
Section 4.1—4.4: Vector Spaces and Subspaces
Definition 1 A vector space is a nonempty set V of objects, called vectors, on which are
defined two operations, called addition "+" and scalar multiplication, satisfying the following
properties:

1. ~u+ ~v = ~v + ~u

2. (~u+ ~v) + ~w = ~u+ (~v + ~w)

3. There is a ~0 in V such that ~u+~0 = ~0 + ~u

4. For any vector ~u in V, there is a vector −~u such that ~u+ (−~u) = ~0

5. For any real number c, c (~u+ ~v) = c~u+ c~v

6. (c+ d) ~u = c~u+ d~u

7. c (d~u) = (cd) ~u

8. 1~u = ~u

Examples of vectors spaces

1. Rn with usual addition and scalar multiplication

2. Mmn = set of all m× n matrices

3. P = set of all polynomials

4. Pn = set of all polynomials with degree less than or equal to n

5. C (a, b) = set of all continuous function

6. Cn (a, b) = set of all continuous function with up to nth order continuous derivatives

7. All solutions of ODE y′ + p (t) y = 0

8. All solutions of ODE y′′ + p (t) y′ + q (t) y = 0

Definition 2 A subspace W ⊂ V of a vector space V is a subset that is closed under
operations, i.e.,
(1) ~x, ~y ∈ W =⇒ ~x+ ~y ∈ W, (2) ~x ∈ W, k constant =⇒ k~x ∈ W
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Example 3 (1) {0} and V are always subspaces, called trivial subspaces
(2) The only other trivial subspace in Rn. In R2, the only non-trivial subspaces are lines

passing through the origin.
(3) In R3, either a line passing through the origin or a plane passing through the origin

is a subspace.
(4)Let A be a matrix. The solution set of A~x = ~0 is a subspace.
(5) Span{~v1, ~v2, ..., ~vp} is a subspace.
(6) Any subspace in Rn is a subspace spanned by no more than n vectors.
(7) Pn ⊂ P ⊂ Cn (a, b) ⊂ C (a, b)

Definition 4 A set of vectors {~v1, ~v2, ..., ~vp} in V is called linearly independent if the only
solution of

x1~v1 + x2~v2 + ...+ xp~vp = 0

is x1 = x2 = ... = xp = 0.

Theorem 5 {~v1, ~v2, ..., ~vp} is linearly independent iff at least one is a linear combination of
the rest.

Definition 6 Let
H = Span {~v1, ~v2, ..., ~vp}

H be a subspace of V. We call B = {~v1, ~v2, ..., ~vp} a basis for H if {~v1, ~v2, ..., ~vp} is linearly
independent.

Example 7 In Rn, the columns of In form the standard basis:

~e1 =


1
0
...
0

 , ~e2 =

0
1
0
...
0

 , ..., ~en =

0
...
0
1

 .

If ~x = [x1, x2, ..., xn]
T , then ~x = x1~e1 + x2~e2+, ..., xn~en.

Theorem 8 Suppose H = Span {~v1, ~v2, ..., ~vp} . Then a subset of {~v1, ~v2, ..., ~vp} form a basis.

Definition 9 Let H = Span {~v1, ~v2, ..., ~vp} . Then the number of vectors of a basis is called
dimension of H, and is denoted as dimH.

Definition 10 (a) Let A = [~a1,~a2, ...,~ap]m×p be matrix that has p column vectors ~a1,~a2, ...,~ap.
We call the space spanned by columns

Col (A) = Span {~a1,~a2, ...,~ap}
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the column space.
(b) The null space Null (A) of A is a subspace of all solution A~x = ~0 :

Null (A) =
{
~x | A~x = ~0

}
.

(c) If a subspace H is spanned by p vectors ~v1, ~v2, ..., ~vp, i.e.,

H = Span {~v1, ~v2, ..., ~vp} ,

then we said that H is generated by ~v1, ~v2, ..., ~vp, and these ~v1, ~v2, ..., ~vp are called a set of
generators for H. If in addition, generators ~v1, ~v2, ..., ~vp are the linearly independent, then
we call the set {~v1, ~v2, ..., ~vp} a basis for H. The number of vectors in basis is called the
dimension of H. In particular,

dim (Null (A)) = number of free variables.

