Section 1.8: Linear Transformations

Definition 1 A linear transformation is a mapping (or function) T from \mathbb{R}^n to \mathbb{R}^m satisfying (i) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ and (ii) $T(\lambda \vec{u}) = \lambda T(\vec{u})$ for any real number λ .

Example 2 In 1-D, T(x) = cx (c is a constant) is a linear transformation. But T(x) = ax + b is NOT (called affine transformation).

Any $m \times n$ matrix $A_{m \times n}$ defines a linear transformation T from R^n to R^m as follows: for any $\vec{u} \in R^n$

$$T\left(\vec{u}\right) = \left(A_{m \times n}\right)\left(\vec{u}_{n \times 1}\right). \tag{1}$$

We can show that for any linear transformation T from \mathbb{R}^n to \mathbb{R}^m , there is a $m \times n$ matrix $A_{m \times n}$ such that (1) holds. In other words, any linear transformation can be defined by a matrix.

Example 3 (a) $A = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}$ is called a dilation if r > 1 and is contraction if 0 < r < 1. For any $\vec{u} = \begin{bmatrix} x \\ y \end{bmatrix}$, $A\vec{u} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = r \begin{bmatrix} x \\ y \end{bmatrix} = r\vec{u}.$ (b) $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is called a rotation (rotation counter-clockwisely by $\frac{\pi}{2}$): $A\vec{u} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix},$ $(A\vec{u}) \cdot \vec{u} = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} -y \\ x \end{bmatrix} = 0.$

For instance, $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

(c)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 is a shear:
 $A\vec{u} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} y \\ 0 \end{bmatrix} = \vec{u} + \begin{bmatrix} y \\ 0 \end{bmatrix}$.
For instance,
 $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix}$,

