1 Section 1.4. Matrix Equations

1.1 Products of matrices and vectors

Definition 1 Let $A=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right]$ be a $m \times n$ matrix whose ith column is $\vec{a}_{i} \in R^{m}$, $i=1,2, \ldots, n$, and \vec{x} a (unknown) vector in R^{n} :

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]_{n \times 1} . \text { Notice that the number of columns in } A=\text { the number of rows in } \vec{x} .
$$

The product $A \vec{x}$ is defined as the linear combination of $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ with the weight $x_{1}, x_{2}, \ldots, x_{n}$, i.e.,

$$
A \vec{x}=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} \vec{a}_{i}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n}
$$

If A is $1 \times n$ matrix, i.e., $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, then

$$
\begin{aligned}
A \vec{x} & =\left[\begin{array}{lll}
a_{1} & a_{2} & \ldots \\
a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n} \\
& =\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { (dot product) }
\end{aligned}
$$

Example 2 (a)

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right] } & =4\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3\left[\begin{array}{l}
2 \\
5
\end{array}\right]+7\left[\begin{array}{c}
-1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \cdot 4+2 \cdot 3+(-1) \cdot 7 \\
2 \cdot 4+5 \cdot 3+3 \cdot 7
\end{array}\right]=\left[\begin{array}{c}
3 \\
44
\end{array}\right]
\end{aligned}
$$

(b)

$$
\left[\begin{array}{ccc}
2 & -2 & 3 \\
8 & 0 & 1 \\
-5 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=1\left[\begin{array}{c}
2 \\
8 \\
-5 \\
0
\end{array}\right]+3\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right]+2\left[\begin{array}{l}
3 \\
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
10 \\
1 \\
7
\end{array}\right]
$$

Note that for product (b), one can also redo it using "dot product" as

$$
\left[\begin{array}{ccc}
2 & -2 & 3 \\
8 & 0 & 1 \\
-5 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
{\left[\begin{array}{lll}
2 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{lll}
8 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{lll}
-5 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
{\left[\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{l}
8 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{c}
-5 \\
2 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]} \\
{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
2 \\
10 \\
1 \\
7
\end{array}\right]
$$

The matrix-vector product has the following PROPERTIES:

$$
\begin{aligned}
A(\vec{x}+\vec{y}) & =A \vec{x}+A \vec{y}, \quad A(\lambda \vec{x})=\lambda A \vec{x} \\
(A+B) \vec{x} & =A \vec{x}+B \vec{x}, \quad(\lambda A) \vec{x}=\lambda(A \vec{x})
\end{aligned}
$$

These relations can be summarized so-called linearity principle:

$$
(a A+b B)(\lambda \vec{x}+\delta \vec{y})=a \lambda A \vec{x}+a \delta A \vec{y}+b \lambda B \vec{x}+b \delta B \vec{y} .
$$

1.2 Matrix Equations

The system of linear equation, or its equivalent vector equation

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n}=\vec{b}
$$

can now be rewritten as Matrix equation:

$$
A \vec{x}=\vec{b}
$$

Theorem 3 Let $A=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right]$ be a $m \times n$ matrix whose ith column is $\vec{a}_{i} \in R^{m}$, $i=$ $1,2, \ldots, n$, and \vec{x} an unknown vector in R^{n}. The following statements are equivalent:

1. For each vector $\vec{b} \in R^{m}$, the vector equation $A \vec{x}=\vec{b}$ has a solution.
2. Each vector $\vec{b} \in R^{m}$ is a linear combination of $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$, the columns of A.
3. Column vectors of A span R^{m}.
4. The matrix A has a pivot position in each row.

Proof. $(1) \Longrightarrow(2):(1)$ implies that for each \vec{b}, there exists a solution $x_{i}=\lambda_{i}, i=1, \ldots, n$ such that

$$
\lambda_{1} \vec{a}_{1}+\lambda_{2} \vec{a}_{2}+\ldots+\lambda_{n} \vec{a}_{n}=\vec{b}
$$

Therefore, each \vec{b} is a linear combination of \vec{a}_{i}.
$(2) \Longrightarrow(3)$: Since each vector \vec{b} in R^{m} is a linear combination, by definition, each \vec{b} in R^{m} is in the subset spanned by $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$, i.e., $R^{m} \subset \operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right\} \subset R^{m}$.
$(3) \Longrightarrow(4)$: Suppose (3) is true but (4) is NOT true. then the reduced Echelon form of A has at least one zero row, i.e., A is row equivalent to E by a series of elementary row reductions:

$$
A \rightarrow E=\left[\begin{array}{cccc}
* & * & \ldots & * \\
\ldots & \ldots & \ldots & \ldots \\
* & * & \ldots & * \\
0 & 0 & \ldots & 0
\end{array}\right]
$$

We now consider the augmented matrix

$$
\left[E: \vec{e}_{m}\right]=\left[\begin{array}{ccccc}
* & * & \ldots & * & 0 \tag{1}\\
\ldots & \ldots & \ldots & \ldots & \ldots \\
* & * & \ldots & * & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

and reverse completely all the row reductions we did from A to E. This leads to

$$
\left[E: \vec{e}_{m}\right] \rightarrow[A: \vec{b}]
$$

where \vec{b} is a vector in R^{m}. Since the system corresponding to (1) is inconsistent, $A \vec{x}=\vec{b}$ for this particular vector \vec{b} is inconsistent. In other words, \vec{b} cannot be possibly a linear combination of \vec{a}_{i}. This contradicts to (3).

