
DOCBASE - A DATABASE ENVIRONMENT FOR
STRUCTURED DOCUMENTS

by

Arijit Sengupta

Submitted to the faculty of the University Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

December, 1997

Accepted by the Graduate Faculty, Indiana University, in partial

ful�llment of the requirements for the degree of Doctor of Philosophy.

Professor Dirk Van Gucht
(Principal Advisor)

Professor Edward Robertson

Doctoral

Committee

Professor Andrew Dillon

December 4, 1997. Professor David Leake

ii

c
 Copyright 1997

Arijit Sengupta

ALL RIGHTS RESERVED

iii

To my mother and father.

iv

Acknowledgements

I would like to thank my advisor Professor Dirk Van Gucht for his help and en-

couragement, without which this research would never have started. His enthusiasm

always encouraged me even when things were di�cult. I am grateful for all the time

(sometimes even during o�-hours and weekends) he spent with me in spite of his hec-

tic schedule. He would always invite me to work with his co-researchers during some

short but very useful research sessions. I would also like to thank Professor Andrew

Dillon for his constant encouragement and advice. I consider my decision to take his

courses at SLIS one of the most important milestones in my academic life. He was

the person who showed me that my work has signi�cant e�ect on the human side of

system design, and without his help, the visualization part of this research would have

been quite incomplete. I would also like to thank Professor Edward Robertson, who

generously lended me source materials { often without my asking. The database lab

was always like a home to me - with Dirk and Ed like two very close family members.

Of course, this family would not be complete without the help and support of Deepa,

Manoj, Munish, Ramu, Sudhir, and Vijay. Special thanks goes to Memo, who proved

to be a very dear friend and was always willing to help; he never said no when I asked

him to review a paper, give me a ride, or simply cheer me up during the hard days.

I would also like to thank the faculty and sta� of the Computer Science Department

for their support.

Special goes to two students who worked with me in the development and in the

testing of the Query-By-Template system. I was fortunate to have the help of Xiaojian

Kang who helped �x and code many aspect of the interface, and Shawn Morgan who

also helped build parts of the system. Many thanks to all the twenty participants

v

of the usability analysis of the interface. This work would not be complete without

their help.

I would also like to thank my parents and my brother - without whose encourage-

ment this would never have been possible. Although on the other side of the world,

they have always been a source of great support. Special thanks to my spiritual

teachers, the late Sri Swami Rama and Pandit Rajmani Tigunait, who showed me

that material was not the only aim of life. I would like to thank my wife Anjali for

her love and support in my work and my life. She was always supportive in spite of

my late hours and hectic work schedules, and she always took the time to proofread

my papers and help out in every way she could. I don't think I could have crossed

this hurdle without her. Last but not the least, I thank my in-laws, Bill and Jane,

who made me feel right at home and never let me realize that my real parents were

thousands of miles away. Ragani was a perfect older sister; her visits were always

times of fun.

I especially would like to acknowledge ArborText for their support and co-operation

during the preparation of this dissertation. This document is prepared using Arbor-

Text's Adept Series products. The preparation was much simpli�ed by these tools

- and I recommend this product to any SGML author. I would also like to thank

Open Text Corporation for their support with with the Pat software that was used

extensively in this research.

This research was partially supported by U.S. Dept. of Education award P200A502367

and NSF Research and Infrastructure grant, NSF CDA-9303189

vi

Abstract

Standard Generalized Markup Language (SGML) has been widely accepted as a stan-

dard for document representation. The strength of SGML lies in the fact that it em-

beds logical structural information in documents while preserving a human-readable

form. This structural information in SGML documents allows processing of these

documents using database techniques. SGML facilitates this goal by providing a con-

ceptual modeling tool for collections of documents using a document type de�nition

(DTD) and by allowing query processing beyond the classic keyword-based searches

of traditional IR systems.

We use these observations about SGML as the design principles for developing

and implementing a structured document database system. The key di�erence of our

approach from other similar approaches is that the design and implementation remain

entirely within the context of the SGML framework. We achieve this by using SGML

as the modeling tool of the database instances, by generating SGML documents as

outputs of the queries, and also by using SGML for expressing queries.

DocBase is a prototype research system that implements most of the querying

features of a document database. We use SGML as the model for structured document

databases, with the database schema represented using a DTD and SGML documents

as instances of this schema. We propose an extended form of relational calculus

and equivalent SQL-like and visual query languages for posing queries. DocBase

implements an infrastructure for processing these queries by leaving the documents

intact, and using special index structures and access methods over these structures.

Recognizing the importance of users in the design of systems for document re-

trieval, we propose a visual query formulation method that uses the principle of

vii

familiarity to make the querying process easier and more satisfying for users. We

show that even at the simplest level, this method is no less e�cient or accurate than

the traditional form-based query formulation, but is signi�cantly more satisfying.

Chair: Dirk Van Gucht, Associate Professor, Computer Science Department

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Problem Context and Description . 4

1.1.1 Database Systems . 5

1.1.2 Document Processing . 6

1.1.2.1 Structured Documents 6

1.1.2.2 Information Retrieval 8

1.1.3 Human-Computer Interaction 10

1.2 Research Issues . 11

1.2.1 Goals of this Dissertation . 12

1.2.2 Contributions . 13

1.3 Outline of this Dissertation . 15

1.4 About this Dissertation . 15

2 Context 17

2.1 SGML and Structured Documents . 17

2.1.1 Key Concepts in SGML . 17

2.1.1.1 Markup . 18

2.1.1.2 Document Type De�nition (DTD) 19

2.1.1.3 The SGML Documents 25

2.1.2 SGML Applications . 25

ix

2.2 Database Background . 25

2.2.1 Standard Database Models . 25

2.2.1.1 The Relational Model 27

2.2.1.2 Complex-object and OO Models 29

2.2.2 Database Query Languages 30

2.2.2.1 Formal languages . 30

2.2.2.2 Structured Query Language (SQL) 33

2.2.2.3 Query By Example (QBE) 33

2.2.2.4 Fill-out Forms to Express Queries 35

2.3 HCI Background . 37

2.3.1 Principles for Usable Interface Design 37

2.3.2 Ensuring Usability . 38

2.3.2.1 Usability Testing . 39

2.3.2.2 Testing strategies . 41

2.3.2.3 Usability Analysis 41

3 Related Work 43

3.1 Unstructured Information Retrieval 44

3.1.1 Conventional Retrieval Methods 45

3.1.2 Alternative Retrieval Methods 46

3.1.3 Indexing and Text Analysis 47

3.1.3.1 Automatic Indexing techniques 47

3.2 Structured Document Databases . 49

3.2.1 Top-down Approaches . 49

3.2.1.1 Complex-object Approach 49

3.2.1.2 Grammar-based Approach 51

3.2.2 Bottom-up Approaches . 51

3.2.2.1 Patricia Trees . 51

3.2.2.2 Concordance Lists 53

3.3 Semistructured Data . 54

x

4 Objectives and Requirements 57

4.1 Functional Requirements . 57

4.1.1 System Properties . 57

4.1.1.1 Top-down Design . 58

4.1.1.2 Three-level Abstraction 58

4.1.1.3 Native Data Representation Format 60

4.1.2 Data Model . 62

4.1.2.1 Structured Document Databases 62

4.1.2.2 Closure . 65

4.1.3 Query Languages . 66

4.2 Non-functional Requirements . 67

4.2.1 Usability Requirements . 67

4.2.2 Advanced Database Requirements 68

5 Conceptual Design 70

5.1 Formal Query Languages . 70

5.1.1 A Document Calculus (DC) 71

5.1.1.1 Path Expressions . 71

5.1.1.2 A Formal Speci�cation of DC 78

5.1.1.3 Semantics of DC . 84

5.1.1.4 Examples . 86

5.1.2 The Document Algebra (DA) 87

5.1.2.1 Primary DA Operations 88

5.1.2.2 Derived DA Operations 90

5.1.2.3 Examples of DA Expressions 92

5.1.3 Properties of the Query Languages 92

5.1.3.1 Equivalence of DC and DA 92

5.1.3.2 Safety Properties . 99

5.1.3.3 Complexity properties 101

5.2 Practical Query Languages . 104

5.2.1 DSQL - An SQL-like Language 104

xi

5.2.1.1 The Core DSQL . 105

5.2.1.2 Examples . 107

5.2.2 SQL in the SGML Context . 109

5.2.2.1 Examples . 110

6 Implementation 113

6.1 Languages, Platforms and Tools . 113

6.1.1 Storage Management Applications 114

6.1.2 Index Management Applications 117

6.2 An Architectural Overview of DocBase 119

6.2.1 Data Distribution . 119

6.2.2 The Life Cycle of a Query . 121

6.2.2.1 Examples of the query processing method 123

6.3 Physical Data Representation . 125

6.3.1 Ideal Data Representation . 125

6.3.1.1 The Parse Tree . 126

6.3.1.2 The Catalog . 128

6.3.1.3 Join Indices . 128

6.3.2 Implementation of the Data Structures 129

6.3.3 Storage Management Functions 131

6.3.4 Index Management Functions 132

6.4 Query Engine Architecture . 133

6.4.1 The Parser and Translator . 133

6.4.2 Query Evaluation . 135

6.4.2.1 Simple Select Queries 140

6.4.2.2 Queries Involving Path Expressions 145

6.4.2.3 Queries Involving Products and Joins 148

6.4.3 Query Optimization . 153

7 User Interface Design 154

7.1 QBT: A Visual Query Language . 154

7.1.1 Rationale . 155

xii

7.1.2 Design Details . 157

7.1.2.1 Flat Templates . 158

7.1.2.2 Nested Templates . 158

7.1.2.3 Structure Templates 160

7.1.2.4 Multiple Templates 160

7.1.2.5 Non-visual Templates 161

7.1.3 Query Formulation . 161

7.1.3.1 Simple Selection Queries 162

7.1.3.2 Selections with Multiple Conditions 163

7.1.3.3 Joins and Variables 164

7.1.3.4 Complex Queries . 165

7.2 Prototype Implementation of QBT 166

7.2.1 GUI Implementation with JavaTM 167

7.2.1.1 Interface components 168

7.2.1.2 Implementation Issues 173

7.3 Usability Testing . 177

7.3.1 Experimental Design . 177

7.3.2 Subjects . 179

7.3.3 Equipment { Software and Hardware 179

7.3.4 Data Collection . 180

7.3.4.1 Basic Procedure . 180

7.3.4.2 Experimental Search Queries 181

7.3.4.3 Timing Techniques 181

7.3.4.4 Survey Questions . 182

7.3.4.5 General Feedback . 183

7.4 Usability Evaluation . 183

7.4.1 Accuracy . 184

7.4.2 E�ciency . 185

7.4.3 Satisfaction . 186

7.5 Summary . 187

xiii

8 Conclusion and Future Work 189

8.1 Contributions . 189

8.2 Future Work . 191

8.3 Applicability . 192

8.4 Finale . 194

A DSQL Language Details 205

A.1 The DSQL Language BNF . 205

A.2 The DSQL DTD . 207

A.2.1 Description of the DTD Elements 209

B Guide to the DocBase Source Code 212

B.1 Guide to DocBase Source Code . 212

B.2 Running DocBase . 213

B.3 SQL Parser Implementation . 215

C Usability analysis questions and tables 221

C.1 Queries Performed by the Subjects 221

C.2 Detailed Usability Analysis Results 222

D About this dissertation 226

xiv

List of Tables

1 A sample relational database instance 28

2 An instance of a complex-object schema 29

3 A QBE implementation of the query: \Print the book numbers and

titles of the books published in 1996" 34

4 A QBE implementation of the query: \Print the book numbers and

titles of the books written by Charles Goldfarb." 34

5 A sample of the concordance list for the example document 54

6 Comparison of the levels of abstraction for relational and document

databases . 60

7 Types of Document Algebra operations and new created types. 88

8 Derived DA operations and new created types. 90

9 E�ect of Interface and expertise on accuracy: (a) Summary of mean(standard

deviation) over all tasks, (b) Results of the F tests and signi�cance values184

10 E�ect of Interface and expertise on e�ciency: (a) Summary of mean(standard

deviation) over all tasks, (b) Results of the F tests and signi�cance values185

11 E�ect of Interface and expertise on satisfaction: (a) Summary of mean(standard

deviation) over all tasks, (b) Results of the F tests and signi�cance values187

12 Description of the GIs in the SQL DTD 210

13 Description of the GIs in the SQL DTD (continued) 211

14 Detailed values of the e�ciency measures 223

15 Detailed values of the accuracy measures 224

16 Details on the Satisfaction measures 225

xv

List of Figures

1 The pubs2 DTD . 19

2 Illustration of the di�erent types of attributes 23

3 An instance of the Pubs2 DTD . 26

4 A simple Entity-Relationship diagram 27

5 Core SQL syntax . 33

6 An example of a form interface for formulating queries. 36

7 The Pat Tree for the string 0110010001011 after the insertion of the

�rst eight sistrings . 52

8 A sample tagged document . 55

9 Levels of abstraction in a database system 59

10 Examples of closure: (a)Relational databases with SQL or relational

calculus; (b) Relational databases with QBE; (c) SGML documents

with an SGML query language; and (d) SGML databases with a template-

based query language . 64

11 Two ways of structuring a book | (a) without using recursion, and

(b) using recursion. 75

12 A simple poem database schema . 86

13 The architecture of DocBase . 115

14 A simple representation of the data structures: (a) the SGML doc-

ument (b) the catalog structure and (c) the parse tree and auxiliary

indices . 127

15 The class hierarchy of the DocBase query processing system. 130

16 Upward and downward traversal algorithms 137

xvi

17 Example of constructing a deterministic �nite automaton for the path

A.B..C . 139

18 Algorithm for evaluating an individual selection condition in a simple

query . 142

19 Algorithm for processing a simple query 143

20 Evaluation of path expressions in the from and where clauses 146

21 Evaluation of SQL queries involving products and joins 149

22 An example of a conceptual image of a search and the retrieved result 156

23 A simple template for poems, with its logical regions 158

24 Templates with (a) Embedded Regions and (b)Recursive regions . . . 159

25 Screen shot of the prototype implementation showing (a) a
at tem-

plate and (b) the structure template depicting the expanded structure. 160

26 Query formulation with QBT: (a) Simple selections and (b)Logically

combined selections . 163

27 Query formulation with QBT: Joins 165

28 Changing precedence of operations with Condition boxes 166

29 A screen image from the prototype showing the template screen . . . 169

30 A screen image from the prototype showing the structure screen . . . 171

31 A screen image from the prototype showing the SQL screen 172

32 Class Hierarchy of the SGML Query Interface Implementation 173

33 The form implementation of the query interface used in the usability

analysis . 178

34 Sample log messages stored at the server 182

xvii

Chapter 1

Introduction

The bulk of the useful information today comes in the form of documents. News-

papers, magazines, books, novels, technical manuals, legal documents are just a few

types of documents that we use almost every day. Lexicographically, the term \doc-

ument" refers to writings on some material substance such as paper. However, with

the advent of computers and automation, documents are no longer restricted to paper

and other \hard copy" media. Instead, documents are prepared and stored electroni-

cally, with computers used for displaying, formatting, printing, searching and editing.

To facilitate these tasks, software vendors have designed a number of powerful word

processing applications that can be used to format, typeset, edit, print and publish

such documents. In most cases, however, the �nal publishing medium is still pa-

per, and the computer software is primarily used for adding formatting information

directed towards printed output. Such systems do provide limited ability to search

documents for words and phrases in the entire document sequentially. However, for

large document collections, these types of searches often prove to be too slow and

restricted, and better retrieval techniques become necessary.

Recently, the WWW(World Wide Web) has signi�cantly changed the concept of

document preparation and distribution. Documents are now being prepared less with

speci�c formatting information and more with structural information in the form of

\tags". It is now possible for di�erent viewers on di�erent platforms to generate

formatting information \on the
y", based on the capabilities of the platforms and

the computer displays. These tags normally use the same encoding as the rest of the

document, so that the document is readable without any formatting information and

is easily interchangeable between platforms. The concept of these tags �rst arose with

HTML (HyperText Markup Language) [BLC95] | the language for the World Wide

1

Chapter 1. Introduction 2

Web, and SGML (Standard Generalized Markup Language) [ISO86] | a generalized

language for creating documents with arbitrary structure. The main emphasis of this

dissertation is on SGML, although all the concepts will be fully applicable to HTML,

since HTML can be considered to be an application of SGML [BLC95].

The primary goal of SGML was to create documents that are freely interchange-

able between multiple systems and platforms. In addition to making documents

portable, the SGML tags introduce structural information in the documents, infor-

mation that can be used by applications for purposes other than formatting. As we

will describe in Chapter 2, the tags can be used as meta-data for database functional-

ity. One objective of this research is to use e�ectively this meta-data information to

give document repositories the ability to query information contained in these docu-

ments in a manner that is currently possible only with standard database models.

As an interesting illustration of the problem, let us consider an electronic doc-

ument collection, such as the ChadWyck-Healey English poetry database [Cha94],

a collection of over 160,000 poems from the Anglo-Saxon period to the late 19th

century. If this collection were on paper, at an average of one poem per page, this

document will have 160,000 pages. This number does not take into account the table

of contents and the index, without which the collection will be virtually useless. At

about 500 pages per volume, this will mean about 80 volumes { enough to �ll up

two bookshelves! On the other hand, this whole information can be easily accom-

modated in a single CD-ROM, which is several orders smaller in physical size than

the paper equivalent. The advances in storage medium technology have ensured easy

and convenient storage of electronic documents, but storage is only half the problem.

E�cient storage of large amounts of data is not of much use if the data cannot be

e�ciently retrieved from the storage. A popular method for extracting portion of

information sources is using searches involving boolean combination of search key-

words. This problem of \information retrieval" [Sal91] forms the basis for research in

automated text extraction from a repository of documents. Information retrieval is

virtually a sub-discipline in its own right within Information Science.

