Reconciling and Cleansing: An Approach to Inducing Domain Models
Sandeep Purao Veda C. Storey Arijit Sengupta Melody M. Moore

Department of CIS, J. Mack Robinson College of Business
Georgia State University, Atlanta, Georgia 30302-4015
Phone: 404 651 3859, Fax: 404 651 3842
Email: {spurao,vstorey, asengupt, melody}@gsu.edu

Abstract

Domain models, which provide templates for an application, can greatly improve the speed of application
development and the quality of the design produced. Unfortunately, the construction of domain models is a
time-consuming process requiring considerable experience and expertise. At the same time, there is a wealth of
domain information embedded in existing legacy databases and code. Current reverse engineering techniques
can extract some of this information. The domain model templates generated in this manner can, however,
mclude considerable organization-specific noise. We present a methodology that reconciles and cleans the
reverse-engineered application-specific models to create useful domain models. We illustrate the feasibility of
the methodology by applying it in two different application domains and desctibe the research prototype being
developed to implement the methodology.

Keywords: domain model, design heuristics, reverse engineering
1. Introduction

Conceptual information system design is difficult because it involves understanding portions of the
real world that are important for an application domain and representing them in a model. This act, domain
modeling, 1s independent of the different applications that may be built within a domain. Although many
applications may have been created previously in a given domain, new application designs are often
developed from scratch. A library of domain models, therefore, would serve as an extremely useful resource
for designers by speeding up the time needed to design and create a new application [Karlsson et al 1995].

Constructing domain models is a complex process, requiring considerable developer expertise, time
and effort [Reifer 1997]. Few domain models are available other than those proposed by industry initiatives
such as SAP. Yet, much of the knowledge undetlying domain models is locked in existing systems that many
corporations possess. Extracting this intelligently can greatly enhance the process of domain model creation.

Research on database reverse engineering proposes techniques for extracting the conceptual schema
from a relational database [Chiang et al., 1997]. However, the schemas so extracted tend to be at a low level
of generality and can contain organization-specific noise. For example, a model might contain entities that
capture two different states of the same concept such as a library book that is either on loan or being re-
shelved. A significant challenge in generating domain models is to identify concepts that are generic and are
not affected by organization-specific policies.

The objective of this research, therefore, is to: develsp a methodology to generate high-quality, reusable domain
models from reverse engineered application models by retaining an appropriate level of detail and eliminating organization-specific
noise. The generated domain models can be useful in several ways such as for comparing an existing
conceptual model to a domain model to assess the completeness of the conceptual model and for providing a
starting point for automatically generating conceptual models.

2. Constructing Domain Models

Domain analysis techniques have been developed for domain-oriented design and reuse [Rugaber et
al, 1997]. However, no approaches for automating the construction of domain models have been proposed
yet. A domain model is a template of an application domain, expressed in the form of a conceptual model.
Rich domain models are those that capture the essence of an application domain so they can serve as
reasonable starting points for the creation of new systems, thus, greatly improving the speed and quality of
the systems produced. An example of a domain model for a hotel application domain 1s shown in Figure 1.

It consists of the ent}ﬂes Guest,'Preferred Guest, ExampleDomaniodel External_Partner
Manager, Room, Maid, Reservation, and External System Architect
P itli 1 | d Thu July 13, 2000 16:02 Partnerld
artner (.e.g., an aitline or car renta agegcy) an Comment shareqwitn 1@
the relationships among them. It also includes
. . YYY)
some notions of arrival and departure dates and o
‘ . - At : . =
times. From this, applications can be built for Guest Reservation eom
different requirements; for example, scheduling of , Has 0.* ForIroomig
. . . Guestld Arrival_Date Type
maids, tracking frequent guests, and making Name Departure_Date .
reservations. Phone 0. cove
Another simple, yet powerful example of cooe Responsible_For| 0.*
the use of domain models can be seen in the area /\ 1.
of tools developed for electronic commerce [promred Guest Manager Maid
icati i iliti — 1
applications that. include capablhu.es such as — Empt Manages [Emp#
‘secure transactions’ or ‘shopping basket’ Name 0. |Name
capabilities. By reusing the models built into these c000
YYY)

tools, a novice developer can quickly design and
deploy an e-commerce application.

