1 Section 1.4. Matrix Equations

1.1 Products of matrices and vectors

Definition 1 Let $A = [\vec{a}_1, \vec{a}_2, ..., \vec{a}_n]$ be a $m \times n$ matrix whose ith column is $\vec{a}_i \in R^m$, i = 1, 2, ..., n, and \vec{x} a (unknown) vector in R^n :

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times 1}$$
. Notice that the number of columns in $A =$ the number of rows in \vec{x} .

The product $A\vec{x}$ is defined as the linear combination of $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ with the weight $x_1, x_2, ..., x_n$, *i.e.*,

$$A\vec{x} = \begin{bmatrix} \vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n x_i \vec{a}_i = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n$$

If A is $1 \times n$ matrix, i.e., $A = [a_1, a_2, ..., a_n]$, then

$$A\vec{x} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$
$$= \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad (dot \ product)$$

Example 2 (a)

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 5 \end{bmatrix} + 7 \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \cdot 4 + 2 \cdot 3 + (-1) \cdot 7 \\ 2 \cdot 4 + 5 \cdot 3 + 3 \cdot 7 \end{bmatrix} = \begin{bmatrix} 3 \\ 44 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 2 & -2 & 3 \\ 8 & 0 & 1 \\ -5 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 8 \\ -5 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 0 \\ 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \\ 1 \\ 7 \end{bmatrix}$$

Note that for product (b), one can also redo it using "dot product" as

$$\begin{bmatrix} 2 & -2 & 3 \\ 8 & 0 & 1 \\ -5 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \\ 1 \\ -5 \\ 2 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \\ 1 \\ 7 \end{bmatrix}$$

The matrix-vector product has the following **PROPERTIES**:

$$A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}, \quad A(\lambda \vec{x}) = \lambda A\vec{x}$$
$$(A + B)\vec{x} = A\vec{x} + B\vec{x}, \quad (\lambda A)\vec{x} = \lambda (A\vec{x})$$

These relations can be summarized so-called linearity principle:

$$(aA+bB)\left(\lambda\vec{x}+\delta\vec{y}\right) = a\lambda A\vec{x} + a\delta A\vec{y} + b\lambda B\vec{x} + b\delta B\vec{y}.$$

1.2 Matrix Equations

The system of linear equation, or its equivalent vector equation

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n = \vec{b}$$

can now be rewritten as Matrix equation:

$$A\vec{x} = \vec{b}.$$

Theorem 3 Let $A = [\vec{a}_1, \vec{a}_2, ..., \vec{a}_n]$ be a $m \times n$ matrix whose ith column is $\vec{a}_i \in \mathbb{R}^m$, i = 1, 2, ..., n, and \vec{x} an unknown vector in \mathbb{R}^n . The following statements are equivalent:

- 1. For each vector $\vec{b} \in \mathbb{R}^m$, the vector equation $A\vec{x} = \vec{b}$ has a solution.
- 2. Each vector $\vec{b} \in \mathbb{R}^m$ is a linear combination of $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$, the columns of A.
- 3. Column vectors of A span \mathbb{R}^m .
- 4. The matrix A has a pivot position in each row.

Proof. (1) \implies (2) : (1) implies that for each \vec{b} , there exists a solution $x_i = \lambda_i, i = 1, ..., n$ such that

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_n \vec{a}_n = \vec{b}$$

Therefore, each \vec{b} is a linear combination of \vec{a}_i .

 $(2) \Longrightarrow (3)$: Since each vector \vec{b} in \mathbb{R}^m is a linear combination, by definition, each \vec{b} in \mathbb{R}^m is in the subset spanned by $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$, i.e., $\mathbb{R}^m \subset \text{Span}\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_n\} \subset \mathbb{R}^m$.

 $(3) \implies (4)$: Suppose (3) is true but (4) is NOT true. then the reduced Echelon form of A has at least one zero row, i.e., A is row equivalent to E by a series of elementary row reductions:

$$A \to E = \begin{bmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

We now consider the augmented matrix

$$\begin{bmatrix} E : \vec{e}_m \end{bmatrix} = \begin{bmatrix} * & * & \dots & * & 0 \\ \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & * & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix},$$
(1)

and reverse completely all the row reductions we did from A to E. This leads to

$$\left[E:\vec{e}_m\right] \to \left[A:\vec{b}\right],$$

where \vec{b} is a vector in \mathbb{R}^m . Since the system corresponding to (1) is inconsistent, $A\vec{x} = \vec{b}$ for this particular vector \vec{b} is inconsistent. In other words, \vec{b} cannot be possibly a linear combination of \vec{a}_i . This contradicts to (3).