In its simplest form, primitive information retrieval techniques extract lines con-

taining speci�ed keywords from a document. It is often useful to restrict the searches

Chapter 1. Introduction 3

to speci�c portions of the document, such as in the titles or poet names in the case

of the poetry collection. As an illustration, in the poetry database, the word \love"

returns over 270,000 matches, but restricting it within poem title immediately re-

duces the number of matches to around 5,000. In order to successfully introduce

such granularity into the document, one needs to demarcate important regions of the

document with additional information. One common method for augmenting docu-

ments with such information is \tagging", and documents produced in this method

are commonly known as tagged documents or structured documents. In the next

section, we will discuss the process of tagging in more detail. Tagged documents can

be used not only for simple keyword searches as before but also to perform searches

that are impossible without the structural information. With the help of tags, one

can now answer questions similar to ones commonly asked in the context of relational

databases. Some common types of questions are:

� Simple selections. These are queries involving searches for text strings in various

regions of the database (e.g., �nd all the poems that contain the word \love"

in the poem title).

� Projections. These are queries that involve extraction of speci�c components of

documents. (e.g., extract the poem titles and authors only of all poems in the

database).

� Quanti�cation. These are queries that involve quanti�ers such as \all," \every,"

or \none" (e.g., �nd the period in which all poems had the word \love" in their

titles).

� Joins. These are queries in which multiple components of documents are com-

bined based on one or more regions (e.g., �nd the names of poets who have at

least one common poem title).

� Negation. These are queries in which a search condition is negated (e.g., �nd

the poems that do not have the word \love" in the title).

Chapter 1. Introduction 4

� Counting. These are queries that involve computing the number of matched

results, possibly based on certain conditions (e.g., how many Shakespeare poems

are there in the collection?)

� Grouping and ordering. These are queries in which the results need to be

grouped and ordered based on certain conditions (e.g., list the di�erent periods

of poetry in the collection, in ascending order of the number of poems in each

period).

� Nested queries. These are queries in which a query includes another query (or

a subquery) as a search condition (e.g., �nd the names of poets who never used

the word \love" in the title of any of their poems).

Queries similar to the above are common in the case of relational database systems.

If we could model the above poem collection using a relational database, we could

answer all the queries. Unfortunately, current information retrieval systems that only

perform keyword searches well, cannot answer all the above queries. However, systems

that support structured text can be used to automatically extract answers to the

above queries. In a later chapter (Chapter 3), we will discuss in detail current research

e�orts providing support for queries like the above in text database systems. Some of

these methods involve conversion of the text into a standard complex-object system.

This dissertation proposes an implementation method that can provide support for

all these queries without the need for such conversion.

1.1 Problem Context and Description

In this section, we brie
y describe the research problem covered in this dissertation

and the basic concepts related to this problem. The primary goal of this research

is to provide database functionality to document repositories. In order to achieve

this, additional structural information needs to be added to documents. This makes

it possible to pose complex queries involving text and structure like the examples

above. In order for novice users to be able to easily formulate their searches in

Chapter 1. Introduction 5

the system, we need to use Human-Computer Interaction (HCI) techniques to make

searching easy and e�ective. In this section, we introduce some of the developments

in database systems, document processing, and HCI that are used as the basis of the

current research.

1.1.1 Database Systems

Databases emerged as a major research area when the necessity of taking a disciplined

approach for storage and retrieval of information became obvious. The evolution of

database systems is marked by three generations of database systems and models.

[Ull88]

First generation database systems included the hierarchical and network data mod-

els. These models were strongly in
uenced by the physical implementation of the data

and used pointers and links for storage and retrieval. The drawback of this method

was that one needed to know the internal representation of the link structure in or-

der to pose queries on the data. Moreover, changes to the organization of the data

needed major changes to the processing applications. The early IMS (Information

Management System) [McG77] and its DL/1 language fall in this category.

Second generation database systems included the relational model [Cod70], which

�rst introduced the concept of data independence. This makes the conceptual organi-

zation of the data independent of the way the data is internally stored and processed.

In the relational model (discussed in detail in Section 2.2.1.1), the physical storage

and index structures can be completely changed without e�ecting the conceptual

data model and queries for data retrieval. The second generation also witnessed bet-

ter theoretical foundations in database models and query languages and better visual

query formulation using the QBE (Query By Example) query language [Zlo77]. The

Entity-Relationship (ER) Model [Che76], also introduced during this generation, bet-

ter supported conceptual modeling of data, from which the database schema could

be conveniently generated. Although relational databases became the standard in

database systems, the simplicity of the
at table model was often proving to be too

restrictive to model complex structures without causing excessive fragmentation in

Chapter 1. Introduction 6

the data. [AHV95, Chapter 20]

Third generation database systems, consisting of Object-Oriented and Object-

Relational database systems, accommodate complex structures in the data model,

thus improving the expressive power of the model. However, the increased expressive

power also implied an increased complexity of the query languages.

In addition to these prominent generations of database systems, some specialized

database systems have been proposed to model text, multi-media, spatial and tem-

poral data during the recent years. Although technically they can be categorized in

the third generation of database systems, the use of these database systems in their

specialized domains make them distinguishable from the various generations.

1.1.2 Document Processing

This dissertation focuses on processing of documents containing large amounts of

text. We hinted earlier that meaningful queries can be performed on documents

if they contain some structural information in addition to the actual text content.

In this section, we discuss the basic concept of \structured documents" as well as

information retrieval for both structured and non-structured documents.

1.1.2.1 Structured Documents

In this dissertation, when we refer to documents, we primarily mean documents in

electronic form. The simplest type of electronic documents is plain text which contains

only the natural language text of the document, with much restricted formatting and

structural information. In addition to the text, these documents may only contain

spacing and positioning constraints on the text to convey specialized meanings to

the text. The main advantage of plain text documents is that they can be created

on any platform without the use of any special software , and hence they are highly

interchangeable. However, because of the lack of presentation and layout capabilities,

plain text documents have limited use.

The advent of word processing and text formatting systems introduced \tagged"

documents to substitute for plain text documents. Generically speaking, a tag is

Chapter 1. Introduction 7

simply some extra information embedded in the document using either a text editor

or a word-processor. Word processors, such as Microsoft WordTM , primarily use

tags speci�c to the system, using encoding that only particular word processors can

decipher. Text processing systems, such as ro� [Oss76] and TEX [Knu86], use special

codes that can be entered using a computer keyboard. After a document is created,

it can be processed by software programs to replace the codes with presentation

information for viewing on screen or printing on paper. Roughly speaking, we term

documents with additional embedded information as tagged or structured documents.

Tagged documents can be classi�ed in the following two major classes based on the

type of tagging involved:

� Speci�c tagging. In this type of tagging, the tags primarily have font, size and

other formatting information and do not necessarily de�ne any logical regions

in the document. Examples of this type of document include word-processor

documents and documents in ro�, TEX and other related document preparation

formats.

� Generic tagging. In this type of tagging, the tags do not specify any font or size

information but are more general in nature. The primary purpose of these tags

is to de�ne logically distinct regions in the document such as chapters, sections,

headings. These tags can be translated into formatting information by appli-

cations, based on the capabilities of the platform and the screen. Documents

tagged using HTML and SGML are examples of this type of tagging.

Other than the two types of tags described above, there can be a mixed type of

tagging, where both generic and speci�c tagging are involved. Tags can also be

procedural, indicating some action to be performed where used. Documents in LATEX

[Lam94] format contain logical tags such as sections and chapters as well as font,

size and spacing tags. A few of the HTML tags can also be seen under this mixed

category. In addition, tags can also procedural, used primarily for giving instructions

to the processing application.

In the context of this dissertation, however, we will use the term structured docu-

ments to denote generically tagged documents { SGML documents in particular. We

Chapter 1. Introduction 8

will discuss the details of generic tagging in SGML in a later chapter (Chapter 2).

1.1.2.2 Information Retrieval

As mentioned earlier, e�cient storage of large amounts of text does not solve the

problem of e�ectively extracting information from them. Fortunately, research on the

issue of extracting information from large volumes of text has uncovered techniques

for \information retrieval" { we look at a few of these techniques in this section.

The most common method for searching information in a document repository

is by using boolean searches [Sal91]. In this type of search, a number of keywords

combined with boolean operators (such as \and", \or", \not") are speci�ed, and

the result consists of the documents that satisfy the given boolean expression. The

problem with this type of search is that all matching documents in the resulting doc-

ument set are given the same importance. To avoid this, one can use the weighted

keyword search, in which the search items are assigned weights based on their impor-

tance, and the retrieved documents can be ordered by the most relevant to the least

relevant based on the number of matches and the weights of the matched terms.

Although the complexity of simple keyword search in a document is only linear

to the size of the document, for very large documents this complexity turns out to

be considerably expensive. For example, a simple \grep" search [GNU92] for the

word \tyger" in the Chadwyck-Healey poetry database mentioned earlier takes about

6 minutes (62.9 seconds system CPU time) running on a Sun Ultra Sparc 2 with

124MB of main memory. This seemingly abysmal performance is partially due to

the fact that grep does not utilize the system resources intelligently, but scans the

�les one line at a time. Although operating systems are usually intelligent enough to

cache one or more blocks of data even for single-line reads, most of the time is still

in processing I/O from secondary storage and network.

The most common approach to avoid accessing the whole document repository for

every search is to create indices based on the documents. The searching applications

can use the indices �rst to determine exact location of the �le in which matches could

potentially be found, and retrieve data by directly accessing the document in that

location. As an illustration, the same search as above using Glimpse [MW93], with

Chapter 1. Introduction 9

only a small index �le on the same machine takes about 67 seconds (4.19 second

system CPU time), an improvement of around a factor of 15 on CPU usage.

Note that this improvement is even more apparent if the search keyword appears

less often. In the last example, the word \tyger" has about 400 occurrences in the

database. If the same experiment is performed with the word \Casabianca" (which

occurs only twice in the database), the sequential search takes about the same time

as before, while the index search takes only about 2 seconds (0.19 second system

CPU time). On the other hand, although a sequential search on the word \love"

(which appears over 200,000 times) takes about the same time as before with the

sequential search, it takes about 4 minutes (22.3 second system CPU time) with the

index method. The reason for this is again because of the time spent in retrieving

the results from the individual �les, which is I/O intensive. Although this process

involves building the indices which takes about 2 hours and uses about 7{8% of the

size of the database, indices are only built once and can be used for all subsequent

queries.

Creation of indices also requires special considerations based on the type of data

to be indexed and types of queries to be supported. In any language, there are words

that are used very frequently, but very rarely searched for (such as like \and", \of",

\or", \but", \the" in English). While creating indices, these words make the size

of the auxiliary index structures larger, thus a�ecting the search time. Such words,

commonly referred to as \stop" words, are often ignored by indexers. While indexing,

it is often useful not to create separate index entries for all forms of the same word

(such as various verb forms, tenses and numbers) and only include the root word

in the indices. Some advanced indexing mechanisms use various forms of linguistic

analysis [SR90] and thesauruses to determine the important words for indexing.

In summary, most of these techniques use the full text of the documents to build

smaller auxiliary structure that can be searched faster than the actual documents.

Worldwide availability of these documents are now possible using the WWW, which

in turn is developing the concept of digital libraries [Sch97] containing not only text,

but also images, sound and other multimedia objects. In Chapter 3, we discuss in

more detail recent research on information retrieval techniques for document searches

Chapter 1. Introduction 10

with embedded structural information.

1.1.3 Human-Computer Interaction

Although e�ciency and functionality are two very important considerations for any

system to succeed, the \user issues" are frequently ignored. A system must be usable

and appealing to the users in order to be successful. It is not trivial to determine

whether an interface or visualization method is user-friendly. This task is nearly

impossible without the involvement of potential users of the system, preferably in

a similar environment in which the system is expected to be used. Designing for

usability is another very important factor in any system design. In this research, we

make use of HCI (Human Computer Interaction) tools and principles to design a visual

interface for performing the task of querying document databases. To design a usable

interface, importance needs to be given to cognitive considerations (e.g., familiarity,

visibility, perception) and social considerations (e.g., context, surroundings). Some

of the primary HCI concepts that we use in the subsequent chapters include the

following:

Cognitive artifact A cognitive tool or a cognitive artifact is a replacement for hu-

man de�ciency [Hel88, Chapter 1]. If humans could perform all the necessary

tasks rapidly, we would not require additional tools. The primary reason of

using a tool is that it enhances human ability. When a goal is identi�ed, it is

necessary to decide whether it is within the limits of normal human capabilities,

and a tool becomes necessary if it is either impossible or ine�cient to perform

the task by a human.

Mental models A mental model is the users' mental architecture [Hel88, Chapter

2]. At the time of performing a task, a user may already have some knowledge

regarding the actual method by which the task is performed. This knowledge

can be in the form of (i) rules performed in sequence that govern the process; (ii)

methods that generally achieve the goal, and (iii) knowledge of the components

of the system and their interaction. In order to design friendly user interfaces,

Chapter 1. Introduction 11

the designer needs to appropriately utilize this mental model of the users, tak-

ing into account what expectations of the system they have and designing the

interface accordingly.

Interface metaphors From a linguistic point of view, a metaphor is a word or

phrase describing an object or idea in place of another to suggest a likeness

between them. In the design of user interfaces, metaphors are used to control the

complexity of the interface by exploiting the user's prior knowledge of domains

comparable to the domain of the system. This approach increases the initial

familiarity of the actions, procedures and concepts of a system by making them

similar to those already known to the user [Hel88, Chapter 3]. The \desktop

metaphor" of graphical operating systems is an example of metaphors commonly

used in interface design.

Direct manipulation Direct manipulation is a technique utilized in user interfaces

in which the user has a continuous representation of the object of interest, and

the actions involve physicalmovement of objects rather than textual commands.

In addition, the interface provides continuous feedback to the user on the status

of the system [Shn87].

Individual di�erences One very important consideration, which is often ignored

during the design of user-interfaces, is the di�erence between the users of the

interface. It needs to be kept in mind that every user is an individual, and

everyone di�ers in their perception of the concepts necessary to use the target

system. Systems designed for usability need to be properly checked with users

with varying levels of knowledge and experience if they are to be used by such

users [Hel88, Chapter 6].

1.2 Research Issues

In Section 1.1.2.2, we looked at techniques for information retrieval from text docu-

ments without any structural information. This type of search, often called \full-text

Chapter 1. Introduction 12

search" has its limitations, and Sembok [SR90] argue that the e�ciency of keyword

searching has reached its theoretical limit. Thus, adding structural information in

documents and using this extra information for restricting searches provides an inter-

esting alternative to full-text keyword searches. These searches that integrate the em-

bedded structural information (meta-data) with the actual text (data) are frequently

called \queries". We provided a few examples of queries earlier in this chapter.

One natural approach for processing queries on structured text databases is to

�rst convert the documents into a standard database format, and then use the capa-

bilities of the database to process the queries. The problem with this approach is that

the structure of documents cannot be easily modeled using standard database tech-

niques. It is extremely di�cult to model hierarchically structured documents using

relational databases since the
at structure of the relational model causes exces-

sive fragmentation in the document structure. Complex object and Object-oriented

databases seem to better match document structures, and a signi�cant number of ef-

forts [CACS94, Zha95, Hol95, D'A95] have been devoted towards mapping SGML doc-

uments in an Object-oriented or Object-Relational database and using the database

for processing the queries. The main problem with this approach is that some docu-

ment structures still do not �t completely in a standard database model, and these

systems resort to heuristics to get around this problem. This often results in loss of

information, and in most cases requires the documents to be created and processed

only by the particular database, a�ecting the interchangeability of the documents.

The primary research issue here is to consider SGML itself as a modeling tool and

to use external indices to solve queries without the need for mapping documents into

a di�erent database format. This makes such a system \closed" within the SGML

domain, just as relational database systems are closed within tabular structures. The

primary advantage of this property of closure is the ability to reuse and nest the

queries and their results. Current database systems that support SGML attempt to

achieve this in a convoluted manner, by converting to another format and if necessary,

converting back to SGML. Hence, there is a need for research to investigate whether

this double-conversion can be avoided.

Chapter 1. Introduction 13

1.2.1 Goals of this Dissertation

The primary goal of this dissertation is to design and implement a database system for

documents using a single format that provides modeling, e�cient processing as well

as user interfaces. In addition, we describe a prototype system that implements most

of the features required of such a system, prominent among them are the following:

� Broad range of queries. Most index-based approaches to information retrieval

systems are usually restricted to a small and often ad-hoc set of queries. The

proposed system should be able to process the select-project-join queries like

SQL.

� Closure. Closure is the property by which the input and output of a process are

\closed" within the same domain, or in other words, the input and output are

in the same form. For example, the input and output of a query in a relational

database are both in the form of tables. The prototype system should ensure

that the input and output of the queries are both valid SGML documents.

� E�ciency. Although the range of queries is important, the query processing

should be as e�cient as possible, by incorporating (or suggesting the incorpora-

tion of) fast index structures, caching and other speedup techniques commonly

used in database systems.

� Ease. The goal of the query language portion of the dissertation is simplicity.

We recognize that the primary users of document query processing systems

are from humanities disciplines, and requiring users to learn new programming

languages for the purpose of searching can be too imposing on the users.

Other properties of standard database systems, such as concurrency control, recovery,

and views are also desirable.

1.2.2 Contributions

The primary contribution of this dissertation is the proposal, design and implemen-

tation of a database system speci�cally designed for structured documents. The

Chapter 1. Introduction 14

signi�cant contributions are as follows:

1. Design of a polynomial-time query language. The central idea in this disserta-

tion is the existence of a �rst-order query language which is within polynomial-

time complexity. Although this language is not capable of expressing all poly-

nomial time queries, most queries commonly used for such databases can be

expressed in this language. Chapter 5 discusses the details on four equivalent

versions of this language.

2. Proposal for a standard query language for SGML databases. Although SGML

has been in existence for approximately the same time as SQL (the standard

query language for relational databases), there is still no standard method for

querying databases supporting SGML. Vendors of SGML databases create their

own method for posing queries and hence, cause much damage to the property

of portability, which was the original aim of SGML. This dissertation proposes

a language which is familiar to the SGML community while retaining all the

power and properties of SQL.

3. Design of a generalized visual language for query formulation. In spite of all

the advances in graphics and visualization, interfaces for querying databases

are still limited to forms. This dissertation proposes a query interface based on

QBE (Query By Example) [Zlo77] that simpli�es the querying process and, at

the same time, incorporates most of the power in the query language referred

to above.

