Section 2.2: Inverse of a Matrix

Definition $1 A$ square matrix $A_{n \times n}$ is said to be invertible if there exists a unique matrix $C_{n \times n}$ of the same size such that

$$
A C=C A=I_{n}
$$

The matrix C is called the inverse of A, and is denoted by

$$
C=A^{-1}
$$

Suppose now $A_{n \times n}$ is invertible and $C=A^{-1}$. The matrix equation $A \vec{x}=\vec{b}$ can be easily solved as follows

$$
\begin{gather*}
A \vec{x}=\vec{b} \Longrightarrow C A \vec{x}=C \vec{b} \Longrightarrow I_{n} \vec{x}=C \vec{b} \Longrightarrow \\
\vec{x}=A^{-1} \vec{b} . \tag{1}
\end{gather*}
$$

Example 2 (a) Show A is invertible and $A^{-1}=C$, where

$$
A=\left[\begin{array}{cc}
2 & 5 \\
-3 & -7
\end{array}\right], C=\left[\begin{array}{cc}
-7 & -5 \\
3 & 2
\end{array}\right]
$$

(b) Show that the matrix A in Example (??) is NOT invertible:

$$
A=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

Solution: (a) Direction calculations lead to $A C=C A=I_{2}$.
(b) From Example (??), we know that $A^{2}=0$. Now, suppose A is indeed invertible. Then there exists a matrix C such that

$$
A C=I_{2}
$$

Multiplying by A from the left, we find

$$
A A C=A I_{2} \Longrightarrow A^{2} C=A \Longrightarrow 0=A \Longrightarrow \text { contradiction. }
$$

Theorem 3 For 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],
$$

it is invertible iff $\operatorname{det}(A) \stackrel{\text { def }}{=} a d-b c \neq 0$. When $a d-b c \neq 0$,

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example 4 (a) Find A^{-1} if

$$
A=\left[\begin{array}{cc}
2 & 5 \\
-3 & -6
\end{array}\right]
$$

(b) Solve

$$
\begin{array}{r}
2 x+5 y=1 \\
-3 x-6 y=2
\end{array}
$$

Solution: (a) $a=2, b=5, c=-3, d=-6$. $a d-b c=-12-(-15)=3$, and

$$
A^{-1}=\frac{1}{3}\left[\begin{array}{cc}
-6 & -5 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
-2 & -5 / 3 \\
1 & 2 / 3
\end{array}\right]
$$

We may verify the above solution as follows:

$$
\left[\begin{array}{cc}
2 & 5 \\
-3 & -6
\end{array}\right]\left[\begin{array}{cc}
-2 & -5 / 3 \\
1 & 2 / 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(b) To solve the system, we write its matrix equation: $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cc}
2 & 5 \\
-3 & -6
\end{array}\right], \vec{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

According Equ. (1), the solution is

$$
\vec{x}=A^{-1} \vec{b}=\left[\begin{array}{cc}
-2 & -5 / 3 \\
1 & 2 / 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-\frac{16}{3} \\
\frac{7}{3}
\end{array}\right] .
$$

Properties if Invertible Matrix:

Suppose that A is an invertible square matrix. Then
Claim 5 1. A^{-1} is also invertible and $\left(A^{-1}\right)^{-1}=A$.
2. A^{T} is also invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
3. If B is another invertible matrix of the same size, then so is $A B$, and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

4. $A \vec{x}=\vec{b}$ has a unique solution $\vec{x}=A^{-1} \vec{b}$.
5. The reduced Echelon of A is the identity matrix I of the same size, i.e., $A \longrightarrow I$.

Proof. (1) By definition, A^{-1} if we can find a matrix C such that

$$
\left(A^{-1}\right) C=C\left(A^{-1}\right)=I .
$$

The above is indeed true if $C=A$.
(2) Take transposes of all three sides of $\left(A^{-1}\right) A=A\left(A^{-1}\right)=I$,

$$
\begin{aligned}
\left(\left(A^{-1}\right) A\right)^{T} & =\left(A\left(A^{-1}\right)\right)^{T}=I^{T} \Longrightarrow A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1}\right)^{T} A^{T}=I \\
& \Longrightarrow A^{T} C=C A^{T}=I, \quad \text { where } C=\left(A^{-1}\right)^{T} \text { is the inverse of } A^{T} .
\end{aligned}
$$

(3) Let $C=B^{-1} A^{-1}$. Then this C is the inverse of $A B$ since

$$
\begin{aligned}
& C(A B)=(C A) B=\left(\left(B^{-1} A^{-1}\right) A\right) B=\left(B^{-1}\left(A^{-1} A\right)\right) B=\left(B^{-1} I\right) B=\left(B^{-1}\right) B=I \\
& (A B) C=A(B C)=A\left(B\left(B^{-1} A^{-1}\right)\right)=A\left(\left(B B^{-1}\right) A^{-1}\right)=A\left(I A^{-1}\right)=A A^{-1}=I
\end{aligned}
$$

(5) Since $A \vec{x}=0$ has a solution, there is no non-trivial solution, and thus A has no non-pivot column.