The construction of domain models is a complex process because it involves discovering the few
constructs that are general enough to be applicable to different applications while making the model
semantically rich. A wealth of domain information, however, is embedded in existing legacy application
designs, code and data.

One possible approach to creating domain models 1s to take the #mion of all the reverse engineered
models. However, the resulting model would contain concepts that are particular to a given user view and not
generic. Furthermore, many of the applications being reverse engineered may have had design problems that
should be eliminated from the domain model. The sutersection of all the reverse engineered models may be
another approach. However, an intersection would be too restrictive because few constructs apply to all
applications of a domain. In fact, user views could capture concepts that ate very specific to the organization
for which the view was created. A reasonable approach, then, would be to start with the intersection and
expand it to a rich domain model, while eliminating process information.

Figure 1: An Example Domain Model

3. A Methodology for Generating Domain Models

The methodology we propose exploits available information from existing applications such as data
instances, database schema, data dictionary and application code. Existing reverse engineering techniques are

used to generate a conceptual model of the
application. We focus on generating a domain
model by reconciling these reverse engineered, Data Instances Data Schema Data

application-specific conceptual models, aided by Dictionary
the use of data instances and data dictionary. The

use of application code 1s being incorporated as v

the approach evolves. Figure 2 shows the Reverse Application-

methodology. Engineering »{ Specific
The methodology consists of three major Techniques Models

steps: 1) creating a seed model, 2) growing the
seed model and 3) pruning the model. The seed

model is created by taking the intersection of the Construct 3
application-specific models. Then, reconciliation f/fsgel

heuristics are applied to augment the seed model. géggv v
Finally, the model is pruned by applying process Model Prune
noise elimination heuristics. Fach step is outlined S;:gg
with the help of an example based on three real-

wotld databases that were developed for

reviewing and assigning conference papers. Figure 2: The Methodology

Step 1: Construct a Seed Model We

intersection of the reverse engineered conceptual models. Starting with
such a seed model ensures that no (or minimal) process noise is

begin

with an |Paper

SeedModel

System Architect
Thu July 13,2000 16:14

Comment

Seed Model for

retained. The seed model 1s not expected to be semantically rich since it
includes concepts that appear identically in every model. In other

words, semantically equivalent concepts may have been represented

using different constructs. As a result, a small seed model is created.
Figure 3 shows the seed model.
Step 2: Grow the Seed Model A number of heuristics are applied to discover concepts common in

the Conference
Domain

Figure 3: Seed Model

multiple application-specific models. These concepts may represent entities, relationships, or attributes in the
application—specific models. With each, the seed model is augmented. We use several NLP-based and data
instance values-based heuristics for this step. The grown model includes concepts that can be meaningful in
different applications in this domain. Figure 4 shows a grown model for the conference papers review

domain.

Step 3: Prune
the Grown Model

The grown
model 1s populated with
the union of attributes
and behaviors of the
entities from the
application-specific
models. Since these can
contain process
and superfluous details,
another set of heutistics
is applied to prune the
model. The resulting
model, shown in Figure
5, contains important
concepts in the
application domain but
N0t unnecessary process
noise or superfluous
detail. To avoid clutter,
only a few attributes are
shown. The figure
indicates heuristics used

noise

From Seed Model

N
Solo Entity

Attribute in one model,
Entity in another

Session

Overlapping
Entity Names

Paper Conference

1.*

Conference_Track

has

1.*

Chair

Author

has

Entity in
two models

Paper_Review

Attribute in one model,
Entity in another,

Overlapping Atribute
and Entity Names

Grown Model
System Architect
Thu July 13, 2000

16:45
Comment

Attribute in one model,
Entity in another

Entity in
two models

1.*

aggregated as 1

Instances of one
Match Attributes

Review

of Another

1.*

Overlapping 1.%

)
)

Names

Assigned_Review

g

4
t

Criteria_Type
has teria_Typ

done by

1 Entity in
two models

Reviewer

1.*

Review_Criteria I

Figure 4: Grown Model

Overlapping
Names

for

in italics. These are briefly explained in the next section as part of the solution architecture implementing the

methodology.