4. Design of a query processing infrastructure for document databases:. This dis-

sertation introduces structures and access methods, quite similar to those in

relational database systems, that are adapted for processing queries on hierar-

chically structured documents.

5. Design of a prototype system with most of the desired features:. This disserta-

tion describes DocBase, a prototype system for posing queries in a document

database. The queries can be posed using either SQL or the visual interface

described above. Instead of starting from scratch, this prototype uses the Open

Chapter 1. Introduction 15

Text software [Ope94] for simple searches and uses special indices we designed

for joins and other complex searches.

6. A generalized method for current SGML systems to support SQL-like queries.

The prototype system demonstrates how a current commercial system can be

given the capability of querying using the proposed query language. The ba-

sic properties necessary are primarily for traversal of the document hierarchy

{ something that all current products can perform fairly well. This demon-

strates that it would be possible for most current products to incorporate this

functionality.

1.3 Outline of this Dissertation

This rest of this dissertation is organized as follows. Chapter 2 provides the context of

this work, including the concepts of structured documents, databases, HCI principles

and IR techniques. Chapter 3 reviews the current approaches in this direction and de-

rives the feasibility and necessity of this work. Chapter 4 describes the requirements

of a structured document database system. Chapter 5 describes the design of the sys-

tem, including the modeling, query language and internal data structure. Chapter 6

explains architecture of DocBase describing its implementation in detail. Chapter 7

describes the visual query processing techniques and the user-centric approach in this

work. Finally, Chapter 8 summarizes the research and provides directions for future

research on database systems for structured documents.

1.4 About this Dissertation

To demonstrate the power and applicability of SGML in document representation and

processing, this dissertation was written completely in SGML. The printed version of

the dissertation was obtained from a LATEX document which was generated dynami-

cally from the SGML source using a style-sheet based conversion program. Moreover,

Chapter 1. Introduction 16

the thesis was indexed using the prototype implementation of DocBase for the pur-

pose of posing queries on the dissertation. Additional details on the applications and

code used for creating this dissertation are presented in Appendix D.

Chapter 2

Context

This chapter describes the context of the current research. Our goal is to provide

database support for fully structured documents in SGML. Here, we introduce SGML

and its key concepts and features, describe the current trend in standard database

systems with respect to modeling and query formulation, and discuss relevant areas

of Human-Computer Interaction (HCI).

2.1 SGML and Structured Documents

SGML (Standard Generalized Markup Language: [ISO86]) is an international stan-

dard for document representation. The original purpose of SGML was to standardize

and thereby facilitate the encoding of documents in a platform and system indepen-

dent manner by embedding a textual representation of the logical structure infor-

mation in the documents. SGML incorporates structure in a document by (1) �rst

de�ning the structure and (2) then representing valid document instances conforming

to this structure. In this section, we describe the basic concepts used in SGML and

show how documents are created, structured and validated using SGML. The rest of

this dissertation uses the generic term \structured document" to describe a document

encoded in SGML.

2.1.1 Key Concepts in SGML

SGML is a language for describing and encoding the structure of documents. It is a

meta-language in the sense that SGML can be used to de�ne languages which in turn

describe valid document instances. Documents encoded in SGML use a method for

17

Chapter 2. Context 18

marking up textual documents to make them conform to the structure de�ned using

a DTD (Document Type De�nition). The rest of this section describes the concepts

of markup and DTD, including components of a DTD and their uses.

2.1.1.1 Markup

The primary concept behind SGML is the term \markup." In the traditional sense of

the word, \marking up" refers to the insertion of special symbols in paper manuscripts,

primarily as instructions to an author, typist, or compositor. In the SGML context, a

\markup" is a sequence of characters designated to indicate the start or end of certain

regions in a document, reference to previously de�ned symbols and calls to external

processes. The existence of markup symbols is interpreted by applications to perform

some procedure for handling that area of the document. This added information

serves two purposes: [Gol90]

a) separating the logical elements of the document;

b) specifying the processing functions performed on these elements.

Although SGML is the standard in markup languages, many other document prepa-

ration and typesetting systems and languages (such as nro�, LATEX) share this same

idea.

Textual markup used in these languages are often referred to as \tags." As de-

scribed in Chapter 1, tags can be either (1) speci�c (referring to speci�c formatting

or layout instruction) (2) generic (referring to only the logical structure of the doc-

ument) or (3) a mixture of these two types. SGML documents use generic markup

by enclosing particular regions of the document between \start tags" and \end tags"

that denote the start and end of these regions. The symbols used for this purpose are

de�ned in the Document Type De�nition (DTD) which will be described next.

In addition to tags, SGML uses other markup sequences to de�ne external pro-

cedure calls (processing instructions) and macro de�nition and substitution (entities

and entity references).

Chapter 2. Context 19

2.1.1.2 Document Type De�nition (DTD)

The Document Type De�nition (DTD) is an essential component of any SGML appli-

cation. Before preparing a document in SGML format, the structure of the document

needs to be de�ned. The DTD de�nes a language by de�ning a grammar to which

the document instances conform. The non-terminals in this grammar are referred to

as generic identi�ers(GI), and the terminal symbols are usually character data. In

the following example (Figure 1), we de�ne a DTD corresponding to a document set

containing information on books and publishers (adapted from the pubs2 database

that comes with the SybaseTM relational database system [Syb94, Appendix C]).

<!ELEMENT pubs2 O O (publisher+, author+)>

<!ELEMENT publisher - O (pubname, city, state, book+)+>

<!ATTLIST publisher pubid ID #REQUIRED>

<!ELEMENT (pubname | city | state)

- O (#PCDATA)>

<!ELEMENT book - O (title, type, price, advance,

totalsales, notes, pubdate, contract, authors)>

<!ATTLIST book titleid ID #REQUIRED>

<!ELEMENT (title| type| price| advance| totalsales |

notes|pubdate|contract) - O (#PCDATA)>

<!ELEMENT authors - O (refid)*>

<!ELEMENT author - O (aulname, aufname, phone, address,

city, state, country, postalcode, copy)>

<!ATTLIST author auid ID #REQUIRED>

<!ELEMENT (aulname | aufname | phone |address |

country | postalcode | copy) - O (#PCDATA)>

<!ELEMENT refid - O (#PCDATA)>

<!ATTLIST refid who IDREF #CONREF>

Figure 1: The pubs2 DTD

The DTD consists primarily of a number of production lines. Each production de-

�nes an element using a generic identi�er(GI) and describes the contents and omission

rules for the markup of the element. Omission rules are important because omitting

tags reduces the size of the documents and makes them easier to read. In most cases,

Chapter 2. Context 20

the parsers can insert missing tags based on the context.

A document type de�nition speci�es the following:

1. The generic identi�ers (GIs) of elements that are permissible in the document

type.

2. For each GI, the possible attributes, their range of values and default values.

3. The content model for each GI, which includes the sub-elements of the GI and

permissible characters within that GI.

Elements and Generic Identi�ers Generic Identi�ers (GIs) in the SGML context

are names given to the non-terminals in the grammar speci�ed by the DTD. In a DTD,

a GI is declared using the ELEMENT speci�er. Declaration of a generic identi�er de�nes

two tags | the start tag and the end tag of the GI. These tags and the text enclosed

by them constitute logical elements de�ned by the GI. In the DTD, the de�nition of

each element includes omission rules for its tags, attribute de�nitions and the content

model of the element. The omission rules determine whether or not either the start

tag, end tag or both can be excluded from the document. Usually exclusion of tags

is feasible if it is possible to infer the start or end of the element from the context in

which it appears. For example, in the DTD in Figure 1, the omission rules for almost

all the elements are speci�ed as \- O" | indicating the start tag of these elements

cannot be omitted, but the end tags can be omitted if the end tag can be inferred

from the context in which the tag appears.

Content Models Content models describe the contents of composite elements.

The SGML DTD speci�es the grammar using an Extended Context-Free Grammar

[MK76] (context-free grammar where the right side of a production can have regu-

lar expressions). The expansion of an element, referred to as \content models" in

SGML, may consist of only character data (data content), only constituent elements

(structure content) or both (mixed content). A content model may be empty, indi-

cating that the particular element does not have any content, but its simple presence

indicates some special processing at that position in the document.

Chapter 2. Context 21

Data Content. SGML is primarily an untyped language, in the sense that it is not

possible to declare the data types of elements. For example, in the above DTD, there

is no way to directly specify that the element representing the date is actually of type

\date/time." This is primarily because SGML is a structuring language and gives no

semantics to the data. SGML only supports data in the form of character sequences.

However, SGML does provide a few variations of character data for use in di�erent

contexts, primarily as a means for parsing support. The two main character data

variants are PCDATA (Parsed Character Data) and RCDATA (Replaceable Character

Data). PCDATA contents are parsed by the parser as usual, but RCDATA contents are

left unparsed - only the entity references are replaced. SGML also supports a limited

number of data types for the attributes which we describe later in this chapter.

Structure Content. SGML DTDs can specify the structure of an element using

an Extended Context-Free Grammar notation. The structure content may contain

regular expressions consisting of other GIs. Regular expressions in SGML content

models may be de�ned formally as follows (in order to demarcate the regular expres-

sions from the rest of the text, we enclose them within double quotation marks, but

they are not part of the regular expressions):

� For every GI A, \A" is a valid regular expression, indicating one and only one

occurrence of A.

� If R1 and R2 are regular expressions, so are the following:

{ \R1; R2" - indicating a single occurrence of R1 followed by a single oc-

currence of R2, in that order. This model is often called the \sequence"

model.

{ \R1 & R2" - indicating an occurrence of R1 and an occurrence of R2 -

without any particular order, but both need to be present.

{ \R1jR2" - indicating an occurrence of either R1 or R2 but not both. This

model is often referred to as the \option" model.

{ \R1�" - indicating zero or more occurrences of R1.

{ \R1+" - indicating one or more occurrences of R1.

Chapter 2. Context 22

{ \R1?" - indicating zero or one occurrence of R1 (i.e., the expression R1 is

optional).

{ \(R1)" - indicating a single occurrence of R1.

For example, the second line in the DTD in Figure 1 indicates that the content model

of publisher contains one or more instances of publisher information, which includes

the publisher name (pubname), city, state, and one or more books.

Mixed Content. Amixture of data and structure content is also allowed in content

models, usually in a sequence or option model along with another structure model.

If present in a sequence model, the presence of the #PCDATA indicates the only area

of the content model where character data can appear. Even white space characters

cannot appear in any other position in the content model. If #PCDATA appears in an

option group, either character data or the content model may appear. The following

example illustrates the two types of mixed content. The third line illustrates the use

of a repetition to indicate interspersed data and structure content.

<!ELEMENT both - - (#PCDATA, (A, B))>

<!ELEMENT either - - (#PCDATA | (A, B))>

<!ELEMENT mixed - - (#PCDATA | (A,B))*>

Other Content Models. In addition to the data, structure and mixed contents, a

content model can be EMPTY, indicating that it may not contain any other element;

or ANY, indicating that it may contain any other valid element in the DTD.

Attributes Some properties of elements do not belong directly to the content of

the document. For instance, a document may be a draft of a paper and may have

version number information. This information is useful to the author but it cannot

be characterized as the content of the document. According to Goldfarb [Gol90],

The GI is normally a noun; the attributes are nouns or adjectives that

describe signi�cant characteristics of the GI.

Attributes are speci�ed using the ATTLIST speci�er in the DTD. Each element

may have only one attribute list speci�er, containing unlimited number of attributes.

Chapter 2. Context 23

For each attribute, the following information needs to be speci�ed (see Figure 2 for

illustrations):

<!DOCTYPE atts [
<!NOTATION TeX SYSTEM -- TeX Notation -->
<!NOTATION Roff SYSTEM -- Roff Notation -->
<!ENTITY alpha SYSTEM "alpha.txt" NDATA Roff -- Entity declarations -->
<!ENTITY beta SYSTEM "alpha.txt" NDATA Roff>
<!ELEMENT atts - - (eg1 | eg2)*>
<!ELEMENT eg1 - - (#PCDATA)>
<!ATTLIST eg1 first CDATA #IMPLIED -- optional attribute --

second ENTITY #REQUIRED -- required attribute --
third ENTITIES #IMPLIED
ident ID #REQUIRED -- ID value --
value (type1 | type2 | type3) "type1"

-- enumerated type with default value --
type NOTATION (TeX | Roff) "TeX">

<!ELEMENT eg2 - - (#PCDATA)>
<!ATTLIST eg2 ref IDREF #CONREF -- content reference --

refs IDREFS #IMPLIED -- multiple references --
quant NUMBER #CURRENT -- numeric attribute -->

]>
<atts>

<eg1 first="john" second="alpha" third="alpha beta" ident="a101"
value="type2" type="Roff">This is eg1</eg1>

<eg1 first="jane" second="beta" ident="a102" type="TeX">
This is a second instance of eg1</eg1>

<eg2 ref="a101" refs="a101 a102" quant="200">
<eg2 ref="a102"><!-- quant=200 even though not specified -->

</atts>

Figure 2: Illustration of the di�erent types of attributes

1. Attribute name. This is the name of the attribute which is unique in a particular

DTD.

2. Attribute type. This is the type of the attribute. SGML allows attributes to be of

a number of types, including CDATA (character data), ENTITY (reference to a de-

clared entity), ENTITIES, ID (an identi�er value for cross-referencing), IDREF(S)

(references to identi�er values), NAME(S) (a name), NMTOKEN(S) (name tokens),

NOTATION (notation name), NUMBER(S) (numeric values) and NUTOKEN(S) (num-

ber tokens). Attribute types also include listed values (similar to enumerated

Chapter 2. Context 24

data types in programming languages).

3. Attribute value. In the case of a listed attribute type, one of the speci�ed values

can be indicated to be the default. In the case that no values are speci�ed for

this attribute, the default value is assumed by the parser. For the rest, the

value can be speci�ed to be (i) #IMPLIED, indicating that the attribute value

can be omitted and will be implied by the application; (ii) #CURRENT, indicating

that if the attribute value is omitted, the application will use the most recently

used value for this attribute; and (iii) #REQUIRED, indicating that the attribute

value cannot be omitted. For IDREF attributes, the attribute value may be

#CONREF, indicating that the content of the current element is to be referenced

from another element whose ID is being referred.

Entities In text documents, it is often necessary to repeat sequences of character

or markup. SGML applications use the ENTITY feature to accomplish this. There are

four primary types of entities:

1. Character Entity. Entities representing special characters. Characters that fall

in this category include characters that cannot be keyed in using a regular

keyboard (such as c
, represented as \©"), characters that have special

meanings in SGML (such as <, represented as \<"), and foreign charac-

ters (such as
, represented as \Ω"). As the examples suggest, the entity

references use the ampersand (&) character in front and a semicolon at the end.

2. General Entity. General Entities are very similar to macros in programming

languages. They are similar in representation to character entities, but usually

expand to one or more characters.

3. File/Document Entity. A �le entity refers to a document, usually speci�ed by a

SYSTEM identi�er (�le name) or a PUBLIC identi�er (a specially formatted name

which can be mapped to a �le). When referenced, the entity is replaced by the

�le it represents.

Chapter 2. Context 25

4. Parameter Entity. Parameter entities are only used in DTDs and may contain

markup declaration. They are referenced using the % symbol instead of & as

in the other entities.

2.1.1.3 The SGML Documents

Valid SGML documents are instances of the schema de�ned by the DTD. These doc-

uments are usually standard text documents tagged using the markup syntax de�ned

in the DTD. An SGML document corresponding to the DTD de�ned in Figure 1 is

shown in Figure 3.

2.1.2 SGML Applications

At bare minimum, an SGML application consists of an SGML DTD and document

instances conforming to the DTD. A complete application designed for a speci�c task

may have other modules to manage the documents and associated components. Since

SGML documents do not specify any semantics, other documents often accompany

SGML source documents. Such components include style-sheet speci�cations to as-

sociate layout information to logical regions; translation scripts to translate SGML

documents into other formats for printing or displaying purposes; or indexing infor-

mation for searching the documents. To use the SGML documents, applications may

also require the SGML parser to check the validity of the SGML documents as well

as entity management components to ensure that all the cross-referenced components

are valid.

2.2 Database Background

2.2.1 Standard Database Models

Database systems are widely used for the purposes of e�cient processing and man-

agement of large volumes of structured data. Relational databases, in particular, are

extremely useful for many such applications. Here, we review the standard database

Chapter 2. Context 26

<!DOCTYPE PUBS2 system "pubs2.dtd">

<PUBS2>

<PUBLISHER PUBID="A0736">

<PUBNAME>New Age Books</PUBNAME>

<CITY>Boston</CITY>

<STATE>MA</STATE>

<BOOK TITLEID="BU2075">

<TITLE>You Can Combat Computer Stress!</TITLE>

<TYPE>business</TYPE>

<PRICE>$2.99</PRICE>

<ADVANCE>$10,125.00</ADVANCE>

<TOTALSALES>18722</TOTALSALES>

<NOTES>The latest medical and psychological techniques for

living with the electronic office.Easy-to-understand

explanations.</NOTES>

<PUBDATE>6/30/85</PUBDATE>

<CONTRACT>-1</CONTRACT>

<AUTHORS>

<REFID WHO="A213-46-8915">

</AUTHORS>

</BOOK>

</PUBLISHER>

<AUTHOR AUID="A213-46-8915">

<AULNAME>Green</AULNAME>

<AUFNAME>Marjorie</AUFNAME>

<PHONE>415 986-7020</PHONE>

<ADDRESS>309 63rd St. #411</ADDRESS>

<CITY>Oakland</CITY>

<STATE>CA</STATE>

<COUNTRY>USA</COUNTRY>

<POSTALCODE>94618</POSTALCODE>

<COPY>Mr. Green</COPY>

</AUTHOR>

</PUBS2>

Figure 3: An instance of the Pubs2 DTD

Chapter 2. Context 27

models including the relational model and observe the properties that are useful and

essential in the development of database systems. We also note that the relational

model is not powerful enough to capture properties of complex data, and hence,

describe e�orts on generalization of the relational model to represent complex data

structures and properties. In particular, we brie
y describe the nested relational

model and the object-oriented model for representing complex structures.