Definition 6 A matrix is called an elementary matrix if it is obtained from performing one single elementary row operation on an identity matrix.

Example 7 Let us look at 3×3 elementary matrices by corresponding row operations. Type (1) elementary matrix E_{1} :

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}+\lambda R_{1} \rightarrow R_{2}}\left[\begin{array}{lll}
1 & 0 & 0 \\
\lambda & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=E_{1}} \\
{\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}+(-2) R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & -5 & 2 \\
4 & 0 & 1
\end{array}\right]} \\
\Longleftrightarrow \text { left multiplication by E E with } \lambda=-2, \text { i.e., } \\
E_{1}\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & -5 & 2 \\
4 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Type (1) elementary row operation $=$ left multiplicationby by a Type (1) elementary matrix E_{1} Type (2):

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{1}}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=E_{2}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{1}}\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 3 & -1 \\
4 & 0 & 1
\end{array}\right]} \\
& \Longleftrightarrow \text { left multiplication by } E_{2}: \\
& E_{2}\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 3 & -1 \\
4 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Type (2) elementary row operation $=$ left multiplicationby by a Type (2) elementary matrix E_{2} Type (3):

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{\lambda R_{3} \rightarrow R_{3}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \lambda
\end{array}\right]=E_{3}} \\
& {\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right] \xrightarrow{\frac{1}{4} R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
1 & 0 & 1 / 4
\end{array}\right]} \\
& \Longleftrightarrow \text { left multiplication by } E_{3} \text { with } \lambda=1 / 4: \\
& E_{3}\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 1 & 0 \\
1 & 0 & 1 / 4
\end{array}\right] .
\end{aligned}
$$

Type (3) elementary row operation $=$ left multiplicationby by a Type (3) elementary matrix E_{3}
Conclusion 8 Performing an elementary row operation on an identity matrix produces an elementary matrix corresponging that elementary row operation. Any elementary row operation $=$ left multiply by the corresponding elementary matrix.

Suppose now A is invertible. Then, by a series of successive row operations, the matrix A is reduced to I. Since each row operation is equivalent to left multiplication by an elementary matrix, this means that there exist elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$, such that

$$
\left(E_{k} \ldots E_{2} E_{1}\right) A=I \Longrightarrow A^{-1}=E_{k} \ldots E_{2} E_{1}=E_{k} \ldots E_{2} E_{1}(I) .
$$

The very last equation says that the exact same row operations that reduce A to the identity I, in the same time, also reduce the identity I to A^{-1}.

Inverse matrix Algorithm:

$$
[A, I] \xrightarrow{\text { elementary row operations }}\left[I, A^{-1}\right]
$$

Example 9 Find A^{-1} if

$$
A=\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 7 & 0 \\
-2 & 0 & 15
\end{array}\right]
$$

Solution:

$$
\begin{gathered}
{[A, I]=\left[\begin{array}{cccccc}
1 & 3 & -1 & 1 & 0 & 0 \\
2 & 7 & 0 & 0 & 1 & 0 \\
-2 & 0 & 15 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\substack{R_{2}-2 R_{1} \rightarrow R_{2} \\
R_{3}+2 R_{1} \rightarrow R_{3}}}\left[\begin{array}{cccccc}
1 & 3 & -1 & 1 & 0 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & 6 & 13 & 2 & 0 & 1
\end{array}\right]} \\
\xrightarrow{\begin{array}{l}
R_{1}-3 R_{2} \rightarrow R_{1} \\
R_{3}-6 R_{2} \rightarrow R_{3}
\end{array}}\left[\begin{array}{cccccc}
1 & 0 & -7 & 7 & -3 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & 0 & 1 & 14 & -6 & 1
\end{array}\right] \\
\begin{array}{l}
R_{1}+7 R_{3} \rightarrow R_{1} \\
R_{2}-2 R_{3} \rightarrow R_{2}
\end{array}
\end{gathered}\left[\begin{array}{cccccc}
1 & 0 & 0 & 105 & -45 & 7 \\
0 & 1 & 0 & -30 & 13 & -2 \\
0 & 0 & 1 & 14 & -6 & 1
\end{array}\right] .
$$

Verify:

$$
\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 7 & 0 \\
-2 & 0 & 15
\end{array}\right]\left[\begin{array}{ccc}
105 & -45 & 7 \\
-30 & 13 & -2 \\
14 & -6 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

