Section 1.9: The Matrix of a Linear Transformation

For any $m \times n$ matrix A, one can define a linear transformation T from R^{n} to R^{m} as follows: for any $\vec{u} \in R^{n}$

$$
T(\vec{u})=\left(A_{m \times n}\right)\left(\vec{u}_{n \times 1}\right) .
$$

In particular, if we write $A=\left[\vec{a}_{1} \vec{a}_{2} \ldots \vec{a}_{n}\right]$, where \vec{a}_{i} is the $i t h$ column vector of A, then

$$
T\left(\vec{e}_{i}\right)=A \vec{e}_{i}=\vec{a}_{i}
$$

This motives us to define the matrix for any linear transformation T from R^{n} to R^{m}.
Definition: For any linear transformation T from R^{n} to R^{m}, the $m \times n$ matrix A defined above, i.e.,

$$
A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) \ldots T\left(\vec{e}_{n}\right)\right]_{m x n}
$$

is called the matrix of T under the standard basis.
Proposition: Any linear transformation T from R^{n} to R^{m} can be representated by its matrix A_{T} in the following sense: For any column vector \vec{x} in R^{n},

$$
T(\vec{x})=A_{T} \vec{x}, \vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Proof: We can write $\vec{x}=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\ldots x_{n} \vec{e}_{n}$. So

$$
T(\vec{x})=x_{1} T\left(\vec{e}_{1}\right)+x_{2} T\left(\vec{e}_{2}\right)+\ldots x_{n} T\left(\vec{e}_{n}\right)=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) \ldots T\left(\vec{e}_{n}\right)\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=A_{T} \vec{x}
$$

Property: (1) Linearity: Let T and S are two linear transformations from R^{n} to R^{m}, then for any constants α and β, the matrix for $\alpha T+\beta S$ is $\alpha A_{T}+\beta A_{S}$, i.e.,

$$
A_{\alpha T+\beta S}=\alpha A_{T}+\beta A_{S}
$$

(2)Let T and S are two linear transformations from R^{n} to R^{m}, and from R^{m} to R^{r}, respectively. Then the matrix for $S \circ T$ is $A_{S} A_{T}$, i.e.,

$$
A_{S \circ T}=A_{S} A_{T}
$$

Example