2.2.1.1 The Relational Model

Among the current database models, the relational model is the most extensively

used model for describing database systems. One of the primary reasons behind the

success of this model is its simplicity, which is also the reason behind its limitations.

The relational data model is based on a strong theoretical foundation proposed by

Codd [Cod70].

The primary idea in relational model is that the data is represented in tables with

a �xed number of columns, and each row represents a single record. A relational

database consists of a set of tables, or relations; the relations consist of a set of

tuples within a domain. These tuples form the rows of the relational tables, and

the columns represent properties of the tuples (attributes). Each attribute is of an

atomic data type (e.g., character strings, numeric values), and the type of all the

attributes combined forms the type of the relation. The relational schema, which

governs the structure of the relational database, consists of the relation names and

the attribute names with their types. The relations are the only composite types

allowed in the relational model, and attributes of relations may only be of atomic

types (e.g., character, numeric). However, attribute values in a relation can refer to

attribute values in other relations.

1:11:M AuthorBook

Bookno

Authorname
 Title

Year
Publisher written

by

Figure 4: A simple Entity-Relationship diagram

Chapter 2. Context 28

Because of the simplicity of the model and the fact that most scenarios cannot

be directly modeled using a
at tabular structure, it is often necessary to \
atten" a

conceptual structure so that it can be represented by a relational database. However,

attening a complex structure introduces redundancy in the data and also introduces

the possibility of anomalies (such as insertion, deletion and update anomalies) re-

sulting from database operations [Ull88, Chapter 7]. To avoid these anomalies, the

at schema is fragmented into a set of smaller relations. This process of breaking a

schema into multiple
at relations is called normalization. During query processing,

it is often necessary to bring these fragments together, which is achieved by a special

operation called join. As an example, we can consider a simple library catalog, in

which information on books is stored. Consider a simple \book written by author"

relationship as shown in the Entity-Relationship (ER) diagram1 in Figure 4. For

simplicity, assume a book can be written by multiple authors, but an author writes

at most one book. The equivalent relational schema with a simple instance is shown

in Table 1.

Book

Book Number Title Publisher Year

0198537379 The SGML Handbook Oxford 1990
079230635X Practical SGML Kluwer 1990
0133098818 Developing SGML DTDs Prentice Hall 1996

Auth info

Book number Author

0198537379 Charles Goldfarb
079230635X Eric Van Herwijnen
0133098818 Eve Maler
0133098818 Jeanne El Andaloussi

Table 1: A sample relational database instance

In the example schema (Table 1), the information on books include a book number,

1The Entity Relationship (ER) model [Che76] is a method for viewing data conceptually using
distinct objects (entities) and the relationships between them. The ER diagram is a method for
visually describing an ER model, and is a great tool for specifying a conceptual data model.

Chapter 2. Context 29

a title, a publisher, a year, but may include multiple authors. In order to model this

multiplicity using a relational schema, the author information needs to be kept in

a separate relation linked, using a common �eld, to the main book relation. This

situation arose because of the one-to-many relationship \written-by" as shown in

Figure 4.

2.2.1.2 Complex-object and OO Models

The simplicity of the relational model sometimes becomes a problem when the data is

modeled as a set of
at relations. In many cases, normalization needs to be performed

multiple times, making the resulting schema overly fragmented. This not only makes

subsequent query processing di�cult, but also makes the schema vastly di�erent from

the natural representation of the structure. To get around this problem, various forms

of \complex-object" models have been proposed. One of the most prominent complex-

object models is the nested relational model [TF86, AB95], in which the attributes in

a relation are allowed to be of composite type (e.g., sets, lists or other relations), thus

making the actual representation of the data in this model closer to its conceptual

structure.

The schema in Figure 4, using a nested relational model, will have an instance as

shown in Table 2. In the nested relational model, an attribute can be another relation

(such as \bibliographic info" in the example) or a set type (such as \authors" in the

example).

Book No. Title Bibliographic Info Authors
Publisher Year

0198537 The SGML Handbook Oxford 1990 Charles Goldfarb

079230635X Practical SGML Kluwer 1990 Eric Van Herwijnen

0133098818 Developing SGML DTDs Prentice Hall 1996 Eve Maler

Jeanne El Andaloussi

Table 2: An instance of a complex-object schema

In addition to the di�erent types of complex-object models, object-oriented database

Chapter 2. Context 30

models have also been proposed [BBB+88]. One of the primary aspects of the object-

oriented model is the use of abstract data types and inheritance. In the object-oriented

model, the schema may include user{de�ned complex types (also known as Abstract

Data Type or ADT) having both data and procedural attributes (or methods). Some

abstract data types may be de�ned as subtypes of other types inheriting properties

from supertypes and de�ning new properties of their own.

2.2.2 Database Query Languages

Modeling and storage form only part of the problem in database systems. Database

systems need to provide methods for e�ciently retrieving the data from the database.

To retrieve data from the database based on certain conditions, one uses di�erent

query languages for the particular database model. Codd proposed two query lan-

guages - relational algebra and relational calculus for the relational model. These two

languages form the theoretical basis for other languages for relational databases. In

this section, we discuss the formal languages and SQL (Structured Query Language),

the standard language for relational databases.

2.2.2.1 Formal languages

The two primary formal languages for the relational model are relational calculus

and relational algebra. Relational calculus is a declarative query language, in which

queries are expressed with formulas in �rst order logic to describe the resulting rela-

tion. Relational algebra is a procedural counterpart of the relational calculus which

formulates queries with relational expressions. In both these languages, input to a

query consists of a set of relations, and the output of a query is also a relation.

Observe that this guarantees the possibility of composing queries in either language.

Relational Calculus In relational calculus, a query is expressed using a logical

formula, called relational formula, that hold true for a set of tuples that form the

result of the query. The relational formula fx1; x2; : : : ; xkj (x1; x2; : : : ; xk)g describes
relational tuples of the form (x1; x2; : : : ; xk) that satisfy a formula (x1; x2; : : : ; xk)

Chapter 2. Context 31

using a query , where x1; x2; : : : ; xk are variables. Formulas may contain variables

which can be either free or bound by quanti�cation operators. The formulas may

also contain predicates corresponding to relations in the database schema. A formal

description of the relational calculus is based on the de�nitions of terms, atomic

formulas and well-formed formulas (w�), de�ned formally as follows:

� Terms.

{ Every variable x is a term.

{ A constant c is a term.

� Atomic Formula.

{ Every literal P (x1; x2; : : : ; xk) is an atomic formula, where P is a k-ary

predicate symbol representing a relation and x1; x2; : : : ; xk are terms.

{ Every arithmetic comparison of the form x�y is an atomic formula, where

x and y are terms and � is in f<;�;=; >;�; 6=g.

� Well-formed Formula (w�).

{ All atomic formulas are w�s, and all the variables appearing in the formulas

are said to be free in these formulas.

{ If F1 and F2 are w�s, then so are formulas constructed by combining them

with logical operators, such as F1 ^ F2, read as \F1 and F2;" F1 _ F2,

read as \F1 or F2;" and :F1, read as \not F1." The free variables of the

resulting formula is the union of the free variables in F1 and F2. There

is no in
uence of a variable bound in one formula if it occurs free in the

other.

{ If F is a w� and x is a variable, then (9x)F , read as \there exists an x

such that F is true," and (8x)F , read as \for all x F is true," are w�s.

The variable x in this case is said to be bound by the \9 or 8" in F . All

other variables in F are free.

{ If F is a w�, so is (F).

Chapter 2. Context 32

The relational formula represents a relation with a set of free variables x1; x2; : : : ; xk

that constitute the result relation.

Relational Algebra Relational algebra uses relation variables and provides a spe-

cialized operators on these relation variables. The main operators provided by re-

lational algebra are select(�), project(�) and cartesian product(�). Other important

operations include set operations like union ([) and di�erence(�) and specialization

of other operators such as join(1) and division(�). Queries in relational algebra are

expressions that map one or more relations combined using the above operators into

a resulting relation.

Equivalence of Relational Query Languages One important property of the

two relational languages is that they have the same expressive power. It can be for-

mally proved that any query expressed in relational calculus2 has an equivalent rela-

tional algebra query and vice-versa [Ull88]. Other query languages such as SQL, which

we describe later (in Section 2.2.2.2), are also designed to implement all queries of

relational calculus with carefully controlled extensions. The signi�cance of this equiv-

alence is that, during processing, queries formulated in the more natural calculus-like

languages can be converted to the procedural languages for optimization and evalu-

ation.

Query Languages For Complex-object and OO Models Although the pri-

mary languages described in this section are designed for the relational model, these

languages can be easily adapted for the complex-object and object-oriented models

discussed above. Most of the query languages for the complex-object models have

been designed as extensions to forms of relational algebra and relational calculus. The

extensions are primarily intended to handle complex types | both the construction

of complex types from atomic types and extraction of the constituent atomic types

from the complex objects. One example of a complex-object query language is the

2In the standard relational calculus, it is possible to write queries that produce results of in�nite
size. The equivalence only holds when we consider a \safe" version of the calculus, in which all
variables need to be properly bounded before they can be used in a query.

Chapter 2. Context 33

nested relational algebra [TF86] that uses operations such as set construction (nest)

and set decomposition (unnest) to handle the complex-valued attributes.

2.2.2.2 Structured Query Language (SQL)

SQL [SQL86a] has been the standard query language for relational databases for

over ten years. SQL is based on tuple relational calculus, and the syntactic nature

of the language has its roots in the original SEQUEL language [AC75]. SQL is

more expressive than the core relational calculus since it supports extra functionality

such as grouping and ordering mechanisms, aggregate functions (e.g., count, sum and

average), and arithmetic operations. In spite of being more expressive than the formal

languages, it uses a very simple syntax closely related to English, and all queries

are based upon a simple SELECT-FROM-WHERE combination as described below.

Another advantage of SQL is its widespread use in most commonly used commercial

as well as research-based database systems. SQL has been revised multiple times in

order to enhance the functionality using various programming language constructs.

However, the core part of SQL is a natural-language equivalent of the tuple relational

calculus.

SELECT item-list

FROM relation-list

WHERE condition-expression

Figure 5: Core SQL syntax

The syntax for the core SQL language is summarized in Figure 5. In the SQL

syntax shown here, \relation-list" refers to a list of relations in the database, possibly

repeated and augmented with tuple variables; \item-list" refers to a list of attributes

from the relations, possibly with aggregate functions applied to them, and \condition-

expression" refers to a list of predicates combined with logical connectives.

Chapter 2. Context 34

2.2.2.3 Query By Example (QBE)

Query By Example [Zlo77] is a high-level visual language that provides the user with

a uni�ed interface to query and update relational databases. This language has a

simple interface composed of tabular skeletons representing tables in the database.

Users specify queries by entering sample values in appropriate areas of the table

skeleton. These values can be either constants (usually search strings) or variables

(also called \examples" in the context of QBE). The purpose of the variables is mainly

to perform \join" operations, but they are also used to specify output attributes.

Book Bookno Title Publisher Year

P. P. P.1996

Table 3: A QBE implementation of the query: \Print the book numbers and titles of
the books published in 1996"

Book Bookno Title Publisher Year

P.1234 P.

Auth info Bookno Author

1234 Charles Goldfarb

Table 4: A QBE implementation of the query: \Print the book numbers and titles of
the books written by Charles Goldfarb."

QBE can also handle complex boolean combinations of such search expressions

using a special section of the screen termed condition box. Aggregation operations

such as sum, count and average can also be performed by indicating the respective

operation in the tabular skeleton. Table 4 displays a join query. The underlined

words in the above example are variables that indicate that the \Book ID" attribute

of Book as well as the \Book ID" attribute of Written By should be the same. Using

this method, the user provides an example of outputs that she expects from her query,

and the query engine looks in the database for data that matches the given example.

Chapter 2. Context 35

This works nicely for relational databases, primarily because the tabular structure of

the database �ts quite well with tabular skeletons used in the interface. Some of the

properties of QBE that are of importance to this research are:

Simplicity The core QBE has a simple visual appearance and does not require users'

knowledge of the database schema.

Equivalence The presentation of the query interface is conceptually equivalent to

the internal tabular structure of relational databases.

Closure The query is constructed using table skeletons, and the results are displayed

using similar tabular structures.

Completeness The core QBE, combined with some additional constructs such as

condition boxes, can construct all the queries speci�able using relational algebra

or relational calculus.

In a later section, we will show how our approach keeps all these properties in a

generalized interface designed primarily for documents, yet applicable to any complex

structured data. There have been other attempts at generalizing QBE for complex

structures. Notable among them is the Generalized Query By Example (GQBE)

[JW83] which uses an interface very similar to QBE for application for databases

with complex hierarchical structures. This method uses nested tables, similar to the

one shown in Figure 2, for composing queries as well as specifying insertion, deletion

and update commands to the database. There are a few other attempts at generalizing

and extending QBE | a survey on these methods can be found in [OW93].

2.2.2.4 Fill-out Forms to Express Queries

Although QBE is a formally accepted visual language for relational databases, few

relational database systems fully implement QBE, possibly because of the complexity

of implementation. Some commonly used relational database systems implement

variations of QBE. However, application developers designing query interfaces seldom

use the QBE method directly in their implementations since usually a simpler and

Chapter 2. Context 36

non-general method is more suited for speci�c applications. In these cases, developers

use form-based interfaces.

Figure 6: An example of a form interface for formulating queries.

In form-based interfaces, the user is presented with a list of searchable �elds,

each with an entry area that can be used to indicate a search expression. Searches

are restricted to only the �elds listed, and the types of searches are restricted to

simple boolean combinations of these search conditions. To pose a query, the user

needs to enter keywords in the relevant places. This provides users with a quick and

easy way to specify some searches on the databases and proves to be adequate for

many applications. However, these form-based searches are not scalable and do not

adapt well to changes in the database schema. An example of the use of forms for

formulating queries is shown in Figure 6.

Although forms usually require ad-hoc application-speci�c design, there have been

attempts to formalize the querying process using forms. The Natural Forms Query

Language (NFQL) [Emb89] is a language for specifying queries using forms. It allows

queries to be speci�ed using a \universal relation" from which the database relations

are derived. A �lled-in form in this language can be thought of as a \view". It allows

Chapter 2. Context 37

both queries and updates to the relational database without the necessity from the

users of knowing the internal schema of the database.

2.3 HCI Background

HCI (Human-Computer Interaction) plays a very important role in this research.

Although the primary goal of this research is to propose methodologies to build

database systems for structured documents, we try to ensure that these systems are

well within the limits of the targeted users. The primary users of text resources

(such as novels, poetic works, journals) typically have limited computing experience.

Requirements of mastering a query language or the internal database schema are thus

often inappropriate. One objective in this work is to retain all the necessary properties

of database systems without sacri�cing the usability of the system. This section

introduces the important concepts of HCI that play an important role in this research.

The design of Query By Templates (described in Chapter 7) will demonstrate how we

use these concepts in our design process.

2.3.1 Principles for Usable Interface Design

Usability is a primary concern of any user-interface design. It is futile to expend

resources and e�orts in developing systems that can only be used by a handful of

people. Some of the most important concepts necessary for designing usable interfaces

are [Nor90, Chap. 1]:

� Provision of a useful Conceptual Model. It is important for interfaces to provide

a good conceptual model to the users. A good conceptual model allows the

users to predict the e�ect of the actions. Components of an interface need to

have a direct mapping with the functionality of the interface. Without this

mapping, the task is often made more di�cult by the presence of functional

components that have no apparent relationship with the rest of the system.

Without this kind of information, users may be able to perform tasks based

Chapter 2. Context 38

on prior instructions given to them, but they will need to have much better

understanding of the system in order to recover if something goes wrong.

� Principle of Visibility. Functional components of interfaces need to be visible to

the users. In particular, tasks performed often should not be \hidden" within

the interface. The user interface components that perform such tasks should be

directly visible to the user and should be able to serve as a conceptual model

of the task that they perform (as described above).

� Principle of Mapping. \Mapping" indicates the relationship between two or

more things. In the context of user interfaces, \mapping" refers to the interac-

tion between physical manipulation of the controls and the resulting e�ect on

the system.

� Principle of Feedback. Users need to see changes when they perform an action

that produces changes. In many cases, these changes are visual and can be easily

communicated to the user by expressing the change in the visual appearance

of the interface (e.g., marking a section of a line bold using a word-processor

should result in the section displayed in boldface). However, when such visual

equivalence does not exist for a certain action, the user needs to be reassured

that her action was completed using some type of feedback mechanism. Such

feedback could be in form of a message (e.g., a message saying \the �le has

been saved" when the user performs the save action). Other types of feedback

include events such as audio alerts and easy-to-detect visual changes on the

screen.

Although most interaction principles are quite
exible, proper incorporation of

such concepts in user interfaces makes a signi�cant di�erence between an intuitive

and a non-intuitive cumbersome interface.

2.3.2 Ensuring Usability

Simply implementing the HCI principles indicated above does not guarantee the us-

ability of an interface. According to Shackel [Sha84], there is no manual for e�ectively

Chapter 2. Context 39

incorporating human factors in computer systems. System designers usually have dif-

ferent capabilities and strengths compared to the users of the systems. Designers may

also have di�erent notions of intuitiveness. This often results in systems that are us-

able by designers but not the target users. Thus it is imperative that users be part of

the design process as early as possible and continue throughout the process of design

and development. Rubin [Rub94] argues that the three principles of user-centered de-

sign are: (i) an early focus on users and tasks, (ii) empirical measurement of product

usage, and (iii) iterative design whereby a product is designed, modi�ed and tested

repeatedly.

In the early phase of the design process, a designer should (i) identify the target

users, (ii) have direct communication with the users, (iii) visit user locations and

(iv) observe the users working, and if possible, record their actions [Gou95]. The

knowledge of users' abilities and behavior is an essential component of the design

process, and the earlier this knowledge is acquired the better. During the process

of design and development, designers need to continue interactions with the users,

and if necessary, use an iterative (design, test; design, test...) method during the

development cycle. During this cycle, users need to be involved in testing the interface

(or possibly prototypes of the interface), and lessons learned from these tests need

to be incorporated in the next cycle of development. Such tests on the usability of

systems (or prototypes) is often termed as usability testing.

