1 Section 1.7. Linear Independence

Definition $1 A$ set of p vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ in R^{m} is called linearly independent if the vector equation

$$
x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\ldots+x_{p} \vec{u}_{p}=\overrightarrow{0}
$$

has only the trivial solution $x_{i}=0, i=1,2, \ldots, p$. Otherwise, the set is called linearly dependent; the coefficients x_{1}, \ldots, x_{n} are called a linear relation.

Example 2 Any one single vector \vec{u} is always independent. two vectors \vec{u}_{1}, \vec{u}_{2} are dependent iff $\vec{u}_{1}=\lambda \vec{u}_{2}$.

The notation of linear dependence (or independence) is closely related to homogeneous systems. In fact, let $A=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right]$ be a $m \times n$ matrix with column vectors \vec{a}_{i}, then we have the following relation:

Claim $3 A \vec{x}=\overrightarrow{0}$ has NO non-trivial solution iff its column vectors $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ are linearly independent.

Example 4 (1) Determine whether the set of the following three vectors is dependent:

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] .
$$

(2) Find a linear relation.

Solution. (1) We need to determine if $A \vec{x}=\overrightarrow{0}$ has a non-trivial solution, where $A=$ $\left[\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right]$

$$
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 5 \\
3 & 0 & 6
\end{array}\right]
$$

To this end, we perform row operation on the augmented matrix $[A, \overrightarrow{0}]$.For simplicity, we only work on A :

$$
A \rightarrow\left[\begin{array}{ccc}
1 & 2 & 4 \tag{1}\\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right] \text {, since }[A, \overrightarrow{0}] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 4 & 0 \\
0 & -3 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Apparently, x_{3} is a free variable. Thus, $A \vec{x}=\overrightarrow{0}$ has non-trivial solution, and the set $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is linearly dependent.

Solution. (2) Finding a linear relation $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$, i.e.,

$$
x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+x_{3} \vec{u}_{3}=\overrightarrow{0}
$$

means to find a non-trivial solution of

$$
A \vec{x}=\overrightarrow{0} .
$$

From (1), we find that $A \vec{x}=\overrightarrow{0}$ reduces to

$$
\begin{array}{r}
x_{1}+2 x_{2}+4 x_{3}=0 \\
-3 x_{2}-x_{3}=0 .
\end{array}
$$

Since we only need one non-zero solution, we take $x_{3}=3$ (we could have choose any number here. The only reason I chose 3 is to avoid fraction.) Then $x_{2}=-1, x_{1}=-\left(2 x_{2}+4 x_{3}\right)=$ -10 , and

$$
-10 \vec{u}_{1}-\vec{u}_{2}+3 \vec{u}_{3}=\overrightarrow{0} .
$$

From the above equation, we see that, for instance,

$$
\vec{u}_{2}=-10 \vec{u}_{1}+3 \vec{u}_{3},
$$

i.e., when $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is linearly dependent, \vec{u}_{2} is a linear combination of $\left\{\vec{u}_{1}, \vec{u}_{3}\right\}$. In general,

Theorem 5 (Characterization of linear dependence) Vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ are linearly dependent iff at least one is a linear combination of the rest.

Proof. Suppose that one is a linear combination of the rest. Without loss of generality, we say that \vec{u}_{1} is a linear combination of $\vec{u}_{2}, \ldots, \vec{u}_{p}$, i.e., there exist $\lambda_{2}, \ldots, \lambda_{p}$ such that

$$
\vec{u}_{1}=\lambda_{2} \vec{u}_{2}+\ldots+\lambda_{p} \vec{u}_{p} .
$$

It follows that

$$
-\vec{u}_{1}+\lambda_{2} \vec{u}_{2}+\ldots+\lambda_{p} \vec{u}_{p}=0
$$

This implies that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ are linearly dependent. On the other hand, suppose that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ are linearly dependent. Then, we have

$$
\lambda_{1} \vec{u}_{1}+\lambda_{2} \vec{u}_{2}+\ldots+\lambda_{p} \vec{u}_{p}=0
$$

where at least one of p constants $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right\}$ is not zero. Without loss of generality, we say $\lambda_{1} \neq 0$. Then we can solve for \vec{u}_{1} as

$$
\vec{u}_{1}=\left(\frac{\lambda_{2}}{\lambda_{1}}\right) \vec{u}_{2}+\ldots+\left(\frac{\lambda_{p}}{\lambda_{1}}\right) \vec{u}_{p} .
$$

Hence, \vec{u}_{1} is a linear combination of $\vec{u}_{2}, \ldots, \vec{u}_{p}$, the rest.
Note that when $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ are linearly dependent, it does NOT mean ANY one member is a linear combination of the rest. For instance,

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
-1 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { are linearly dependent. }
$$

But

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { is not a linear combination of }\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] .
$$

In summary, to determine whether $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ in R^{m} are linearly independent, we need to see whether the system $A \vec{x}=\overrightarrow{0}$ has only trivial solution, where A is the $m \times p$ column matrix $\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right]$.

Definition 6 We call the number of pivots of a $m \times p$ matrix A the $R A N K$ of A, and denote it by $r(A)$.

Obviously, the rank cannot exceed the number of rows or columns, i.e., $r(A) \leq m$, $r(A) \leq p$.

The following theorem follows directly from the last conclusion in Section 1.5.
Theorem $7 A$ set of vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ in R^{m} is linearly dependent iff $p>r(A)$, where A is the $m \times p$ column matrix $\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right]$. In particular, it is linearly dependent if $p>m$, i.e., the number of vectors is more than the dimension.

Example 8 Determine whether the following set is linearly dependent. If it is linearly dependent find a set of linearly independent vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots$ such that Span $\left\{\vec{v}_{1}, \vec{v}_{2}, ..\right\}=$ Span $\left\{\vec{u}_{1}, \vec{u}_{2}, ..\right\}$.

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \vec{u}_{4}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Solution. The answer is yes, it is linearly dependent because the number of vectors is great than the dimension.

We next describe all vectors $\vec{b} \in \operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, ..\right\}$ using parametric vector representation. As we did in Example ??, we need to describe \vec{b} such that $\left[\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}\right] \vec{x}=\vec{b}$ has a solution. To this end, we perform row operation on $\left[\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}, \vec{b}\right]$ to arrive at a Echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 4 & 2 & 1 & b_{1} \\
2 & 5 & 1 & 1 & b_{2} \\
3 & 6 & 0 & 1 & b_{3}
\end{array}\right] \xrightarrow{\begin{array}{c}
R_{2}-2 R_{1} \rightarrow R_{2} \\
R_{3}-3 R_{1} \rightarrow R_{3}
\end{array}}\left[\begin{array}{ccccc}
1 & 4 & 2 & 1 & b_{1} \\
0 & -3 & -3 & -1 & b_{2}-2 b_{1} \\
0 & -6 & -6 & -2 & b_{3}-3 b_{1}
\end{array}\right]} \\
& \xrightarrow[R_{3}-2 R_{2} \rightarrow R_{3}]{\left[\begin{array}{ccccc}
1 & 4 & 2 & 1 & b_{1} \\
0 & -3 & -3 & -1 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{1}-2 b_{2}+b_{3}
\end{array}\right] .}
\end{aligned}
$$

The system is consistent iff $b_{1}-2 b_{2}+b_{3}=0$, or

$$
b_{1}=2 b_{2}-b_{3}
$$

Therefore,

$$
\vec{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
2 b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right]=b_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

and the set of

$$
\vec{v}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

is linearly independent, and $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}\right\}$.
Homework 1.7:
\#5,11,21,23,27,33,37

