
1 Section 1.7. Linear Independence

Definition 1 A set of p vectors ~u1, ~u2, ..., ~up in Rm is called linearly independent if the vector
equation

x1~u1 + x2~u2 + ...+ xp~up = ~0

has only the trivial solution xi = 0, i = 1, 2, ..., p. Otherwise, the set is called linearly depen-
dent; the coeffi cients x1, ..., xn are called a linear relation.

Example 2 Any one single vector ~u is always independent. two vectors ~u1, ~u2 are dependent
iff ~u1 = λ~u2.

The notation of linear dependence (or independence) is closely related to homogeneous
systems. In fact, let A = [~a1,~a2, ...,~an] be a m × n matrix with column vectors ~ai, then we
have the following relation:

Claim 3 A~x = ~0 has NO non-trivial solution iff its column vectors ~a1,~a2, ...,~an are linearly
independent.

Example 4 (1) Determine whether the set of the following three vectors is dependent:

~u1 =

 12
3

 , ~u2 =
 21
0

 , ~u3 =
 45
6

 .
(2) Find a linear relation.

Solution. (1) We need to determine if A~x = ~0 has a non-trivial solution, where A =
[~u1, ~u2, ~u3]

A =

 12
3

2
1
0

4
5
6

 .
To this end, we perform row operation on the augmented matrix

[
A,~0

]
.For simplicity, we

only work on A :

A→

 10
0

2
−3
0

4
−3
0

 , since [A,~0]→
 10
0

2
−3
0

4
−3
0

0
0
0

 . (1)

Apparently, x3 is a free variable. Thus, A~x = ~0 has non-trivial solution, and the set
{~u1, ~u2, ~u3} is linearly dependent.
Solution. (2) Finding a linear relation ~u1, ~u2, ~u3, i.e.,

x1~u1 + x2~u2 + x3~u3 = ~0
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means to find a non-trivial solution of

A~x = ~0.

From (1), we find that A~x = ~0 reduces to

x1 + 2x2 + 4x3 = 0

−3x2 − x3 = 0.

Since we only need one non-zero solution, we take x3 = 3 (we could have choose any number
here. The only reason I chose 3 is to avoid fraction.) Then x2 = −1, x1 = − (2x2 + 4x3) =
−10, and

−10~u1 − ~u2 + 3~u3 = ~0.
From the above equation, we see that, for instance,

~u2 = −10~u1 + 3~u3,

i.e., when {~u1, ~u2, ~u3} is linearly dependent, ~u2 is a linear combination of {~u1, ~u3} . In general,

Theorem 5 (Characterization of linear dependence) Vectors ~u1, ~u2, ..., ~up are linearly de-
pendent iff at least one is a linear combination of the rest.

Proof. Suppose that one is a linear combination of the rest. Without loss of generality, we
say that ~u1 is a linear combination of ~u2, ..., ~up, i.e., there exist λ2, ..., λp such that

~u1 = λ2~u2 + ...+ λp~up.

It follows that
−~u1 + λ2~u2 + ...+ λp~up = 0.

This implies that ~u1, ~u2, ..., ~up are linearly dependent. On the other hand, suppose that
~u1, ~u2, ..., ~up are linearly dependent. Then, we have

λ1~u1 + λ2~u2 + ...+ λp~up = 0,

where at least one of p constants {λ1, λ2, ..., λp} is not zero. Without loss of generality, we
say λ1 6= 0. Then we can solve for ~u1 as

~u1 =

(
λ2
λ1

)
~u2 + ...+

(
λp
λ1

)
~up.

Hence, ~u1 is a linear combination of ~u2, ..., ~up, the rest.
Note that when ~u1, ~u2, ..., ~up are linearly dependent, it does NOT mean ANY one member

is a linear combination of the rest. For instance,[
1
2

]
,

[
−1
−2

]
,

[
1
0

]
are linearly dependent.

2



But [
1
0

]
is not a linear combination of

[
1
2

]
,

[
−1
−2

]
.

In summary, to determine whether ~u1, ~u2, ..., ~up in Rm are linearly independent, we need
to see whether the system A~x = ~0 has only trivial solution, where A is the m × p column
matrix [~u1, ~u2, ..., ~up] .

Definition 6 We call the number of pivots of a m×p matrix A the RANK of A, and denote
it by r (A) .

Obviously, the rank cannot exceed the number of rows or columns, i.e., r (A) ≤ m,
r (A) ≤ p.
The following theorem follows directly from the last conclusion in Section 1.5.

Theorem 7 A set of vectors ~u1, ~u2, ..., ~up in Rm is linearly dependent iff p > r (A) , where
A is the m× p column matrix [~u1, ~u2, ..., ~up] . In particular, it is linearly dependent if p > m,
i.e., the number of vectors is more than the dimension.

Example 8 Determine whether the following set is linearly dependent. If it is linearly
dependent find a set of linearly independent vectors ~v1, ~v2, ... such that Span {~v1, ~v2, ..} =
Span {~u1, ~u2, ..} .

~u1 =

 12
3

 , ~u2 =
 45
6

 , ~u3 =
 21
0

 , ~u4 =
 11
1

 .
Solution. The answer is yes, it is linearly dependent because the number of vectors is

great than the dimension.
We next describe all vectors ~b ∈ Span {~u1, ~u2, ..} using parametric vector representation.

As we did in Example ??, we need to describe~b such that [~u1, ~u2, ~u3, ~u4] ~x = ~b has a solution.
To this end, we perform row operation on

[
~u1, ~u2, ~u3, ~u4,~b

]
to arrive at a Echelon form:1 4 2 1 b1

2 5 1 1 b2
3 6 0 1 b3

 R2 − 2R1 → R2
R3 − 3R1 → R3−−−−−−−−−−−−→

1 4 2 1 b1
0 −3 −3 −1 b2 − 2b1
0 −6 −6 −2 b3 − 3b1


R3 − 2R2 → R3−−−−−−−−−−−→

1 4 2 1 b1
0 −3 −3 −1 b2 − 2b1
0 0 0 0 b1 − 2b2 + b3

 .
The system is consistent iff b1 − 2b2 + b3 = 0, or

b1 = 2b2 − b3.
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Therefore,

~b =

b1b2
b3

 =
2b2 − b3b2

b3

 = b2

21
0

+ b3

−10
1

 ,
and the set of

~v1 =

21
0

 , ~v2 =
−10
1


is linearly independent, and Span {~v1, ~v2} = Span {~u1, ~u2, ~u3, ~u4} .
Homework 1.7:

#5,11,21,23,27,33,37
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