2.3.2.1 Usability Testing

Interface design principles by themselves cannot ensure the usability of systems. De-

signers frequently need to \augment these intuitions with evidence obtained from

observing [our] artifacts being utilized by real users, which is known as usability test-

ing and user testing." [BGBG95] Usability testing primarily involves letting members

of the targeted users use the system for realistic tasks and collecting information based

on feedback from these users for the purpose of validating the design or redesigning

problem areas. Nielsen [NP93] terms the process of usability testing by setting per-

formance goals or metrics as usability engineering. Testing for usability should be, in

fact, a prominent milestone by itself in the system design process.

Chapter 2. Context 40

The usability testing phase usually includes a phase for evaluating the testing

method itself. This phase is often called a \pilot test" [DR93, Chapter 17]. Although,

technically, this is just a prototype of the usability analysis itself, it can assist im-

mensely in determining the possible problems with the testing method. A pilot test

can also determine if the results obtained from the testing process can actually be

used in determining the whether or not the target interface is usable. A secondary

objective of pilot tests is to gain some practice with the actual testing process.

The actual testing process involves getting potential users of the system to per-

form realistic tasks using the system and recording their behavior during the process.

Performing tasks in the target environment is usually more e�ective. This is achieved

by performing the tasks in the environment the system will be used. In the case

the target environment is not available during testing, a mock-up [Gou95] of this

environment can be used.

Recording users' behavior can be done using several di�erent techniques. Some of

the most common techniques are:

� Videotaping. Videotaping the users in action is very useful for the purposes

of measuring time, errors, and user attitudes [Gou95]. Watching videotapes

of users unable to use the system for apparently simple tasks often serves as

evidence of unusability.

� Thinking aloud. In this method, the participants of the usability test talk out

loud as they try to perform certain tasks. This method enables designers to

get an idea of users' mental states and helps in discovering ways to match

their mental models. This method is usually useful in �nding out missing or

misleading visual cues in the interface. However, requiring users to think aloud

may a�ect precision of time and performance measures.

� Surveys. The most common method of collecting user feedback is by using

written surveys. Surveys let the designers get a feel for users' opinions, attitudes,

preferences and behavior. However, although surveys are often deployed in the

usability analysis process because of the low cost and overhead, they are not

Chapter 2. Context 41

suitable for observing and recording what users actually do while using the

system.

2.3.2.2 Testing strategies

The goal of a usability analysis process is to determine the presence or absence of

features that a�ect usability of a system under design. For example, a simple usability

factor would be the time taken by a user of a word processor to complete the task

of writing a letter. Based on this factor, one may be interested in whether users can

perform the task faster in a word-processor than on a typewriter. The factors that

are tested are the dependent variables of the testing process. The dependent variables

are \dependent" on certain conditions { referred to as the independent variables of

the test process. The primary independent variable is usually the type of interface

used { where comparison is drawn between the interface under test and other similar

but alternative systems. There could be other independent variables in the testing

strategy, such as gender or experience of the users or type of computer terminal,

depending on the objective of the analysis. In order to select a subset of independent

variables from the other factors that a�ect the dependent variables, the rest of the

factors should be kept unchanged throughout the testing process to avoid the e�ect

of unwanted factors.

Usability tests are usually carried out using one of the following two strategies

[Ebe94, Chapter 5]:

� Within-users tests. In a \within-users" analysis, all users are exposed to all

the independent variables. For example, if two di�erent systems are being

compared, all users are asked to use both systems, and the results are collected

based on this use.

� Between-users tests. In a between-users test, users are distributed among the

dependent variables. For example, if two di�erent systems are being compared,

half the users may be given the target interface, and the other half may be given

another interface.

Chapter 2. Context 42

2.3.2.3 Usability Analysis

After usability testing is performed, the collected results need to be analyzed to deter-

mine the extent of usability of the system. In most testing schemes, the target system

is compared with common alternatives based on several properties. The properties

that need to be tested are the dependent variables in the test, and the factors af-

fecting these properties (such as the system used, knowledge and experience of users)

serve as the independent variables. The goal of the analysis process is to determine

if any of the independent variables a�ect the dependent variables to a statistically

signi�cant extent.

The test of signi�cance is usually measured using several statistical methods,

the most common among them being the ANOVA (Analysis of Variance) technique

[Ebe94, Chapter 5]. The type of analysis varies depending on the type of the ex-

periment and the number of independent variables. Common variations of ANOVA

measures are one-way ANOVA, two-way ANOVA, repeated measures and randomized

blocks. In all of these cases, a measure of signi�cance (also referred to as the F-ratio)

is computed, and the usability result is inferred by determining whether or not the

F-ratio is below or above a pre-determined threshold. However, statistical signi�cance

is not always warranted if the number of users involved in a usability analysis is too

few [NP93].

Chapter 3

Related Work

The main goal of this dissertation is to provide database support for text databases,

and in particular, to investigate and develop methods for better query formulation

and processing on databases that primarily contain textual data. The practicality

for storing large text documents has certainly increased with the development of

fast but inexpensive storage media. The concomitant increase in the sizes of these

documents, however, has rendered the prevalent search and processing techniques

unsuitable. Recent research has produced a number of relevant methods for e�cient

storage and retrieval of textual documents, but has, as yet, failed to exhibit standards

and properties for search and management similar to database systems. Analogously,

searches in document repositories, referred to as \information retrieval," have not

been able to reach the popularity level of database languages such as SQL.

The primary di�erence between the conventional information retrieval (IR) tech-

niques and database querying techniques lies in the use of meta-data or schema in-

formation in databases. Conventional IR methods use documents without structural

information. In these methods, documents are treated as sequences of keywords, pos-

sibly intermixed with stop-words. These techniques retrieve document components

using keywords, usually combined with boolean operators. The most common tech-

niques for this kind of retrieval is the creation of indices of keywords based on the

documents. Brie
y, a retrieval operation begins with a preliminary search on the

indices and subsequent extraction of document components based on the results of

the initial search. The initial search performed on the index structures is usually very

e�cient. Use of indices also increase search e�ciency by not accessing the complete

documents stored in slower secondary storage.

Recent research has been directed towards achieving database-like properties for

43

Chapter 3. Related Work 44

document search systems by introducing meta-data or structural information in doc-

uments. This is achieved by \tagging" | a process of embedding additional code in

the text that represents the meta-data information. Tags were originally introduced

as a means for embedding special layout instructions in documents, but are more com-

monly being used for representing structural information. Document representation

standards such as SGML and HTML use such tags to embed structural information in

the documents. As described in Chapter 1, tagging can be either generic or speci�c.

Since generic tagging is conceptually closer to the logical structure of documents, this

form of tagging is more appropriate for the purpose of enhancing document searching

capabilities.

In this section, we �rst discuss di�erent techniques adopted for information re-

trieval from unstructured documents. We then observe the recent trend in using fully

structured documents for more advanced query processing and discuss the recent re-

search in this area. We also describe recent research e�orts on using semistructured

data in information management and retrieval.

3.1 Unstructured Information Retrieval

Unstructured text documents (plain text or ASCII text documents without any form

of tagging) form the bulk of the electronic information today. Although plain text

cannot represent all the various forms of documents of the modern information age,

plain text was the primary format of these documents created years ago. The main

purpose of unstructured information retrieval is to search for the position(s) of key-

words in unstructured text documents. Other schemes of information retrieval that

attempt to reduce the problems with keyword searches have also been proposed. In

this section, we discuss the some of the conventional keyword-based retrieval methods

as well as some alternative retrieval strategies. We describe the concept of indexing

and the factors that determine the e�ectiveness of the indexing techniques. We also

discuss retrieval strategies based on the indexing techniques.

Chapter 3. Related Work 45

3.1.1 Conventional Retrieval Methods

In conventional information retrieval methods, documents are stored as a sequence

of words or phrases - often referred to as terms [Sal91]. Searches usually consist of

boolean combinations of keywords, (i.e., keywords combined with the operators and,

or, not). The retrieval system is designed to extract, from the repository, fragments

of documents that match the request. The granularity of the results, or the extent

to which the resulting documents are fragmented usually depends on the underlying

storage structure. For instance, in the case of documents represented as separate �les

in a �le system, retrieval systems may retrieve complete �les or lines from �les that

match the given conditions. In most cases, the granularity for search and retrieval is

the individual lines of the document. We will see later that the presence of structural

information enables a database system to allow the users to control the granularity

of their results.

The actual search method to retrieve document components based on keywords

depends on the underlying application that performs the search. This may simply

consist of a sequential scan of the documents as performed in the popular UnixTM

utility \grep" [GNU92]. More often, manual and automatic indexing techniques are

used to create indices on keywords found in the documents, and these index structures

are used to quickly �nd the positions of matched keywords in the documents. During

the indexing process, some systems can �lter out words that are variations of the

same root or words that are primarily used as \stop words" which are rarely used as

search keywords. More advanced indexing techniques are also quite common, and we

will discuss them presently.

The boolean model for information retrieval using boolean combinations of key-

words has a number of limitations. Using anything more than simple boolean combi-

nations often requires knowledge and training in logic. Also, all the terms in boolean

expressions are treated as equally important, and therefore, retrieved documents are

ordered arbitrarily. Moreover, boolean operators can only have either true or false

values. This property often proves to be too rigid as the presence of one term in a

disjunctive (OR) group results in the acceptance of the whole group and the absence

of a single term in a conjunctive (AND) group results in the rejection of the whole

Chapter 3. Related Work 46

group. Boolean logic also does not have any way to group, order, or constrain the

retrieved documents based on speci�c criteria in addition to the search keywords.

3.1.2 Alternative Retrieval Methods

One common alternative to boolean retrieval is the use of term weights to discriminate

the search terms. This allows retrieved documents to be ordered according to the

\extent of match," which reduces the rigidity of boolean retrieval systems. However,

this method still depends on boolean logic and has similar limitations of boolean logic.

Extending this weighted model with \strictness indicators" alleviates the rigidity of

boolean logic.

Another alternative approach is to use vector spaces for the purpose of information

retrieval [Sal91]. In the vector space method, documents are identi�ed by sets of

terms like the boolean method. In addition, term weights indicate the importance of

terms. Thus a document is conceptually represented by a multi-dimensional vector of

hterm;weighti pairs. Queries are also represented using weighted term sets similar to

the document representation. Retrieval is performed using mathematical measures of

similarity between the document vector and the query vector. This method provides

for simple and parallel treatments for queries and documents.

Probabilistic methods for performing information retrieval [Sal91, p.975] have also

been proposed. In these methods, a quantity for relevance of a query Qj for a doc-

ument Di is determined. The result of queries can now be presented in descending

order of the relevance probability.

Another technique for information retrieval has been proposed using \rough sets."

[Sri89] This method uses the rough set concept by Pawlak [Paw82]. Index terms

are used to create equivalence relations, each equivalence class containing semanti-

cally identical (or synonymous) terms. Searches using this type of indices can use

the rough equivalence to intelligently �nd matches for keywords that are approxi-

mately equivalent to the search keywords and, hence, increase the probability of re-

call. Boolean combination of keywords can be mapped to set unions and intersections

in this method.

Chapter 3. Related Work 47

3.1.3 Indexing and Text Analysis

Most of the retrieval techniques described above depend on the indexing strategy (the

terms used in the indices) and the index structure (the actual data structure used in

the indices). Indexing of documents and the choice of terms can be done in either or

both of the following two ways:

1. Manual indexing. In this method, terms to be selected for indexing are manually

speci�ed, typically by associating a set of keywords with documents or document

components. In this case, the indexing system associates the documents with

the given keywords irrespective of whether the keywords actually appear in the

particular document component. This term selection is usually performed by

trained personnel who are very familiar with the content of the documents.

2. Automatic indexing. In automatic indexing, a computer system uses special

selection criteria to extract words from the document to be included in the

index. There are a number of techniques for selecting the terms to be indexed,

some of which are described below.

3.1.3.1 Automatic Indexing techniques

The simplest type of automatic indexing consists of assigning single-term indexing

units to represent text content [Sal91]. This is frequently performed by identifying

the individual words that occur in the documents. The index size can be reduced by

omitting words from a set of common function words (such as \and", \of", \the",

\but"), known as stop words. Words that are variations of the same base are detected

by identifying a set of commonly used su�xes (such as \ing", \ed"), stripping these

su�xes from the end of the words, and indexing only the stripped result. Su�x

removal enables the indexing of words like \searches," \searching," \searcher" by

using a common form like \search" and, hence, reduces the size of the index. Term

weights for the indices are calculated from the various factors such as frequency of

occurrence of the terms (term frequency) and the inverse document frequency (a

measure of the probability of a term occurring in a document) [SYY75, SB88].

Chapter 3. Related Work 48

Other ways of automatically selecting terms for indexing purposes includes lin-

guistic and knowledge-based approaches. Common practice includes the use of a

thesaurus and phrases. A thesaurus combines the words closely related in meaning

into groups. Although this method works well for single words, use of thesaurus with

phrases is more di�cult because of the uncertainty of combining groups of words.

A number of methods involving simple techniques (e.g., word frequencies and co-

occurrence characteristics) and complex techniques (e.g., automatic syntactic anal-

ysis) have been proposed to perform phrase grouping [SYY75]. In more advanced

linguistic approaches (such as in [SR90]), semantic translation of natural language is

used in document retrieval systems. In this technique, document and query texts are

translated into sets of �rst order predicates which are used as their content indicators

or indices. Actual semantics of words are considered for their grouping, using a gram-

mar as a semantic translational aid. For retrieval purposes, queries are translated in

the same way documents are translated. The result is obtained by the similarity of

the query with the indexed items and by combining individual results using boolean

combinations. The retrieval process uses a measure of similarity between the query

index and the document index using statistical means.

Other statistical techniques have been used for the process of selecting words and

phrases for indexing and for later use in retrieval by keywords. These methods are

based on the observation that a good index term is distributed di�erently than a poor

index term. The Poisson Distribution is usually considered to be a good method for

identifying how a term is distributed over one or more documents. Commonly used

models in this method include the Two{Poisson model (see [Sri90a] for a comparison

of this model with the inverse document frequency method described above). In this

method, the distribution of a term is described by two Poisson distributions, thereby

specifying the manner in which an index term di�ers from a non-index term. The

intuition behind this model is that a good index term will have a di�erent distribution

than a poor index term. Moreover, in the Two{Poisson model, the index terms will

divide the documents into two components: (i) a component in which the index term

is relevant and (ii) a component in which the index term is not relevant. Attempts

at generalizing these models to more than two Poisson distributions have also been

Chapter 3. Related Work 49

made [Sri90b].

3.2 Structured Document Databases

This section describes approaches taken for query formulation and processing with

document collections. As described in an earlier section (Section 1.1.2.2), traditional

information retrieval techniques are directed primarily towards unstructured text us-

ing indexing techniques involving various linguistic and statistical analysis. These

techniques do allow fast searches in large document repositories, but the lack of

structures in the documents make it di�cult to properly classify and organize search

results. The existence of internal logical structure in documents makes it possible to

use the structural information as schema for posing queries involving structure. This

section discusses the current trends in research on structured document databases

and, in particular, query processing with structured documents.

Current research approaches towards databases or query processing systems for

structured documents can be classi�ed in two categories based on the design process:

(1) top-down and (2) bottom-up.

3.2.1 Top-down Approaches

In this approach, the design starts at the conceptual level, where a model of the

database is formed. This stage leads to the design of operations based on the model

and eventually leads to the low-level implementation of the model. The ongoing work

using this approach can be further divided into two broad categories based on the

underlying theory behind the work: (1) complex-object approach and (2) grammar-

based approach.

3.2.1.1 Complex-object Approach

Desai et al. [DGS86] and Guting et al. [GZC89] used an algebraic approach with

constructs for specifying queries in algebraic form, and with complex-object constructs

like set, unnest, project and group-by. The algebraic approach gave the possibility of

Chapter 3. Related Work 50

optimization and rewriting or rephrasing queries. This method re
ects the complex-

object nature of documents, in which there are various instances of list, set, and

bag-like structures.

Pistor et al. [PT86] used a declarative approach in which they extended the

Structured Query Language (SQL) with complex sorts to formulate queries involving

complex objects. In this work, the complex nature of the database was handled using

di�erent complex-object operators, embedded clauses, grouping objects, and other

similar query constructs.

The problem with the complex-object approach lies in the fact that the query

languages admit quanti�cation over complex sorts. Quanti�cation is a major prob-

lem since it results in increased expressiveness of the language, resulting in increased

complexity of queries. Normally in databases, e�orts are made to restrict the ex-

pressiveness query languages so that all queries can be solved in polynomial time

(PTIME) and by using logarithmic amount of temporary space (LOGSPACE). How-

ever, by letting a query language quantify over complex sorts inherently introduces

the possibility of explosive complexity.

In another variation of the complex-object approach, Abiteboul et al. [ACM93]

and Christophides et al. [CACS94] used an object-oriented database to model textual

data, particularly data encoded in the SGML [Gol90, ISO86] format. They used a

mapping procedure to map the Data Type De�nition (DTD) for the document into

an object-oriented class de�nition in the language CO2, which is the programming

language in the object-oriented database environment O2 [BBB
+88]. In this mapping

procedure, the document written in SGML was mapped to an instance of the class

schema declared from the DTD. The query language associated with O2 is then used

to query the data.

The signi�cant drawback of this system is its dependence on the capabilities of

O2 for both storing and querying documents. Documents are not used in their native

form but mapped into instances of an object-oriented database. Since the mapping

procedure was not straightforward, the authors had to alter the schema to �t the

conversion procedure. This procedure is prone to loss of information contained in the

original SGML documents, when any advanced SGML feature (e.g., marked sections,

Chapter 3. Related Work 51

CONCUR, SUBDOC) is used.

A recent work by Zhang [Zha95] for building a dictionary system using an object-

oriented database system can also be classi�ed under this category.

3.2.1.2 Grammar-based Approach

This approach involves describing the database schema using Context Free Grammars

(CFGs) or Attribute Grammars [Knu68]. Gonnet et al. [GT87] view the data model

as a limited context-free grammar, and any database based on the model is formulated

as a parse-tree of the grammar. The data model built on the grammar involves the

use of ordered tuples and sets, lists, and union sorts. In this method, queries can

easily be formulated using regular expressions satisfying the grammar. Gonnet et

al. focus on dictionaries (e.g., the New Oxford English Dictionary database), news

clippings, legal documents, and other documents whose high degree of structuring

makes them very di�cult to represent in table format.