For instance,

$$A = \begin{bmatrix} 1 & 2\\ -1 & -2 \end{bmatrix} \xrightarrow{R_1 + R_2 \to \tilde{R}_2} \begin{bmatrix} 1 & 2\\ 0 & 0 \end{bmatrix} = E$$

Then (with m = 2)

$$\begin{bmatrix} E : \vec{e}_m \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \underbrace{\tilde{R}_2 - R_1 \to R_2}_{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 \\ -1 & -2 & 1 \end{bmatrix}.$$

Thus

$$A\vec{x} = \vec{b}, \quad \vec{b} = \begin{bmatrix} 0\\1 \end{bmatrix}, \text{ is inconsistent.}$$

 $(4) \Longrightarrow (1)$: Suppose for simplicity, A has the reduced Echelon form

Then, for each \vec{b} , $\left[A:\vec{b}\right]$ must have the reduced Echelon form

	1	*	 *	 ÷	*]
$\left[A \vdots \vec{b}\right] \rightarrow$	0	1	 *	 ÷	*	
			 	 ÷	*	
	0	0	 1	 ÷	*	

The augmented matrix on the right is consistent. Therefore, $A\vec{x} = \vec{b}$ is consistent.

Example 4 Let

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}.$$

- 1. Determine if $A\vec{x} = \vec{b}$ has a solution for ALL $\vec{b} \in \mathbb{R}^3$.
- 2. Describe $Span\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$, where $A = [\vec{a}_1, \vec{a}_2, \vec{a}_3]$.

Solution. (1) By row operation, we have

$$\begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix} \xrightarrow{R_2 + 4R_1 \to R_2} \begin{bmatrix} 1 & 3 & 4 \\ 0 & 14 & 10 \\ 0 & 7 & 5 \end{bmatrix} \xrightarrow{R_3 - R_2/2 \to R3} \begin{bmatrix} 1 & 3 & 4 \\ 0 & 14 & 10 \\ 0 & 0 & 0 \end{bmatrix}.$$

By (4) in Theorem, $A\vec{x} = \vec{b}$ doesn't has a solution for all \vec{b} .

Solution. (2) We need to find for what \vec{b} ,

$$\vec{b} \in Span \{ \vec{a}_1, \vec{a}_2, \vec{a}_3 \}?$$

In other words, we need to describe all \vec{b} such that $A\vec{x} = \vec{b}$ has a solution. In other words, we need to find conditions on \vec{b} under which

$$A\vec{x} = \vec{b}$$
 is consistent.

To this end, we perform exactly the same row operations as above for the augmented matrix $\begin{bmatrix} A : \vec{b} \end{bmatrix}$:

$$\begin{bmatrix} A:\vec{b} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \underbrace{\begin{array}{c} R_2 + 4R_1 \to R_2 \\ R_3 + 3R_1 \to R_3 \\ \hline \end{array}} \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 7 & 5 & b_3 + 3b_1 \end{bmatrix}$$

$$\underbrace{\begin{array}{c} R_3 - R_2/2 \to R3 \\ 0 & 14 & 10 \\ 0 & 0 & 0 \\ \hline \end{array}} \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 \\ 0 & 0 & 0 \\ b_3 + 3b_1 - b_2/2 - 2b_1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 \\ 0 & 14 & 10 \\ 0 & 0 & b_1 - b_2/2 + b_3 \end{bmatrix} .$$

We know that $A\vec{x} = \vec{b}$ has a solution iff the last column is not pivot, i.e.,

$$b_1 - b_2/2 + b_3 = 0$$
, or $b_3 = -b_1 + b_2/2$.

We conclude that $\vec{b} \in \text{Span}\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$ iff $b_3 = -b_1 + b_2/2$, and

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ -b_1 + b_2/2 \end{bmatrix} = \begin{bmatrix} b_1 + 0b_2 \\ 0b_1 + b_2 \\ -b_1 + b_2/2 \end{bmatrix}$$
$$= \begin{bmatrix} b_1 \\ 0b_1 \\ -b_1 \end{bmatrix} + \begin{bmatrix} 0b_2 \\ b_2 \\ b_2/2 \end{bmatrix} = b_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + b_2 \begin{bmatrix} 0 \\ 1 \\ 1/2 \end{bmatrix}$$

for any b_1 and b_2 . Later, we call it "parametric representation". Therefore,

$$Span\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\} = Span\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1/2 \end{bmatrix} \right\}.$$

Homework 1.4:

 $\#5,\!7,\!9,\!11,\!13,\!17,\!21,\!23$