Section 2.3: Characterization of Invertible Matrices

We summarize the entire chapter 2 by the following theorem.

Theorem 1 (Invertible matrix theorem I&II) Let $A_{n \times n}$ be a square matrix. The following statements are equivalent:

- 1. The matrix A is invertible,
- 2. A^T is invertible,
- 3. $AB = AC \implies B = C$ (i.e., cancellation law holds for A)
- 4. A is left-invertible, i.e., there exists C such that CA = I,
- 5. A is right-invertible, i.e., there exists D such that AD = I,
- 6. The reduced Echelon form of A is identity matrix I,
- 7. A is row-equivalent to identity matrix I,
- 8. A has n pivot positions,
- 9. $A\vec{x} = \vec{0}$ has only trivial solution $\vec{x} = \vec{0}$,
- 10. Column vectors of A are linearly independent,
- 11. Column vectors of A span \mathbb{R}^n ,
- 12. Row vectors of A span \mathbb{R}^n ,
- 13. $A\vec{x} = \vec{b}$ is consistent for all \vec{b} in \mathbb{R}^n , //
- 14. The columns of A form a basis for Col(A),
- 15. $Col(A) = R^n$,
- 16. Rank(A) = n
- 17. Rank(Null(A)) = 0.

Proof. (Very briefly) (1) \iff (2) : because $(A^T)^{-1} = (A^{-1})^T$ (1) \implies (3) : $AB = AC \implies A(B - C) = 0 \implies A^{-1}A(B - C) = 0 \implies (B - C) = 0$ (1) \implies (4) and (1) \implies (5) : obviously; (1) \implies (5) : $E_p...E_2E_1A = I \implies E_p...E_2E_1 = A^{-1}$ (6) \iff (7) : $A \sim I$ (7) \iff (8) : I has n pivots $(8) \Longrightarrow (9)$: no free variable

 $(9) \Longrightarrow (10)$: any linear realtion \vec{x} is a solution of $A\vec{x} = \vec{0}$

(8) \implies (11) : $A\vec{x} = \vec{b}$ is always consistent since by (10), the last column in the augmented matrix is non-pivot

 $(2) \Longrightarrow (12)$: columns of A^T are exactly the rows of A

 $(11) \iff (13)$: re-statements.

 $(11) \iff (15)$: re-statements.

 $(16) \iff (17)$: dimension theorem