In another similar work, Gyssens et al. [GPG89] elaborate on the mathematical

fundamentals of grammar-based models. They de�ne algebra and calculus based on

such grammars for various operations on the p-strings and the parse trees.

3.2.2 Bottom-up Approaches

In this approach, the design starts from the bottom with an implementation strategy

(in terms of data models and data structures) laid out �rst, and the capabilities of

the system depend heavily on this strategy. A data structure for modeling, storing

and indexing the data is �rst decided upon, and operations are then provided that

are e�cient in utilizing the special data structure. In this section, we describe two

prominent data structures that fall under this type of approach.

3.2.2.1 Patricia Trees

Patricia trees are based on the semi-in�nite string (sistring) model of textual data

[GBY91, BYG89]. In this model, textual data (whether structured or unstructured)

is viewed as a string starting at each position of the text and continuing inde�nitely

Chapter 3. Related Work 52

to the right. This model is primarily targeted towards unstructured textual data but

can be adapted to text with structure. Patricia trees (often referred to as Pat trees)

are digital trees in which the individual bits of the keys are used to decide on the

branching. Pat trees are constructed over all the possible sistrings of a text collection.

Thus, for a text of size n, there are n external nodes (or leaves) in the Pat tree and

n � 1 internal nodes, thus making the tree O(n) in size. For example, the Patricia

tree for the string 01100100010111 when the �rst eight sistrings have been inserted

looks like Figure 7 (Figure taken from [BYG89]).

1

2

3 43

2

57

4 8

5 1 6 3

2

Figure 7: The Pat Tree for the string 0110010001011 after the insertion of the �rst
eight sistrings

In Figure 7, the numbers in the leaves represent the position of the sistring at

that node (e.g., the leftmost leaf represents the seventh sistring 00010111 in the

input starting at bit 7). The numbers in the non-terminals represent the actual bit

position of the strings at that node (a skipped number indicates the skipped bit has

no e�ect in the traversal). For every node, a bit value of 0 causes a traversal to

the left branch, and to the right branch for a bit value of 1. The intuition behind

the creation of the Patricia tree in this �gure lies in the fact that the leaf nodes

represent the complete sistring starting at the corresponding position, not simply the

Chapter 3. Related Work 53

position itself. For example, a pre�x search for the string 010 causes a left, right and

a left traversal in sequence to reach the leaf node marked 5, which represents the �fth

sistring 0100010111.

Gonnet proposed a query language that includes the standard regular expressions

de�ned by the operations of concatenation (:), union (+) and Kleene closure (�). In
addition, the query language uses the operation fby to denote interposition of ��:.

Thus, a fby b is the same as a:��:b. [BYG89]

Using a Patricia tree to encode all sistrings in text, Gonnet showed that many

types of queries can be performed very e�ciently. The most natural query using Pat

trees is a pre�x search, in which a query consisting of a single search string returns

the positions of the document where the given string is a pre�x of a possibly larger

word. For a document of length n, an arbitrary pre�x search can be performed in

O(log n) time, independent of the size of the answer. In practice, the length of the

query is usually less than O(log n), so the search time is proportional to the query

length.

Patricia trees thus present a very e�cient means for string searching in text doc-

uments. In addition to pre�x searches, Pat trees can be used for proximity searching,

range searching, longest repetition searching, \most frequent" searching as well as

regular expression searching [GBY91]. Open Text Corporation uses this structure

in their commercial structured search product for very e�cient document searches

[Ope94].

3.2.2.2 Concordance Lists

Burkowski [Bur92] proposed a concordance list structure for modeling hierarchically

organized textual data. A concordance list is a special structure to keep track of

the position and nesting properties of the various static contiguous extents, such as

words and text elements. In formal terms, a text collection in this method is a �nite

sequence of n words w0; w1; w2; : : : wn�1 of length n. A contiguous extent e is speci�ed

by two integers �(e) and !(e) such that 0 � �(e) � !(e) � n. A concordance list

G = f[�(ei); !(ei)]gmi=1 is de�ned to be a set of bounds specifying disjoint contiguous

extents. For example, consider the document fragment in Figure 8. Assuming the

Chapter 3. Related Work 54

words shown in this example (without the tags) number from 1, a fragment of the

concordance list for the words \macbeth" and \witch" and the tags \<sp>" and

\<v>" are shown in Table 5.

"macbeth" "witch" <sp> <v>

[1,2] [7,8] [6,8] [8,20]
[58,59] [21,22] [20,22] [22,32]
[205,206] [33,34] [32,34] [34,42]
[335, 336] [43,44] [42,44] [44,47]
...

Table 5: A sample of the concordance list for the example document

Burkowski [Bur92] proposed an algebra based on this concordance list structure.

The algebra consists of functions that take one or two concordance lists as operands

and produce a new concordance list as a result. The language included operations

for union, intersection and negation of the concordance lists. Clarke, Cormack and

Burkowski [CCB95] generalized the concordance list structure to include nested and

overlapping extents. The freely available Sgrep (Structured grep) system implemented

by Jaakkola and Kilpel�ainen [JK96] includes an extension of this GC-list structure

and the associated algebra.

3.3 Semistructured Data

With the advent of the World Wide Web, the necessity of text document reposi-

tories has greatly increased. The documents on the web usually conform to a well-

established structure de�ned by the HyperText Markup Language (HTML). However,

HTML was designed as a simple language to introduce structure involving some log-

ical document divisions (using heading tags) and some cross-referencing mechanisms

(hyperlinks). HTML does not provide any way to de�ne logical components of doc-

uments such as authors and a�liations. The structure of documents is more hidden

in the physical formatting speci�cations such as indentations and typeface di�erenti-

ations.

Chapter 3. Related Work 55

<p>

<tp>MACBETH</tp>

...

<ac>

<ta>ACT I</ta>

<sc>

<ts>SCENE I</ts>

<sv>

<sp>First Witch</sp>

<v>When shall we three meet again

In thunder, lightning, or in rain?</v>

</sv>

<sv>

<sp>Second Witch</sp>

<v>When the hurlyburly's done,

When the battle's lost and won.</v>

</sv>

<sv>

...

</sc>

<sc>

<ts>SCENE II</ts>

<sv>

<sp>Duncan</sp>

<v>What bloody man is that? He can ...

... state.</v>

</sv>

...

</sc>

</ac>

<ac>

...

</p>

Figure 8: A sample tagged document

Chapter 3. Related Work 56

Formally, the term semistructured data refers to data in which there is no separate

mechanism for specifying the type (or structure) of the data. In most cases, the

structure can be inferred from the manner in which documents are presented. In

most cases, the best way to treat such a structure is as a labeled graph, while using

languages associated with graphs to formulate queries. One of the most common

formats for representing such data is the OEM model [PGMW95]. Recent work on

extracting structure from such semistructured data, on designing query languages

and on processing techniques has primarily been inspired by the recent growth of the

WWW and by the presence of enormous quantities of data with little structure. A

collection of such recent work can be obtained from [Suc97].

Although the object of the current work is to give database support for documents

for which the structure is already well-established, the research on semistructured data

provides us with the support necessary when we encounter documents that do not

follow a well-de�ned structure. In this case, one of the structure inferring techniques

described above can be used, �rst, to infer the document structure and, subsequently,

to provide support for advanced query processing by using the inferred structure.

Chapter 4

Objectives and Requirements

The goal of this research is to demonstrate how the power of database techniques can

be successfully applied to structured document repositories. This chapter focuses on

the objectives and requirements for the database system component used primarily

for the purpose of storing and managing structured documents. The goal here is to

develop methodologies to e�ectively store such documents and to provide easy query

formulation and e�cient query evaluation mechanisms. Other database functional-

ity such as concurrency control and recovery, inserts and updates are left as future

work. The requirements consist of two parts: (1) functional requirements includ-

ing data modeling, query language, and system requirements and (2) non-functional

requirements including advanced database functionality and usability.

4.1 Functional Requirements

4.1.1 System Properties

As part of the functional requirements, a number of important properties of the sys-

tem need to be satis�ed. First, the design process has to be top-down, so that the

capabilities of the system are not dependent upon any particular data representation.

Second, the system needs to follow the traditional three-level architecture in tradi-

tional database systems described shortly. Third, the system needs to be able to use

SGML documents directly without the necessity of conversion into another format.

Here we present details on each of these requirements.

57

Chapter 4. Objectives and Requirements 58

4.1.1.1 Top-down Design

The method for top-down design has already been presented in Chapter 3. In keep-

ing with the top-down design method, we �rst decide on the conceptual nature of

the data and its querying requirements; we then design physical data structure and

access methods to satisfy these requirements. In Section 4.1.2, we present our ba-

sic data model based on the SGML document model. In Section 4.1.3, we describe

the intended querying capabilities. The system speci�cs such as data structures and

access methods are then selected to satisfy this design. In some cases, multiple al-

ternative designs may need to be considered based on various trade-o�s in e�ciency

and suitability.

4.1.1.2 Three-level Abstraction

One important motivation behind the use of database systems is to hide the actual

handling of physical data from the user. To achieve this information hiding, the

design of any database system involves multiple levels of abstraction. A standard

way of leveled design includes three levels of abstraction: (1) physical, (2) conceptual

and (3) external (views), as shown in Figure 9 [Ull88, Chapter 1].

At the topmost external or view level, users interact with di�erent \views" of

the data presented to them by the system. This level provides the possibility of

creating views or subschemes. A view is an abstraction of a portion of the conceptual

database and provides the user with a natural representation of the data. Di�erent

users may have di�erent views of the same data or may be presented with only the

relevant information pertaining to their interests. For example, students using a

course registration system only need to see courses that they are registered for, while

teachers of classes may need to see all students enrolled in their classes. In this case,

the student and teacher will interact with two di�erent views of the same data from

the registration database. Actions on the views get mapped to equivalent actions to

the conceptual database.

The conceptual level of the database provides a middle ground between the views

and the physical data representation. This level provides a conceptual model of

Chapter 4. Objectives and Requirements 59

view 1 view 2 view n

conceptual
 database

database
physical

user group 1 user group 2 user group n

External/View
Level

Conceptual
 Level

Physical
 Level

Figure 9: Levels of abstraction in a database system

the data which is independent of the physical data structures (enabling information

hiding), but includes all the details of the managed data. The primary components

in this level include a conceptual data model and query languages (declarative or

procedural) that allow operations on the data in its conceptual form. The database

system usually provides a manipulation language based on the conceptual model to

add, update and search for data from the system. This level and the languages

related to it support the data model for the underlying database system (such as

the relational model for relational database systems and object-oriented model for

object-oriented database systems).

The physical level is the lowest level in a database system. This is the level

closest to the operating system, and it deals directly with physical resources and data

representation on physical storage devices. This level includes the data structures

and access methods for e�cient querying and update of the physical data, in support

of the query languages in the conceptual level.

A document database system needs to have a similar multi-level abstraction to

keep the internal details of the system hidden from the users. At the physical level,

Chapter 4. Objectives and Requirements 60

Relational databases Document databases

View Level Relational views

Views of document components
and the visual presentation of
these components

Conceptual level
Relational model, relational
algebra and calculus

SGML document model, extended
relational algebra and calculus

Physical level
physical data structures to support
relational operations

SGML documents, parse
structures and indices

Table 6: Comparison of the levels of abstraction for relational and document
databases

documents are stored in their standard SGML format, but parsed structures and

indices are built to augment the documents. At the conceptual level, we incorporate

SGML in the data model (Section 4.1.2) and provide query languages similar to those

in the relational domain to manipulate the documents. Query results are presented as

SGML documents and can be expressed as document fragments in a similar manner

as relational views. Table 6 displays the equivalent levels in relational databases and

DocBase.

4.1.1.3 Native Data Representation Format

SGML documents stored as regular text �les on a �lesystem do not provide e�cient

means for processing because of the sequential nature of such �les. However, it

is practically the only way information can be interchanged between systems and

platforms without modi�cation. Although other document formats such as plain

text, word processor formats, postscript [Sys85], PDF (portable document format)

[BCM96] have been used for document publication and distribution, none of them

has been able to deliver the full capability of electronic documents. As discussed in

Chapter 1, although plain text is possibly the most portable method of interchanging

documents, its applicability is quite limited. Word processor �les are useful only if the

corresponding software is available in a particular platform. Postscript is a language

primarily for describing the visual image of documents and, hence, not ideal for a

Chapter 4. Objectives and Requirements 61

uniform and generic document description language.

PDF has some layout as well as structural information and is often used as a means

for document interchange. It uses a page-oriented view of documents and includes

information pertaining to the visual appearance of each page of the document. Recent

revisions of PDF also allows inclusion of \thumbnails," \hyperlinks" and limited

amount of structural information such as table of content levels. The applicability

of PDF as a document database format, however, is highly questionable because of

the overhead of processing PDF documents and the lack of schema information to

validate database instances.

SGML uses a plain text format to encode the document. Characters and markup

that cannot be represented by a text character are encoded by \entities" (see Chap-

ter 2) and by character set references, which only use plain text character represen-

tations. Thus, SGML documents can be exchanged between platforms and systems

without any modi�cations. In the recent years, there has been an increased use of

SGML for the production and interchange of documents such as technical manuals,

electronic texts and journals, and electronic theses and dissertations. Usually these

document collections are distributed in read-only media such as CD-ROMs and can

be used directly from these CDs.

One of the main consideration in this research is to leave the original documents

intact and build only secondary data structures on top of these documents to facilitate

processing. The use of such indices enables the referred documents to stay in their

original locations (such as CDs, disks and other secondary or tertiary storage media)

and only be used in the �nal stage of query processing to extract fragments of the

original documents. Also, conversion or mapping of documents into a database for-

mat and replicating the information in the database becomes unnecessary if external

indices are present. Moreover, if documents are replicated in other database formats,

updates to the original documents can be expensive, since the replicated data will also

need to be updated. On the other hand, an updated document will only necessitate

the updating of the index structures, if only external indices are used.

Chapter 4. Objectives and Requirements 62

4.1.2 Data Model

Conceptual modeling of data is always one of the primary steps in a database design

process. Relational database systems follow the relational model in which the con-

ceptual structure is represented as a set of tables. In this research, the data model

is based on SGML [ISO86]. In SGML, the schema of the data is initially de�ned

in terms of a DTD (Document Type De�nition), and documents are then created

based on the de�ned schema. Every valid SGML document has two components: (i)

the �rst component indicates the DTD (often shared across many documents) which

describes its document structure and (ii) the rest describing the actual structure of

the document instance. Hence, all documents based on a given DTD belong to a

language speci�ed by the grammar de�ned in the DTD.

As described in an earlier chapter (Chapter 2), SGML was designed primarily as

a system-independent and platform-independent document description language for

the purpose of interchange. The design was motivated primarily from a linguistic

and publishing point of view, and hence, the language does not directly conform to a

single known formal model. One close match is the extended context-free grammar

by Madsen [MK76], but it fails to model all the features and properties of SGML.

However, because of the standardized nature of SGML and the years of research

based on SGML, the absence of a formal model for SGML does not cause problems in

building formal models based on SGML. The recent resurgence of the use of SGML

in serious document production and delivery applications, the growth of the World

Wide Web, and the upcoming XML (Extensible Markup Language) standard for the

web all add to the importance of having database support for SGML. Our formalism

is based on SGML as a database model.

4.1.2.1 Structured Document Databases

To de�ne the notion of structured document databases, we �rst de�ne a few sets: gi

is a countably in�nite set of generic identi�ers (GIs); doc � gi is the set of document

types (we describe later the reason for making this distinction), and att is a countably

in�nite set of SGML attributes. We also de�ne dom, which is a countably in�nite

Chapter 4. Objectives and Requirements 63

set of constant character strings, and var, a countably in�nite set of variables.

Types We only consider two types:

1. Basic type �. The base type comprises of character strings, with dom be-

ing the range of values. SGML only supports characters as element contents,

and although it supports limited types in attribute values, we do not consider

attributes as an integral part of our language at present.

2. Complex type � . The complex types form the set gi. Within this set, the subset

doc de�nes document types which are special complex types in the database.

Document types are considered to be special complex types because they de�ne

the type of a complete document for a given DTD. However, any GI in a DTD

de�nes a complex type, and new DTDs may be constructed rooted at that

particular GI, thus making it a document type.

Documents and Databases Documents form the core component in a document

database system. We de�ne documents and databases consisting of documents as

follows:

� Document. Intuitively, a document is an SGML instance of a DTD. A DTD can

be modeled as a grammar represented by a quintuple d = (�;G;A; C;P) where
� 2 doc is a document type, G � gi is a set of generic identi�ers, A � att

is a set of SGML attributes and C � dom is a set of constants. P is a set

of production rules describing the structure of conforming document instances.

Analogous to the relational database model, the DTD serves as the schema for

the managed data, and documents conforming to the DTD serve as instances

of the schema.

� Database. A database, in this setting, is a �nite set of SGML documents con-

forming to one of the document type de�nitions in doc.

Chapter 4. Objectives and Requirements 64

OUTPUT RELATION

Closure domain: Tables/Relations

SQL/Calculus query

(a)

INPUT RELATIONS

Closure domain: SGML documents

 ____blake_

fragments

<from>book</from>
<where>.......</where>

SGML Query

SGML Documents Output SGML document

__________burning____

(c) (d)

Closure domain: Tabular structures

(b)

Closure domain: Documents/visual templates

Query By Template

INPUT DOCUMENTS OUTPUT DOCUMENTS

<start>title</start>

OUTPUT RELATION

QBE QUERIES

<select><output><path>

INPUT RELATIONS

The Tyger

Robert Blake

Tyger, Tyger, burning bright

In what distant deeps or skies
 Burnt the fire of thine eyes!
On what wings dare he aspire?
 What the hand, dare sieze the fire?

 In the forests of the night

 What the hand, dare sieze the fire?

What immortal hand or eye,
 Could frame thy fearful symmetry?

In what distant deeps or skies
 Burnt the fire of thine eyes!
On what wings dare he aspire?

 Could frame thy fearful symmetry?

<book>..