Example 11 Find a basis for (a) Null(A) and (b) Col (A) if

A =

−3 6 −1 −1 1 −7
1 −2 2 2 3 −1
2 −4 5 5 8 −4

 .
Solution: (a) We need to solve A~x = ~0. We first perform row operations:

A =

−3 6 −1 −1 1 −7
1 −2 2 2 3 −1
2 −4 5 5 8 −4

 R1 → R2−−−−−−→

 1 −2 2 2 3 −1
−3 6 −1 −1 1 −7
2 −4 5 5 8 −4


R2 + 3R1 → R2
R3 − 2R1 → R3−−−−−−−−−−−−→

1 −2 2 2 3 −1
0 0 5 5 10 −10
0 0 1 1 2 −2

 R2 − 5R3 → R2
R1 − 2R3 → R1−−−−−−−−−−−−→

1 −2 0 0 1 1
0 0 0 0 0 0
0 0 1 1 2 −2


R2 − 5R3 → R2−−−−−−−−−−−→

1 −2 0 0 1 1
0 0 1 1 2 −2
0 0 0 0 0 0

 .
The corresponding system equivalent to A~x = ~0 becomes

x1 − 2x2 + x5 + x6 = 0
x3 + x4 + 2x5 − 2x6 = 0.

Since #2, #4, #5, #6 are non-pivot columns, x2, x4,x5, x6 are free variables, and they can
be solved as

x1 = 2x2 − x5 − x6
x3 = −x4 − 2x5 + 2x6,
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and solution has the parametric form

~x =


x1
x2
x3
x4
x5
x6

 =

2x2 − x5 − x6
x2
−x4 − 2x5 + 2x6

x4
x5
x6

 = x2

2
1
0
0
0
0

+ x4

0
0
−1
1
0
0

+ x5

−1
0
−2
0
1
0

+ x6

−1
0
2
0
0
1

 .

These 4 vectors are linearly independent and form a basis, and

Null (A) = Span




2
1
0
0
0
0

 ,

0
0
−1
1
0
0

 ,

−1
0
−2
0
1
0

 ,

−1
0
2
0
0
1




,

and dim (Null (A)) = 4.
(b) From (a)

A =

−3 6 −1 −1 1 −7
1 −2 2 2 3 −1
2 −4 5 5 8 −4

 −→
1 −2 0 0 1 1
0 0 1 1 2 −2
0 0 0 0 0 0

 = B
Since in B, ~b1 and ~b3, the pivot columns of B, are linearly independent, and since ~b2,~b4,~b5,~b6
are all linear combination of ~b1 and ~b3, we see that ~b1 and ~b3 form a basis and

Col (B) = Span
{
~b1,~b3

}
.

Note that row operations produce equivalent systems (i.e., systems have the same solutions),
row operations will not change linear relations. More precisely, if x1~a1+x2~a2+x3~a3+x4~a4+
x5~a5 + x6~a6 = ~0, then x1~b1 + x2~b2 + x3~b3 + x4~b4 + x5~b5 + x6~b6 = ~0. We hence conclude
(a) ~a1 and ~a3 are linearly independent, since ~b1 and ~b3 are linearly independent, and
(b) ~a2,~a4,~a5,~a6 are linear combination of ~a1 and ~a3 (e.g. ~a2 = 2~a1+3~a3), since~b2,~b4,~b5,~b6

are linear combination of ~b1 and ~b3 (e.g., ~b2 = 2~b1 + 3~b3).
and consequently

Col (A) = Span {~a1,~a3}
and −31

2

 and

−12
5

 form a basis.

Summary. Basis of Col (A) = subset of pivot columns of A.Basis of Null (A) =
vectors associated with free variables in a parametric vector form.
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Example 12 Suppose that

A =


1 −2 0 0 1 1
2 −4 1 1 4 0
−1 2 0 1 9 19
0 0 0 0 0 0

 −→

1 −2 0 0 1 1
0 0 1 1 2 −2
0 0 0 1 10 20
0 0 0 0 0 0

 .

Then Col (A) = Span



1
0
0
0

 ,

0
1
0
0

 ,

0
1
1
0


???

Correct answer

Col (A) = Span



1
2
−1
0

 ,

0
1
0
0

 ,

0
1
1
0


 .

Section 4.4 Coordinate Systems
Suppose that ~v1, ~v2,..., ~vp form a basis for H. Then, for any ~x ∈ H, we have the unique

linear relation
~x = c1~v1 + c2~v2 + ...+ cp~vp. (1)

In fact, if there is another expression for the same ~x :

~x = d1~v1 + d2~v2 + ...+ dp~vp,

then
c1~v1 + c2~v2 + ...+ cp~vp = ~x = d1~v1 + d2~v2 + ...+ dp~vp,

and thus
(c1 − d1)~v1 + (c2 − d2)~v2 + ...+ (cp − dp)~vp = 0.