4. Heuristics

Several heurtstics underlie the methodology described above. These have been incorporated into a
flexible solution architecture that is under implementation. The heuristics exploit natural language constructs
and data instance values to carry out the three steps in the methodology outlined above. The heuristics
identify real-world concepts that are represented by different constructs and selects one to be used in the
domain model. For example, after ascertaining that ‘Author’ and ‘Writer” refer to the same real-world
concept, ‘Author’ may appear in the domain model as an entity construct. They are aided by meta-heuristics,
which dictate the sequence and conditions for firing each heuristic. Figure 6 shows an overview of the
heuristics. A total of sixteen heuristics have been 1dentified, with some heuristics (e.g. 3 and 3A) capturing
different ways of achieving a similar goal. Due to constraints on space, we show and explain below sample
heuristics from the set above to provide the readers a flavor of the different kinds of heuristics employed.

Attributes Removed

rocess Information .
Attribute in one model, o 5 i Overlapping
Entity in another Entity Names

i Solo Entity a Conference_Track
{ Paper -

- 1 /
Session has pp_resubmit_permission | | / 1.*
| |pp_resubmit_log / has
1. pp_tkchair_decision T Conference

»"
| From Seed Model
has| 1.* 1 Entity in
v 1 two models
- 1| 1 :
Chair h Removed i
1.x Ngs Duplicates from Grown Model Paper_Review

Author has
has
4

] aggregated as 1

. 7 Entity in A
Attribute in one model, two models :\:Zttiﬂc:tsm%uﬁgg
Entity in another,) A of Another
Overlapping Atribute Attribute in one model, N

Entity in another w
has Review

and Entity Names Criteria_Type

i

Overlapping
Names

Z Reviewer * Repla_c_ed 1.*
Pruned Model 1.4 - Transitive
System £ Association
Ar)cl:hitect Assigned_Review
Thu May 13, has
1999 17:08

1.*

— Comment— : g
Entity in Review_Criteria for
two models _
P e Overlapping
~ Rem Removed - Names
Entities in Different States Duplicates from Grown Model

Figure 5: Pruned Model for Conference Review Domain

Sample Heuristics for Step 2: Growing the Model
Heuristic 7. Derived Aggregates Perform a string search to identify cases where one entity name is a

subset of another (e.g., Review and PaperReview). Then search for attributes that represent an aggregate (e.g.,
min/max/avg/total/sum/count/overall). This is useful because in some databases both the individual and
aggregate concepts are stored.

Application 1: Review :[...]

Application 2: PaperReview: [...averageoverall, minimumofoverall, maximumofoverall ...]

Result: Place both in the Domain Model, and create a relationship between the two.

Heuristic 9. Attributes in one Entity same as Instances in Another Search for cases where the
attributes of one entity have the same names as values of an attribute in another entity, indicating the same
real world concept is being modeled in different ways.

Application 1: Review: [... originality, tech-quality, significance, clarity, relevance, ...]
Application 2: Criteria Type: [..., cty desc, ... |

Result: Since the values for the attribute “cty desc” include ‘originality,” ‘tech-quality,’
‘significance,’ etc., then Criteria_Type should be an entity in the domain model.

Sample Heuristics for Step 3: Pruning the Model
1. Temporal Information Temporal information pertains to the creation or duration of information

(Le., start and end time). It excludes permanent data such as birthdates. Search the attributes for any that
have a data type of date, time or timestamp.

Application 1: Paper: [Paperid, title, authors, session, status, evaluation]

Application 2: Paper: [..., pp_submit-date, pp_resubmit-date, pp_withdrawal-date, ... pp_track-
chair-date, pp_ae-date]

Result; eliminate the following attributes from consideration for the domain model; pp_submit-date,
pp_resubmit-date, pp_withdrawal-date, track-chair-date, pp ae-date, etc.

1. Create a Seed Model l

2. Grow the Seed Model

Entity Name Parsing Heuristics
1, 1A, 2 (interacts with 7), 3

Frequency-based Heuristics l

45,6 3. Prune the Grown Model

Derived Entity/Attribute

7 (interacts with 2), 8 1. Temporal Information

2. Process Keywords

3. Entities in Different States
3A. Sequence Dependencies
4. Flagged Entities

Data Instance
9,10

Figure 6: Heuristics

2. Process Keywords This extends the above because it includes parsing for process keywords such
as “log” and “decision.”