<chapter>....

<book>..

<chapter>....

<title>SGML</title>

<section>...<subsection>

..... </chapter></book>

<title>SGML</title>

Robert Blake

Tyger, Tyger, burning bright
 In the forests of the night
What immortal hand or eye,

The Tyger

<section>...<subsection>

..... </chapter></book>

Figure 10: Examples of closure: (a)Relational databases with SQL or relational calcu-
lus; (b) Relational databases with QBE; (c) SGML documents with an SGML query
language; and (d) SGML databases with a template-based query language

Chapter 4. Objectives and Requirements 65

4.1.2.2 Closure

In addition to using SGML for the storage and modeling of the data, one primary

issue in this research is to achieve closure in the domain of SGML. Simply put, this

means that SGML is to be used as the input as well as the output format for queries.

Closure is prominent in the relational database model as tables are both inputs to

queries and outputs from queries, as shown in Figure 10(a). In addition, using the

QBE query language, queries are formulated also using tables, as in Figure 10(b).

The primary reasons for the use of a closed-domain system are the following:

� Closure enables the possibility of using views in the same manner as the data

itself, thus allowing views to be used as inputs to further query processing.

� Closure allows the input and output to be handled in the same way; no separate

mechanisms need to be devised for presentation and storage of query results, as

they can inherit such properties from the input data itself.

In addition to the above primary properties, the e�ectiveness of closure can be

heightened by having queries in the same format as the input and output data, and

hence enable the possibility of storing, presenting and managing queries in the same

way as the data. Queries on such stored queries can be used for future performance

tuning. Moreover, the capability of treating queries as data gives a means for adding

re
ection properties to a query language [JMG95].

Traditional information retrieval systems deal with unstructured text. In this

case, the idea of closure does not have much importance, since the query results

do not need to follow any structure of the input documents. However, this also re-

stricts the presentation of the results, since di�erent ways of presenting the results

individually or collectively need to be designed. Some current document database sys-

tems [Inf95, Hol95] translate structured documents into a standard database model.

Queries are performed against this database, and the results are presented in the for-

mat of the host database system, thus violating closure. Some similar systems (such

as in [CACS94]) can translate the query results back to the original format by per-

forming a reverse mapping method. Although this method achieves closure, in many

Chapter 4. Objectives and Requirements 66

cases the resulting documents do not retain the complete structural information in

the original documents.

Many of the properties of closure can be achieved in these systems by restricting

updates to the host database format only, but the method is still expensive and re-

quires discarding the original documents | a requirement that is often not feasible

for very large document repositories. In the current research, we intend to achieve clo-

sure by using the document structure in query languages as well as input and output

presentations. We can use the document structure in the form of document represen-

tation (as in Figure 10c) and in the form of document layout (as in Figure 10d).

4.1.3 Query Languages

In Chapter 1, we described two primary approaches to document databases: top-

down and bottom-up approaches. Our approach falls in the former category. To

remain consistent with this approach, our design starts from a conceptual view of the

database and the class of queries on the data, followed by a query language for these

queries, and �nally low-level processing methodologies for supporting these queries.

The actual query language will be described in the next chapter (Chapter 5). In this

section, we describe the types of queries we intend to solve and the basic properties

of query languages that we can use.

In Chapter 3, we described some current systems and techniques applied for pro-

viding database querying functionality for text documents. Among these, the research

at INRIA [ACM93, CACS94] provides the most complete method of querying, owing

to the use of an object-oriented query language for data modeled and stored using

an object-oriented database. The methods that require the conversion of the tex-

tual data into a standard database format usually have su�ciently complete query

languages because of their use of the query language provided by the host database

system. The bottom-up approaches, on the other hand, su�er from the fact that the

query language they support is usually restricted to the operations that the physical

data structure provides. For this reason, the Patricia tree system can evaluate cer-

tain types of queries very e�ciently, but generalizing its capability to pose standard

Chapter 4. Objectives and Requirements 67

database queries common in the relational world can be quite di�cult.

Types of queries that are usually provided by standard database systems and are

quite relevant in document database settings include simple selections, projections,

joins, negations, counting, grouping and ordering, and nested queries (see Chapter 1

for examples of such queries). All these queries can be expressed in query languages

using �rst order logic. The query language requirements for this research, therefore,

involve the following:

� The query language should be expressible in �rst order logic, similar to the

relational query languages.

� The query language should be within PTIME, and possibly within LOGSPACE.

In other words, any query expressed in the query languages can be evaluated

in an amount of time proportional to a polynomial of the size of the input, and

using an amount of temporary space proportional to a logarithm of the size of

the input.

� The query language should be powerful enough to express queries commonly

used with document databases, such as the ones described in Chapter 1.

� The query language should have at least one visual equivalent so that users

can express their queries without knowing the speci�c syntax constraints of a

language and without knowing the complete database schema.

4.2 Non-functional Requirements

4.2.1 Usability Requirements

In Chapter 2, we introduced the concept of \designing for usability." Although

functionality is perhaps more important in terms of requirements, we put a great deal

of importance on making the system signi�cantly easy to use. In order to provide a

good measure for usability of the system, the following factors need to be considered:

� E�ciency. How fast can the users pose a query and retrieve desired results?

Chapter 4. Objectives and Requirements 68

� Accuracy. How accurately can the users pose queries, given an English state-

ment of the query?

� Satisfaction. How satis�ed are the users with the interface and its performance

and functionality?

The usability analysis should be performed by comparing the proposed system inter-

face with a commonly used interface for similar purposes. We selected forms to be

an obvious choice for this comparison. We would like our system to be at least equal,

if not exceed, the performance and usability of forms.

4.2.2 Advanced Database Requirements

In addition to the modeling, language and system requirements described in the

previous section, a number of other properties are also desired for a database system

for documents. Most of these properties have already been researched and systems

exist for such purposes. The most prominent database features include:

� Concurrency control and recovery. When a document repository is not �xed

and is constantly being changed by authors and maintainers, it is necessary

to control concurrent access to the documents so that data is not lost from

con
icting operations [BHG87]. Moreover, in case of a system crash during an

update operation to the database, the system needs to gracefully recover from

the crash and retain consistency of the data.

� Version control and collaborative authoring. One essential feature of a docu-

ment repository is the ability to track versions of di�erent documents. This is

even more important when multiple users are given the task of authoring the

same document. Revision tracking mechanisms for program code and plain text

authoring systems (such as RCS [Tic85]) are often not powerful enough to track

revisions on structured documents. Systems like SGML Editor from Grif S.A.

(http://www.grif.fr) have been designed to track revisions between the actual

document structures, not just the text.

Chapter 4. Objectives and Requirements 69

� Integrated authoring and database functionality. Document database systems

that use a standard database system for storing documents (such as in [CACS94,

Hol95, Inf95]) need to provide a mechanism for authoring the documents in a

transparent manner so that users do not realize that the documents are stored

in a database in fragments and only presented to them as a whole. Since our

approach is to keep documents as is in the database, we do not need this func-

tionality; users can use existing authoring mechanisms to author and update

the documents. However, a connection between these authoring tools and the

database needs to be maintained so that the database system can update the

necessary structures and indices when an update is made to the documents.

A number of methods have been proposed for interfaces between editors and

databases that allow such database connections between authoring tools and

backend databases. Premier among these are InformixTM datablades from Ar-

borText (http://www.arbortext.com) and GATE (Grif Application Toolkit En-

vironment) from Grif S.A. (http://www.grif.fr).

Chapter 5

Conceptual Design

This chapter describes the design of the DocBase document database management

system. As described in Chapter 4, a database system usually includes three layers

of abstraction. We described the conceptual data model supported by a database

system for structured documents. Here we describe the design of formal as well as

practical query languages based on this model and highlight the relationships between

these languages.

5.1 Formal Query Languages

The design of query languages in this research is based on extensions torelational

query languages . In Chapters 1 and 2, we have identi�ed the problems that make

the relational model unsuitable for describing hierarchical document structures. We

also noted that the relational query languages have many useful properties that are

necessary in document query languages. Thus, a document query language designed

as an extension of relational query languages can include all the functionality of the

relational languages and add the features necessary to accommodate the hierarchical

data format. In this section, we describe two equivalent formal query languages: a

calculus and an algebraic language. The �rst language is Document Calculus (DC):

a declarative query language for documents developed as an extended form of the

relational calculus allowing complex path terms. The second language is Document

Algebra (DA): a procedural language which uses specialized operators on sets of

documents to specify queries. While the calculus provides a logical description of

the language, the algebra is useful for implementing the language, describing the

complexity and providing a good understanding of the operations available in the

70

Chapter 5. Conceptual Design 71

language.

5.1.1 A Document Calculus (DC)

Here we describe a calculus for documents. The notion of document databases has

been formally introduced earlier (Chapter 4). As stated before, this calculus is an

extended form of relational calculus supporting path expressions and operations on

document structures. To reduce the complexity of the query language, we use a simpli-

�ed path expression construct and compare the proposed path expression constructs

with traditional notions of path expressions. We then de�ne the language by de�ning

the terms, operators, predicates, formulas, and �nally, queries in the language.

5.1.1.1 Path Expressions

The notion of path expressions (PEs) came from two di�erent areas: (i)graph query

language s and (ii) object-oriented query languages. For graph query languages (e.g.,

[MW95]), a path expression de�nes a path from one node in the graph to another

in terms of intermediate node and edge labels. For object-oriented query languages,

a path expression de�nes a path from one object to another using membership and

inheritance relationships. We describe both of these methods and propose a simpli�ed

path expression construct speci�cally for structured documents.

Traditional PEs in Graphs Path expressions in graphs are typically used in

navigation-oriented queries. This technique has been applied in hypertext data as

well as object-oriented languages. Typically, such queries are expressed using regular

expressions denoting paths in the graph representing the data [AV97]. In this setting,

the data is organized in the form of nodes linked by labeled edges. A notion of path

queries can be built using a similar approach for de�ning regular expressions [HU79].

Abiteboul and Viannu [AV97] describe their path queries in terms of regular path

queries, and then generalize them to general path queries as follows:

Regular path queries A regular path query is de�ned as a regular expression over

some �nite alphabet � consisting of the set of labels in the graph. This notion

Chapter 5. Conceptual Design 72

uses the same semantics for regular expression symbols, such as \+" repre-

senting union and \�" representing the Kleene closure. Examples of such path

queries are:

section(paragraph + figure)caption

engine (subpart)* name

The �rst instance refers to a path from a section to captions of paragraphs or

�gures in the section, where the second path refers to the names of any subpart

within an engine.

General path queries In regular path expressions, all labels need to be included,

and there is no easy way to express a \don't care" expression. An extension

to the above regular path queries can be expressed by allowing string regular

expressions inside the labels in the path. Abiteboul and Vianu [AV97] term

such path expressions as general path queries. Examples of such path queries

include:

"doc" ("[sS]ections?" "text" + "[pP]aragraph")

"section" (".*")* "caption"

General path expressions allow perl-style regular expressions inside the labels

of the path. In the above examples, the items within the quotes indicate labels

in the path expression. In the �rst example, the path refers to section text

or paragraphs inside a document (ignoring the starting case of section and

paragraph). The more interesting example is the second one, in which the

path expression denotes paths from section nodes to caption nodes, without

specifying the intermediate labels in these paths.

PEs in Object-Oriented Databases The concept of path expressions in object-

oriented query languages started with the necessity for abbreviating expressions in-

volving long chains of membership or inheritance relationships [KKS92, dBV93]. Tra-

ditionally, a path expression over a given OODB schema is an expression of the form

Chapter 5. Conceptual Design 73

x:A1:A2: : : : :An; n � 1, where x is an instance of class C1, A1 is an attribute of the

class C1, and for 1 < i � n, the type of the attribute Ai�1 in the class Ci�1 is the

class Ci, and Ai is an attribute of that class Ci. This de�nition of path expressions

leads to several unnecessarily long expressions describing paths, even between object

pairs for which only one unique path exists.

Generalizations of the above path expressions have also been proposed [KKS92].

In one such approach, Van den Bussche and Vossen [dBV93] simpli�ed the fully

expanded path expressions to partial path expressions without any change in the

syntax, extending the syntax of the \." operator to incorporate an unspeci�ed path.

During computation, the paths are expanded to a minimal path between the object

instances. Another approach by Kifer et al. [KKS92] uses the path labels as lists

and allows the selection of particular instances of labels among a set of such labels.

(e.g., the expression Book.Chapter[1].title refers to the title of the �rst chapter

of a book.)

PEs in Document Structure Path expression for document structures have also

been considered by Christophides et al. [CACS94, CCM96]. These approaches allow

variables on paths, which instantiate over paths in the current domain. In this sce-

nario, it is possible to formulate such expressions as node1:X = node2:Y where node1

and node2 represent tree nodes, and X; Y represent path variables. This expression

evaluates to true if any instance of the paths X and Y results in an equality of the two

sides. In the cases where the two path instances result in incompatible types, an error

condition is generated, and the corresponding instances are ignored. Christophides et

al. also propose a syntactic sugared path expression of the form my article::title(t)

when the actual values of path variables are not important. Formally, the above

expression evaluates to:

9p PATH(p) ^my article:p:title(t)

Here, the expression indicates that there is a path between my article and title(t),

but the actual path itself is not of signi�cance.

Chapter 5. Conceptual Design 74

Simple Path Expressions (SPE) We are interested primarily in posing queries

in document databases. Although completely generalized path expressions with path

variables and selectors give a lot of power to a language, they are often not necessary

in a document context, especially for SGML documents. We make the following

simplifying observations:

� Document instances of all SGML DTDs are strictly hierarchical. Although

there is a feature in SGML called CONCUR that allows multiple simultaneous

hierarchical structures, any particular document instance only conforms to one

of these structures. In general, thus it can be assumed that a particular instance

of a document has a strictly hierarchical structure (i.e., an element cannot be

a direct child of more than one other element, and an element cannot be an

ancestor of a parent element). This property is, in general, not true for object-

oriented databases.

� Although SGML allows the use of IDREF attributes to link to other elements,

they are not part of the document structure. In this work, we are using path

expressions only for structural navigation and not for pointer/link chasing. In

other words, path expressions in this language would be used as a means for

describing an abstract link between two nodes in the structure itself, rather than

an explicit path following pointers in an instance of that structure. A method

for following links will be discussed later.

� Document structures de�ned in SGML are usually non-recursive. SGML does

allow recursive structures, but in documents, it is usually a common practice to

use descriptive tags rather than recursive structures. For example, a document

with a chapter-section-subsection-subsubsection hierarchy can be represented

in a recursive section (see Figure 11), with the semantics given to the depth of

recursion, although it is seldom structured that way.

Given the above assumptions, we propose the notion of simple path expressions (SPE)

using the operators \." and \..", formally de�ned shortly with the semantics as

described above. Note that we use the context of documents de�ned earlier, with gi,

Chapter 5. Conceptual Design 75

Part Part

partPart

(a) (b)

Part

Book

Part Part Part

PartSection Section Section Section

Subsection Subsection

Chapter

Book

Chatper Chapter

Figure 11: Two ways of structuring a book | (a) without using recursion, and (b)
using recursion.

the set of generic identi�ers; doc, the set of document types; att, a set of SGML

attributes; and dom, which is a set of constants. Note that in general, all paths need

to be speci�ed relative to a particular document type de�nition (DTD) and should

use only the generic identi�ers provided by the DTD. We now de�ne the notion of

simple path expressions (relative to the DTD D) and two useful functions first(P)
and last(P) (first(P); last(P) : SPE! gi[f�g). The de�nition is given inductively
as follows:

� Null path. �, the null path, is an SPE. first(�) = last(�) = �

� Basic path. Every x 2 gi is an SPE, and we call these paths \basic paths."

first(x) = last(x) = x.

� Listed path: A listed path P is a fully expanded SPE of the formA1:A2: � � � :An

where n � 1, and for every i, Ai 2 gi, and Ai+1 is in the content group1 of Ai.

Here, first(P) = A1 and last(P) = An.

� Abbreviated path. An abbreviated path P of the form P1::P2:: � � � ::Pk is an

SPE, where k � 1, and for every i, Pi is a basic or listed path, and first(Pi+1)
is a descendant of last(Pi) in the context of the current DTD. This notion is

1In SGML, the declaration of a generic identi�er is written as: <!ELEMENT thisgi - - (G1,

G2, G3...)>. The GIs within parenthesis are the children of thisgi, and are said to be in thisgi's
content group.

Chapter 5. Conceptual Design 76

similar to the partial path speci�cation in [dBV93] and the \.." operator in

[CACS94], described above. Note that the operation \.." can be de�ned in

terms of the operation \." as follows:

P1::P2 , 9A1; : : :9Ak A1 2 gi^: : :^Ak 2 gi^P1:A1:A2: � � � :Ak:P2 for some k � 0

Note that in case of an abbreviated path P of the above form, first(P) =

first(P1) and last(P) = last(Pk).

The above de�nition of SPEs can also be demonstrated using an equivalent BNF

notation for the sake of clarity, as follows:

SPE ::= AbbrPath j �
AbbrPath ::= ListedPath f:: Listedpathg�

Listedpath ::= BasicPath f: BasicPathg�

BasicPath ::= gi

Based on the above de�nitions of path expressions, and the predicates first and

last, we de�ne a few special path expressions as follows:

� Rooted SPE. A rooted SPE P is an SPE where first(P) 2 doc.

� Terminal SPE. A terminal SPE P is an SPE where last(P) has a data content
(i.e., one of the children of last(P) is #PCDATA or any other possible character

data types in SGML).

� Complete SPE. A complete SPE is an SPE which is both Rooted and Terminal

(i.e., first(P) 2 doc and last(P) has a data content).

Semantics of SPEs As mentioned above, path expressions are always in the con-

text of a DTD. Posit an interpretation M of a database for a given DTD D and an

environment (assignment of values to all variables) �. The DTD D represents a set

of documents conforming to the DTD and is hence similar to a complex relation. In

Chapter 5. Conceptual Design 77

this interpretation, M (D) is a set of documents conforming to the DTD D. A path

expression P applied to a set of documents is a function from a set of documents to

another set of documents rooted at last(P). We use the following notation to describe

fragments of trees2which will be used in the de�nition of the semantics:

A1

A2...
Ak
4

matches any tree rooted at A1, that it has a path A1:A2 � � � :Ak.