For instance,

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & -2
\end{array}\right] \xrightarrow{R_{1}+R_{2} \rightarrow \tilde{R}_{2}}\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=E
$$

Then (with $m=2$)

$$
\left[E: \vec{e}_{m}\right]=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{\tilde{R}_{2}-R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -2 & 1
\end{array}\right] .
$$

Thus

$$
A \vec{x}=\vec{b}, \quad \vec{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \text { is inconsistent. }
$$

$(4) \Longrightarrow(1)$: Suppose for simplicity, A has the reduced Echelon form

$$
A \rightarrow E=\left[\begin{array}{cccccc}
1 & * & \ldots & * & \ldots & * \\
0 & 1 & \ldots & * & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & * \\
0 & 0 & \ldots & 1 & \ldots & *
\end{array}\right]
$$

Then, for each $\vec{b},[A: \vec{b}]$ must have the reduced Echelon form

$$
[A: \vec{b}] \rightarrow\left[\begin{array}{ccccccc}
1 & * & \ldots & * & \ldots & \vdots & * \\
0 & 1 & \ldots & * & \ldots & \vdots & * \\
\ldots & \ldots & \ldots & \ldots & \ldots & \vdots & * \\
0 & 0 & \ldots & 1 & \ldots & \vdots & *
\end{array}\right]
$$

The augmented matrix on the right is consistent. Therefore, $A \vec{x}=\vec{b}$ is consistent.
Example 4 Let

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]
$$

1. Determine if $A \vec{x}=\vec{b}$ has a solution for $A L L \vec{b} \in R^{3}$.
2. Describe Span $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$, where $A=\left[\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right]$.

Solution. (1) By row operation, we have

By (4) in Theorem, $A \vec{x}=\vec{b}$ doesn't has a solution for all \vec{b}.
Solution. (2) We need to find for what \vec{b},

$$
\vec{b} \in \operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\} ?
$$

In other words, we need to describe all \vec{b} such that $A \vec{x}=\vec{b}$ has a solution. In other words, we need to find conditions on \vec{b} under which

$$
A \vec{x}=\vec{b} \text { is consistent. }
$$

To this end, we perform exactly the same row operations as above for the augmented matrix $[A: \vec{b}]:$

$$
\begin{aligned}
{[A: \vec{b}] } & =\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right] \xrightarrow{\substack{R_{2}+4 R_{1} \rightarrow R_{2} \\
R_{3}+3 R_{1} \rightarrow R_{3}}}\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1}
\end{array}\right] \\
& \xrightarrow{R_{3}-R_{2} / 2 \rightarrow R 3}\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1} \\
0 & 0 & 0 & b_{3}+3 b_{1}-b_{2} / 2-2 b_{1}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & 4 b_{1}+b_{2} \\
0 & 0 & 0 & b_{1}-b_{2} / 2+b_{3}
\end{array}\right] .
\end{aligned}
$$

We know that $A \vec{x}=\vec{b}$ has a solution iff the last column is not pivot, i.e.,

$$
b_{1}-b_{2} / 2+b_{3}=0, \text { or } b_{3}=-b_{1}+b_{2} / 2
$$

We conclude that $\vec{b} \in \operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$ iff $b_{3}=-b_{1}+b_{2} / 2$, and

$$
\begin{aligned}
\vec{b} & =\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
-b_{1}+b_{2} / 2
\end{array}\right]=\left[\begin{array}{c}
b_{1}+0 b_{2} \\
0 b_{1}+b_{2} \\
-b_{1}+b_{2} / 2
\end{array}\right] \\
& =\left[\begin{array}{c}
b_{1} \\
0 b_{1} \\
-b_{1}
\end{array}\right]+\left[\begin{array}{c}
0 b_{2} \\
b_{2} \\
b_{2} / 2
\end{array}\right]=b_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+b_{2}\left[\begin{array}{c}
0 \\
1 \\
1 / 2
\end{array}\right]
\end{aligned}
$$

for any b_{1} and b_{2}. Later, we call it "parametric representation". Therefore,

$$
\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
1 / 2
\end{array}\right]\right\} .
$$

Homework 1.4:

\#5, $7,9,11,13,17,21,23$

