Section 1.3. Vector Equations

We now further simplify the process by introducing more general notations. A m-dimensional (column) vector is a $m \times 1$ matrix

$$
\vec{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right]_{m \times 1}
$$

Addition and scalar multiplication are defined in the manner similar to 3-D as follows:

$$
\begin{aligned}
\vec{u}+\vec{v}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right] & +\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{m}+v_{m}
\end{array}\right] \\
\lambda \vec{u} & =\left[\begin{array}{c}
\lambda u_{1} \\
\lambda u_{2} \\
\vdots \\
\lambda u_{m}
\end{array}\right] .
\end{aligned}
$$

All properties and geometric explanations held for 3-D case extend to m-D without modification.

Definition 1 Given p vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ in R^{m} and given p constants $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, the vector \vec{y} defined by

$$
\vec{y}=\sum_{i=1}^{p} \lambda_{i} \vec{u}_{i}=\lambda_{1} \vec{u}_{1}+\lambda_{2} \vec{u}_{2}+\ldots+\lambda_{p} \vec{u}_{p}
$$

is called a linear combination of $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ with weights $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.
Example 2 Determine whether \vec{y} is a linear combination of \vec{u}_{1} and \vec{u}_{2}, where

$$
\vec{u}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right], \vec{y}=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right] .
$$

Solution 3 By definition, we need to see if \vec{y} has the form $\vec{y}=\lambda_{1} \vec{u}_{1}+\lambda_{2} \vec{u}_{2}$ for some constants λ_{1}, λ_{2}. This leads to the equations for λ_{1}, λ_{2} :

$$
\lambda_{1}\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
-3
\end{array}\right] .
$$

This is the same as the system of linear equations :

$$
\begin{gathered}
\lambda_{1}+2 \lambda_{2}=7 \\
-2 \lambda_{1}+5 \lambda_{2}=4 \\
-5 \lambda_{1}+6 \lambda_{2}=-3
\end{gathered}
$$

whose augmented matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & \vdots & 7 \\
-2 & 5 & \vdots & 4 \\
-5 & 6 & \vdots & -3
\end{array}\right]
$$

Its reduced Echelon form is

$$
\left[\begin{array}{cccc}
1 & 0 & \vdots & 3 \\
0 & 1 & \vdots & 2 \\
0 & 0 & \vdots & 0
\end{array}\right]
$$

Therefore, it is consistent, and consequently, \vec{y} is a linear combination of \vec{u}_{1} and \vec{u}_{2}. The weights are the solution $\left(\lambda_{1}, \lambda_{2}\right)=(3,2)$, i.e.,

$$
\vec{y}=3 \vec{u}_{1}+2 \vec{u}_{2} .
$$

Definition 4 Given p vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ in R^{m}, the set of all possible linear combinations of $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ is called a subset of R^{m} spanned by $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$, and is denoted by

$$
\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\} .
$$

The above example may be rephrased as follows: determine whether $\vec{y} \in$ $\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

Let us go back to the system and its augmented matrix

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{array} \quad, M=\left[\begin{array}{cccc:c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right] .\right.
$$

The $n+1$ column vectors of R^{m},

$$
\vec{a}_{1}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \ldots, \vec{a}_{i}=\left[\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{m i}
\end{array}\right], \ldots, \vec{a}_{n}=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right], \vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

are called columns of M. Then, the augmented matrix is

$$
M=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}, \vec{b}\right],
$$

and the coefficient matrix

$$
A=\left[\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right]
$$

the system may be expressed as the following vector equation

$$
\sum_{i=1}^{n} x_{i} \vec{a}_{i}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n}=\vec{b}
$$

Now, system of linear equations, augmented matrix, vector equation all mean the same thing.

$$
\sum_{i=1}^{n} x_{i} \vec{a}_{i}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n}=\vec{b} \text { is consistent }
$$

iff (if and only if)

$$
\vec{b} \text { is a linear combination of }\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right\}
$$

iff

$$
\begin{aligned}
& \vec{b} \text { belongs to the subspace spanned by } \vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n} \\
& \text { or } \vec{b} \in \operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right\} \text {. }
\end{aligned}
$$

Homework:

$\# 5,9,11,13,15,19,21,25$