Since ~v1, ~v2,..., ~vp are linearly independent,

c1 − d1 = 0, (c2 − d2) = 0, ..., cp − dp = 0,
=⇒

c1 = d1, c2 = d2, ..., cp = dp

i.e., the relation is unique.

Definition 13 Let B =
{
~b1,~b2, ...,~bp

}
be a basis for H. Then for any vector ~x in H, there

is a unique representation
~x = x1~b1 + x2~b2 + ...+ xp~bp.
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We call the vector

[~x]B =


x1
x2
...
xp


the coordinate of ~x relative to the basis B, or B − coordinate of ~x.

Example: Let B=
{
~b1,~b2

}
,

~b1 =

[
1
0

]
, ~b2 =

[
1
2

]
, [~x]B =

[
−2
4

]
= ~v.

Find (a) ~x and (b) [~v]B
Sol: (a) By the definition,

~x = −2~b1 + 4~b2 = −2
[
1
0

]
+ 4

[
1
2

]
=

[
2
8

]
(b) To find B − coordinate of ~v, we need to solve

v1~b1 + v2~b2 = ~v =

[
−2
3

]
or [

~b1 ~b2

] [v1
v2

]
=

[
1 1
0 2

] [
v1
v2

]
=

[
−2
4

]
The solution is

[~v]B =

[
v1
v2

]
=

[
−4
2

]
.

Definition 14 Let B =
{
~b1,~b2, ...,~bp

}
be a basis of a subspace H = Span

{
~b1,~b2, ...,~bp

}
in

Rn. Then
PB =

[
~b1,~b2, ...,~bp

]
is called the change of coordinate matrix from B to the standard basis, and for any ~x in H

~x = PB [~x]B =
[
~b1,~b2, ...,~bp

]
[~x]B

In the Example above,

PB =

[
1 1
0 2

]
, PB [~v]B =

[
1 1
0 2

] [
−4
2

]
=

[
−2
4

]
= ~v
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Theorem 15 Let B1 and B2 be two bases of H in Rn. Then for any ~x in H,

~x = PB1 [~x]B1 = PB2 [~x]B2

So if H = Rn, then
[~x]B1 = (PB1)

−1 PB2 [~x]B2 .

The matrix (PB1)
−1 PB2 is called the change of coordinate matrix from B2 to B1.

Example 16 Let

~b1 =

36
2

 ,~b2 =
−10
1

 , ~x =
 312
7


(a) Find a basis B and dimension of H = Span

{
~b1,~b2

}
(b) Determine if ~x ∈ H. If so, find [~x]B

Sol: (a) Since ~b1 is not a multiple of ~b2, they are linearly independent. So B ={
~b1,~b2

}
forms a basis and dimH = 2

(b) The basis changing matrix is

PB =

3 −16 0
2 1


So ~x ∈ H iff the following system is consistent:

PB~y = ~x

By row operation, the augmented matrix

[PB, ~x] =

3 −1 3
6 0 12
2 1 7

→
1 0 2
0 1 3
0 0 0


Therefore, ~x ∈ H, and

[~x]B =

[
2
3

]
Theorem 17 (Coordinate mapping) Let H be a n-dimensional vector space. Then there is
an 1-1 and onto linear transformation T from H to Rn. In this case, we say H is equivalent
to Rn.

Proof: Let B =
{
~b1,~b2, ...,~bn

}
be a basis such that H = Span

{
~b1,~b2, ...,~bn

}
. Define

T : H → Rn by
T (~x) = [~x]B
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Example 18 Let B = {1, t, t2, t3} be the standard basis of P3. Find T : P3 → R3.

Example 19 Let B = {1 + 2t2, 4 + t+ 5t2, 3 + 2t} be a subset of P2. (a) Show B forms
a basis for P3 and H = SpanB = P. (b) Find coordinate changing matrix from B to the
standard basis S = {1.t.t2} .

Sol: [
1 + 2t2

]
S
=

10
2

 , [4 + t+ 5t2]
S
=

41
5

 , [3 + 2t]S =
32
0

 .
For any quadratic function f = a0 + a1t+ a2t2, if

[f ]B =

f0f1
f2

 , i.e.,
f = f0

(
1 + 2t2

)
+ f1

(
4 + t+ 5t2

)
+ f2 (3 + 2t)

then a0a1
a2

 = [f ]S
=
[
f0
(
1 + 2t2

)
+ f1

(
4 + t+ 5t2

)
+ f2 (3 + 2t)

]
S

=

1 4 3
0 1 2
2 5 0

f0f1
f2


So

PB =

1 4 3
0 1 2
2 5 0

 , [f ]S = PB [f ]B

1
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