Section 2.3: Characterization of Invertible Matrices

We summarize the entire chapter 2 by the following theorem.
Theorem 1 (Invertible matrix theorem IधII) Let $A_{n \times n}$ be a square matrix. The following ststements are equivalent:

1. The matrix A is invertible,
2. A^{T} is invertible,
3. $A B=A C \Longrightarrow B=C$ (i.e., cancellation law holds for A)
4. A is left-invertible, i.e., there exists C such that $C A=I$,
5. A is right-invertible, i.e., there exists D such that $A D=I$,
6. The reduced Echelon form of A is identity matrix I,
7. A is row-equivalent to identity matrix I,
8. A has n pivot positions,
9. $A \vec{x}=\overrightarrow{0}$ has only trivial solution $\vec{x}=\overrightarrow{0}$,
10. Column vectors of A are linearly independent,
11. Column vectors of A span R^{n},
12. Row vectors of A span R^{n},
13. $A \vec{x}=\vec{b}$ is consistent for all \vec{b} in R^{n}, //
14. The columns of A form a basis for $\operatorname{Col}(A)$,
15. $\operatorname{Col}(A)=R^{n}$,
16. $\operatorname{Rank}(A)=n$
17. $\operatorname{Rank}(\operatorname{Null}(A))=0$.

Proof. (Very briefly) $(1) \Longleftrightarrow(2)$: because $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
$(1) \Longrightarrow(3): A B=A C \Longrightarrow A(B-C)=0 \Longrightarrow A^{-1} A(B-C)=0 \Longrightarrow(B-C)=0$
(1) \Longrightarrow (4) and (1) \Longrightarrow (5) : obviously;
$(1) \Longrightarrow(5): E_{p} \ldots E_{2} E_{1} A=I \Longrightarrow E_{p} \ldots E_{2} E_{1}=A^{-1}$
$(6) \Longleftrightarrow(7): A \sim I$
$(7) \Longleftrightarrow(8): I$ has n pivots
$(8) \Longrightarrow(9)$: no free variable
$(9) \Longrightarrow(10)$: any linear realtion \vec{x} is a solution of $A \vec{x}=\overrightarrow{0}$
$(8) \Longrightarrow(11): A \vec{x}=\vec{b}$ is always consistent since by (10), the last column in the augmented matrix is non-pivot
$(2) \Longrightarrow(12)$: columns of A^{T} are exactly the rows of A
$(11) \Longleftrightarrow(13):$ re-statements.
$(11) \Longleftrightarrow(15):$ re-statements.
$(16) \Longleftrightarrow(17):$ dimension theorem

