## Section 1.8: Linear Transformations

Definition 1 A linear transformation is a mapping (or function) $T$ from $R^{n}$ to $R^{m}$ satisfying (i) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ and (ii) $T(\lambda \vec{u})=\lambda T(\vec{u})$ for any real number $\lambda$.

Example 2 In 1-D, $T(x)=c x$ (c is a constant) is a linear transformation. But $T(x)=$ $a x+b$ is NOT (called affine transformation).

Any $m \times n$ matrix $A_{m \times n}$ defines a linear transformation $T$ from $R^{n}$ to $R^{m}$ as follows: for any $\vec{u} \in R^{n}$

$$
\begin{equation*}
T(\vec{u})=\left(A_{m \times n}\right)\left(\vec{u}_{n \times 1}\right) . \tag{1}
\end{equation*}
$$

We can show that for any linear transformation $T$ from $R^{n}$ to $R^{m}$, there is a $m \times n$ matrix $A_{m \times n}$ such that (1) holds. In other words, any linear transformation can be defined by a matrix.
Example 3 (a) $A=\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]$ is called a dilation if $r>1$ and is contraction if $0<r<1$. For any $\vec{u}=\left[\begin{array}{l}x \\ y\end{array}\right]$,

$$
A \vec{u}=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=r\left[\begin{array}{l}
x \\
y
\end{array}\right]=r \vec{u} .
$$

(b) $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is called a rotation (rotation counter-clockwisely by $\frac{\pi}{2}$ ):

$$
\begin{aligned}
A \vec{u} & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x
\end{array}\right], \\
(A \vec{u}) \cdot \vec{u} & =\left[\begin{array}{l}
x \\
y
\end{array}\right] \cdot\left[\begin{array}{c}
-y \\
x
\end{array}\right]=0 .
\end{aligned}
$$

For instance, $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$

(c) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is a shear:

$$
A \vec{u}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
y \\
0
\end{array}\right]=\vec{u}+\left[\begin{array}{l}
y \\
0
\end{array}\right] .
$$

For instance,

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
2 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$



1

