_{B_1} = P_{B_2} \left[\vec{x} \right]_{B_2}$$

So if $H = R^n$, then

$$\left[\vec{x}\right]_{B_1} = (P_{B_1})^{-1} P_{B_2} \left[\vec{x}\right]_{B_2}$$

The matrix $(P_{B_1})^{-1} P_{B_2}$ is called the change of coordinate matrix from B_2 to B_1 .

Example 16 Let

$$\vec{b}_1 = \begin{bmatrix} 3\\6\\2 \end{bmatrix}, \vec{b}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} 3\\12\\7 \end{bmatrix}$$
dimension of $H = \text{Span}\left\{\vec{b}, \vec{b}\right\}$

(a) Find a basis B and dimension of $H = Span \left\{ b_1, b_2 \right\}$

(b) Determine if $\vec{x} \in H$. If so, find $[\vec{x}]_B$

Sol: (a) Since \vec{b}_1 is not a multiple of \vec{b}_2 , they are linearly independent. So $B = \{\vec{b}_1, \vec{b}_2\}$ forms a basis and dim H = 2

(b) The basis changing matrix is

$$P_B = \begin{bmatrix} 3 & -1 \\ 6 & 0 \\ 2 & 1 \end{bmatrix}$$

So $\vec{x} \in H$ iff the following system is consistent:

$$P_B \vec{y} = \vec{x}$$

By row operation, the augmented matrix

$$[P_B, \vec{x}] = \begin{bmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore, $\vec{x} \in H$, and

$$\left[\vec{x}\right]_B = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

Theorem 17 (Coordinate mapping) Let H be a n-dimensional vector space. Then there is an 1-1 and onto linear transformation T from H to \mathbb{R}^n . In this case, we say H is equivalent to \mathbb{R}^n .

Proof: Let $B = \left\{ \vec{b_1}, \vec{b_2}, ..., \vec{b_n} \right\}$ be a basis such that $H = Span\left\{ \vec{b_1}, \vec{b_2}, ..., \vec{b_n} \right\}$. Define $T: H \to \mathbb{R}^n$ by

$$T\left(\vec{x}\right) = \left[\vec{x}\right]_B$$

Example 18 Let $B = \{1, t, t^2, t^3\}$ be the standard basis of P_3 . Find $T : P_3 \to R^3$.

Example 19 Let $B = \{1 + 2t^2, 4 + t + 5t^2, 3 + 2t\}$ be a subset of P_2 . (a) Show B forms a basis for P_3 and H = SpanB = P. (b) Find coordinate changing matrix from B to the standard basis $S = \{1.t.t^2\}$.

Sol:

$$\begin{bmatrix} 1+2t^2 \end{bmatrix}_S = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \ \begin{bmatrix} 4+t+5t^2 \end{bmatrix}_S = \begin{bmatrix} 4\\1\\5 \end{bmatrix}, \ \begin{bmatrix} 3+2t \end{bmatrix}_S = \begin{bmatrix} 3\\2\\0 \end{bmatrix}$$

For any quadratic function $f = a_0 + a_1 t + a_2 t^2$, if

$$[f]_B = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}, \text{ i.e.,}$$

$$f = f_0 (1 + 2t^2) + f_1 (4 + t + 5t^2) + f_2 (3 + 2t)$$

then

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = [f]_S$$

$$= [f_0 (1+2t^2) + f_1 (4+t+5t^2) + f_2 (3+2t)]_S$$

$$= \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}$$

 So

$$P_B = \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \end{bmatrix}, \quad [f]_S = P_B [f]_B$$

1