Application 1: Paper: [Paperid, title, authors, session, status, evaluation]
Application 2: Paper: [..., pp_resubmit-log, pp_ae-decision, pp_trackchair-decision, pp_cmt-
decision]

Result: eliminate the attributes pp_resubmit-log, pp_ae-decision, pp_trackchair-decision, pp_cmt-
decision from consideration in the domain model.

3A. Sequence Dependencies Sequence dependencies are discovered by investigating the timestamps
on data instances in different entities.

Application 1: AssignedReview: [.... Paper-id, ...] Review: [.... Paper-id, ...]

Assigned Review Review
38 Fred 38 Fred
42 Sam L 67 Mary
67 Mary . 87 Beth
87 Beth | —

The corresponding timestamps in AssignedReview occur prior to those in Review

Result: Retain one of the Entities in the Domain Model. Represent the other as a different state using
a state transition diagram.

4. Flagged Entities Search for flagged entities. These are entities that contain a state such as a boolean
flag and indicate a probable process component.

Application 1: Paper: [..., pp_resubmit_permission, ... | Data type = Char Flag

Application 1: Award Recommend: [..., awcm_recommended,] Data type = Int Flag
Application 1: Paper Review: [...,pprvw_yn score,| Datatype = Char Flag
Application 1: Award: [..., award order,] Data type = Int Flag

Result: Remove these attributes from the domain model.

5. Architecture and Implementation

We implemented the above heuristics and methodology in a research prototype using Java™. The
architecture of the research prototype is shown in Figure 7. The inputs to the methodology consist of graphs

of application-specific | .
- . Reverse Application-

models, which contain two Data Schema »| Engineering P Specific
types of nodes, corresponding Techniques Models
to entities and attributes. |
Edges include edges between -
two entittes and those Data % ‘
between entities and Dictionary 1 ;

. . Domain
attributes. In addition, we Model
used a secondary B-tree index L Extractor

covering the entire schema Data Instances

vocabulaty, for the purpose of > Domain Process
efficient traversal and search Model Noise
through the graphs. Table 1 ‘& . Reconciler Eliminator
describes the different stages 3

of the algorithm used (with n .

being the total number of Cleansed Domain Model
nodes and e being the number

of edges). The overall Figure 7: The Solution Architecture

complexity of the algorithm is

within a poly-log bound.

Three conference review systems databases have served as the testbed during the creation of a domain model.
To further assess the effectiveness of the methodology, it was applied to a set of conceptual models for on-
line electronic-commerce sales systems. The application-specific models were created by student teams from
existing systems. Both the seed model and the grown and pruned model showed highly encouraging results
(eliminated here due to space considerations). Many of the heuristics were applied, and a reasonable model
was generated following the methodology, even though all of the heuristics were not needed. The results
from these experiments matched closely with the theoretical presentation, and demonstrated the areas where
the heuristics could be improved by the incorporation of more intelligent methods such as the use of natural
language processing techniques and dictionaries and thesaurus.

7. Conclusions

We have presented a methodology for generating domain models from reverse engineered
application-specific models. We have implemented a major portion of this methodology to experimentally
show its effectiveness. Two sets of heuristics form the basis of the methodology. The methods were initially
tested against three real-world databases in the domain of conference paper reviewing. It was then applied to
another set of reverse-engineered models of on-line electronic commerce systems. Both experiments have
given us highly encouraging results that demonstrate the effectiveness of the method. Future research is
needed complete the implementation and carry out more testing. Planned enhancements to the methodology
and solution architecture include addition of natural language processing capabilities and integration of an on-
line thesaurus or dictionary for greater control on the detection on similar names.

References

1. Chiang, R.H.L., Barron, T.M., and Storey, V.C., “A Framework for the Design and Evaluation
of Reverse Engineering Methods for Relational Databases,” Data and Knowledge Engineering,
Vol.21, No.2, 1997, pp.57-77.

2. Karlsson, E. et al 1995. Editor. Software Reuse. A Holistic Approach. John Wiley & Sons, Inc.

Reifer, D. Practical Software Reuse. John F. Wiley and Sons, August, 1997.

4. Rugaber S. et al. “A Case Study of Domain-Based Program Understanding,” 5” International
Workshop on Program Comprebension, May 1997.

»