Formally, the interpretation of a path expression E in the context of a DTD D

can be de�ned inductively as follows, assuming the existence of an interpretation M

of the database which is essentially a �nite set of documents conforming to the DTD

D.

� [[�]]M = M (D)

� [[A]]M =

8>>>>>><
>>>>>>:

A
4 j 9A1; A2; : : : Ak 2 gi

A1

A2...
Ak
A
4

2 M (D); k � 0

9>>>>>>=
>>>>>>;

� [[P:A]]M =

8<
:

A
4 j 9B 2 gi

B
A
4

2 [[P]]M
9=
;

� [[P::A]]M =

8>>>><
>>>>:

A
4 j 9A1; A2; : : : Ak 2 gi

A1...
Ak
A
4

2 [[P]]M ; k > 0

9>>>>=
>>>>;
.

2Notice that in this tree fragment, the path is a listed path (i.e., all nodes in the path are
speci�ed), and that A2 is not the only child of A1 (A1 may have other children, but we are not
interested in them).

Chapter 5. Conceptual Design 78

Comparison of SPEs with general PEs Since SPEs only include direct child

relationships and descendant relationships, it is not as powerful as the regular path

expressions described earlier. For example, the simple path expression construct does

not permit paths with arbitrary Kleene closures (such as A.(B.C)*.D). Clearly, SPEs

describe a subset of the general path queries, since any SPE can be expressed using an

general path query. With the simplifying notion of strict hierarchical documents with

infrequent recursive structures, it is still possible to pose many interesting queries

using these simpli�ed path expressions. In the next section, we will examine the

properties of a calculus language using this notion of path expression and see the

types of queries that can be formulated using this language.

5.1.1.2 A Formal Speci�cation of DC

Based on the above discussion of path expressions, we now discuss the document

calculus (DC) as an extension of the relational calculus that can use SPEs as terms.

We �rst describe the language by de�ning the accepted terms in the language and

the operators that are supported in the language. We next de�ne the predicates and

formulas in the language, and �nally the queries in the calculus speci�cation. In

this speci�cation, we use the same formalism of document databases (as presented in

Chapter 4) as sets of documents conforming to the schema represented by a DTD.

As before, we use the quintuple d = (�;G;A; C;P) with the usual signi�cance of

the symbols. Recall also that the types of terms can only be one of two types:

simple types (character strings) and complex types (governed by one of the generic

identi�ers). We will use the symbol � for types, and the symbol � to represent one of
the path expression operators . and .. in the following discussion.

Terms Terms in DC comprise of the following:

� Constant. A constant c 2 dom is a term.

� Variable. A variable x� 2 var is a term, representing a tree of a given type

� 2 gi. If the type is implied, the su�x of x� may be dropped.

Chapter 5. Conceptual Design 79

� Path term. An expression of the form x � P where � 2 f: ; ::g, referred to as

a path term, is a term in the language representing a set of trees obtained by

traversing the path P starting from the root of the tree denoted by x. Semantics

of this operation is given shortly. The type of a term x � P is given by last(P)
if P 6= � and is given by the type of x otherwise.

Operators Basic comparison operators and logical operations are supported in this

language. The following operations are supported in particular:

� Comparison operators. All comparison operators are binary operators, and are

functions that return a boolean value (true or false). Two types of comparison

operators are used in DC:

{ Comparison between sets and atoms. The operators 3 and 63 can be used to

perform comparisons between a set and an atom. The set to be compared

must have the type of a generic identi�er that has a data content (i.e.,

theSPE denoting the set must be a terminal SPE).

{ Comparison between sets. The set comparison operators in DC are f=
; 6=;�;(;\; 6 \g. The �rst four operators are the standard set equality,

inequality, subset and non-subset operators. The operations \ and 6 \ are

de�ned by:

A \ B , A \B 6= ;
A6 \B , A \B = ;

� Logical operators. The logical operators supported by this language are ^
(AND), _ (OR), : (NOT).

Predicates The predicates supported are document and path predicates (which

can be thought of as complex relational predicates), de�ned as follows:

� Document predicates. D 2 doc is a document predicate and represents a set of

documents conforming the document type D.

Chapter 5. Conceptual Design 80

� Path predicates. A path predicate is of the form D � P where D 2 doc, and P
is an SPE. The path predicates represent sets of documents rooted at last(P)
if P is non-null and rooted at the root generic identi�er of D if P is �.

� Path term predicates. Since path terms described above represent sets of docu-

ments, they can also be treated as predicates. A path term predicate is of the

form x � P, as above.

Formulas Formulas are functions from a set of variables to the boolean values true

and false. A formula is a function from a valuation of a set of free variables to one

of the two boolean outcomes. The formulas in DC include the following:

1. Atomic formulas. R(x) is an atomic DC formula, where R is a predicate, with

the following forms:

(a) D(x), where x is the only free variable, and D 2 doc. In this formula, x

must be a variable of type D, where D is the root generic identi�er of the

DTD D.

(b) D � P(x), where x is the only free variable, and P is an SPE. Here the

variable x must be of type last(P) if P is non-null. If P = �, this formula

reduces to the formula above.

(c) x � P(y) where x and y are the two free variables. As before, the variable

y needs to be of type last(P) if P is non-null, and the same type of x

otherwise.

2. x�P�c is a DC formula, where � 2 f3; 63g, x�P is a path term and c 2 dom is

a constant. In order for this comparison to make sense, last(P) needs to have

a data group, and the semantics of this formula is to compare the data in the

data group of the term with the constant. In this formula, x is the only free

variable.

3. t1�t2 is a DC formula, where � 2 f=; 6=;�;(;\; 6 \g and t1 = x1 � P1 and

t2 = x2 �P2 are two path terms. Although in practice, terms could refer to any

Chapter 5. Conceptual Design 81

complex type, a comparison between two complex terms involves comparisons

between trees. For the purpose of this formalism, we will consider all terms

to be path terms involving complete SPEs. In other words, for every term t,

first(t) 2 doc and last(t) has a data group (the predicates first and last

for such term can be de�ned in the same manner they were de�ned for path

expressions). In this formula, x1 and x2 are both free variables.

4. If ' and are formulas, so are the following:

� ' _
� ' ^
� :'

In the above, the set of free variables is the union of the sets of free variables

in ' and .

5. If '(x; x1; x2; : : : ; xn) is a DC formula with n+1 free variables x; x1; x2; : : : xn(n �
1) then the following are DC formulas:

� 9x '(x; x1; x2; : : : ; xn) (existential quanti�er).
� 8x '(x; x1; x2; : : : ; xn) (universal quanti�er

In each of the above two forms, the free variables are x1; x2; : : : ; xn. The variable

x is said to be bound by the corresponding quanti�cation operation.

6. If ' is a formula, so is ('). The set of free variables remains unchanged.

Formulas are the primary means for expressing queries in any calculus language. A

formula intuitively represents the values given to the free variables that \satis�es"

the formula (i.e., results in a truth value). In a normal database application, the

database consists of only a �nite amount of data. Hence, ideally formulas are useful

if only a �nite number of such sets of values satis�es the formula.

However, in the above setting of formulas, it is not possible to guarantee that only

a �nite combination of the free variables satisfy the formula. For example, the query

Chapter 5. Conceptual Design 82

\all documents not in the database" can be represented by the formula :D(x) and
can be satis�ed by an in�nite number of values of x. Such formulas are formally called

unsafe formulas, because queries that include such formulas can never be computed

in a �nite time. To avoid this problem, we de�ne the notion of safe formulas next.

Safe DC Formulas Safe DC formulas (or, in short,SDC formulas) are the formulas

which can be satis�ed by only a �nite set of values for the free variables. This is

achieved by ensuring that the values of all free variables are always restricted to

�nite sets and ensuring that potentially unsafe operations (such as negation, as in the

example above) always occur along with another formula that restricts the selection

of values of the free variables. We can de�ne the notion of safe formulas inductively

as before, by starting with formulas that are intuitively safe and building up the

formulas ensuring safety at every step. Here we give the intuition behind the safety

of the formulas. A rigorous proof will follow the discussion of the algebraic language.

Safe formulas can be de�ned as follows:

1. Safe atomic formulas. The following are safe atomic formulas:

(a) D(x) is safe, since it represents the �nite set of documents that satisfy the

DTD D.

(b) D � P(x) is a safe formula, since the path expression D � P represents a

�nite set of documents.

(c) If ' is a safe formula with a single free variable, so is '(x) ^ x � P(y). In
this formula, the variable x can be thought of as being bound to a �nite

set of possible values by the safe formula '. The rest of the formula is safe

as before. In the subsequent discussions, we will use the notation xQ�P(y)
to represent formulas of this form, where Q = fzj'(z)g is the set of values
that make ' true.

2. xQ � P�c is a safe DC formula, where � 2 f3; 63g, x � P is a path term and

c 2 dom is a constant. It is trivial to see that this formula is safe.

Chapter 5. Conceptual Design 83

3. t1�t2 is a safe DC formula, where � 2 f=; 6=;�;(;\; 6 \g and t1 = xQ1

1 � P1 and

t2 = xQ2

2 � P2 are two path terms. This formula is safe since Q1 and Q2 both

represent safe sets.

4. If '(x1; x2; : : : ; xn) and (x1; x2; : : : ; xn) are safe formulas with the same set of

free variables x1; x2; : : : ; xn, then the following are also safe formulas:

(a) '(x1; x2; : : : ; xn) _ (x1; x2; : : : ; xn)
(b) '(x1; x2; : : : ; xn) ^ : (x1; x2; : : : ; xn)

The �rst formula is safe because it is intuitively a union of two �nite sets. In

the second formula, the �rst clause provides a �nite number of possible values

for the free variables, thus making the negation safe.

5. If '(x1; x2; : : : ; xn) and (y1; y2; : : : ; yn) are safe formulas with possibly over-

lapping set of free variables x1; x2; : : : ; xn and y1; y2; : : : ; yn respectively, then

'(x1; x2; : : : ; xn) ^ (y1; y2; : : : ; yn) is also a safe formula. The intuition for the

safety of this formula comes from the fact that the formula represents a set

intersection of two �nite sets.

6. If '(x; x1; x2; : : : ; xn) is a safe formula with free variables x; x1; x2; : : : ; xn; n � 1,

then 9x'(x; x1; x2; : : : ; xn) is a safe formula.

In this safe version of the calculus, we build the formulas inductively from other safe

formulas in such a way that every formula is satis�ed by a �nite number of values

of the free variables assuming the database has only a �nite number of documents.

Another way of viewing a safe variant of a calculus language is to assume that all free

variables in a formula are range restricted. We can show that such a language, where

all variables have a �nite range of values, is equivalent to the safe calculus proposed

here. This can be proved by structural induction on the formulas.

Tuple Construction The path expressions provide a means for extracting compo-

nents of a composite object. DC supports dynamic creation of composite types by

Chapter 5. Conceptual Design 84

creating new generic identi�ers with already existing generic identi�ers as children.

This is achieved by providing a tuple construction expression of the form:

z = Rhx1; x2; : : : ; xni n � 1

The tuple construction operation can be treated as a formula that always returns a

truth value, and thus can be combined with other formulas using a conjunction.

Queries A query is an expression denoting a set of documents described by a safe

DC formula '. All queries in DC are of the form

fx j '(x)g

Here we only consider formulas with a single free variable, since such a formula can

always be constructed from any formula with multiple free variables using the tuple

construction mechanism described above, as follows:

'1(z) , (z = Rhx1; x2; : : : ; xki) ^ '(x1; x2; : : : ; xk)

5.1.1.3 Semantics of DC

We now present the semantics of DC. Consider an interpretation M of the database

and a valuation � of all variables. We de�ne the semantics of the DC by de�ning

the semantics of the terms and the formulas in the language. The semantics of path

expressions de�ned in Section 5.1.1.1 is used in this de�nition.

Terms We consider three types of terms as described above:

� Constants. [[c]]M� = c

� Variables. [[x]]M� = �(x)

� Path terms. [[x � P]]M� = [[P]]�(x)

Formula A formula can only have one of the two boolean values: \true" and \false."

Given an interpretation M and a valuation of variables �, we say a formula '

Chapter 5. Conceptual Design 85

holds when it results in a true value for the given interpretation M and valuation

�, and is written as (M ; �) j= '. Since interpretation of formulas does not rely

on safety, we will relax the safety issues and only describe the interpretations

formulas in the unsafe form as described in Section 5.1.1.2. Depending on the

type of formula, the interpretation is de�ned as follows:

� Atomic formulas.

{ (M ; �) j= D(x) i� �(x) 2 M (D)

{ (M ; �) j= D � P(x) i� �(x) 2 [[D � P]]M�
{ (M ; �) j= x � P(y) i� �(y) 2 [[P]]�(x)

� Formulas of the form x � P�c. The interpretation is de�ned as follows

depending on �:

{ (M ; �) j= x � P 3 c i� [[c]]M� 2 [[P]]�(x)

{ (M ; �) j= x � P 63 c i� [[c]]M� =2 [[P]]�(x)

� Formulas of the form x1 � P1�x2 � P2. The interpretation is de�ned as

follows depending on �:

{ (M ; �) j= x1 � P1 = x2 � P2 i� [[P1]]
�(x1) = [[P2]]

�(x2)

{ (M ; �) j= x1 � P1 6= x2 � P2 i� [[P1]]
�(x1) 6= [[P2]]

�(x2)

{ (M ; �) j= x1 � P1 � x2 � P2 i� [[P1]]
�(x1) � [[P2]]

�(x2)

{ (M ; �) j= x1 � P1 (x2 � P2 i� [[P1]]
�(x1) ([[P2]]

�(x2)

{ (M ; �) j= x1 � P1 \ x2 � P2 i� [[P1]]
�(x1) \ [[P2]]

�(x2) 6= ;
{ (M ; �) j= x1 � P1 6 \x2 � P2 i� [[P1]]

�(x1) \ [[P2]]
�(x2) = ;

� Formulas with logical operators.

{ (M ; �) j= ' ^ i� (M ; �) j= ' and (M ; �) j=

{ (M ; �) j= ' _ i� (M ; �) j= ' or (M ; �) j=

{ (M ; �) j= :' i� (M ; �) 6j= '

� Formulas with quanti�cation. To de�ne this, we consider the notion of

substitution in valuations. We say [a=x�]� is a valuation in which the

Chapter 5. Conceptual Design 86

value a 2 � is substituted for the variable x where � is the type of x. We

also denote all possible such values in the interpretation M as jM (�)j.
{ (M ; �) j= 9x�' i� (M ; [a=x�]�) j= ' for some a 2 jM (�)j

5.1.1.4 Examples

To illustrate the language, consider some of the queries we discussed in Chapter 1.

For the examples, consider the schema in Figure 12. The DC queries corresponding

<!DOCTYPE POEM [

<!ELEMENT poem - - (head, body)>

<!ELEMENT head - - (period, poet, title)>

<!ELEMENT body - - (stanza)+>

<!ELEMENT stanza - - (line)+>

<!ELEMENT (period | poet | title | line) - O (#PCDATA)>

]>

Figure 12: A simple poem database schema

to some of the queries mentioned in Chapter 1 are given below.

1. Find all poems that contain the word \love" in the poem title.

fxjxfzjpoem(z)g::title 3 \love"g

2. Extract titles and authors of all poems in the database.

�
wj9x(w = Rhy; zi) ^ (xfzjpoem(z)g::title(y)) ^ (xfzjpoem(z)g::poet(z))

	

3. Find the period in which all poems had the word \love" in their titles. In this

query, let = fzjpoem(z)g. The query is intuitively written using �rst order

logic as:

�
xj8y poem(y)) �

y ::period(x)) y ::title 3 \love"
�	

Chapter 5. Conceptual Design 87

Note that this formulation is not explicitly safe. In order to ensure safety using

the notion of safe formulas that we describe above, we �rst need to replace the

implication with the equivalent logical expression (A) B � :A _ B) and use

DeMorgan's laws to reduce the universal quanti�er to an existentialquanti�er .

The query is then reformulated as follows:

�
x j poem::period(x) ^ :9y

�
poem(y) ^

�
y ::period(x) ^

�
poem(y) ^ :y ::title 3 \love"

���	

4. Find the pairs of names for poets who have at least one common poem title.

Again, let = fzjpoem(z)g. The query is then represented as:

�
v j (v = Rhw; zi) ^ (9x; y (x ::title \ y ::title ^ x :� 6 \y :� ^ x ::poet(w) ^ y ::poet(z))

	

5. Find the poems that do not have the word \love" in the title.

�
x j poem(x) ^ :xfzjpoem(z)g::title 3 \love"

	

5.1.2 The Document Algebra (DA)

The document calculus language speci�ed above describes a �rst-order language for

expressing queries on documents. The document algebra (DA) being described here

is predictably an extension of the relational algebra. We use essentially the same

operators of relational algebra (with modi�ed semantics) and a few new operators.

Although the calculus language described in the previous section can su�ciently

describe the properties and powers of the language, there are a number of motivations

for describing an algebraic language which has the same expressive powers as the

calculus language. Prominent among them are:

1. The algebraic language is procedural, and hence provides an easy means for

implementation of the language using a procedural programming language.

2. Since the algebra consists of operations that map sets of documents to sets of

documents, it is convenient to prove the safety of the language by showing that

Chapter 5. Conceptual Design 88

the sets generated are �nite if the inputs are �nite sets.

3. Because of the procedural nature of the operations in the language, it is conve-

nient to describe the complexity of the language in terms of the complexity of

the individual operations.

In this section, we present Document Algebra (DA), an algebraic language for manipu-

lating and querying documents. In a subsequent section we will prove the equivalence

of the calculus and algebraic languages and demonstrate their properties. As in the

calculus, we will use the symbol � to represent one of the path expression operators

. and .. in the following discussion.

5.1.2.1 Primary DA Operations

All DA operations are described as functions from one or more sets of documents to

another set of documents. Every DA expressionE� represents a set of documents of

a particular type � . We de�ne DA expressions inductively by �rst de�ning the basic

document expression and then de�ning the operations cross product (�), selection
(�), projection (�), union ([), intersection (\) and set di�erence (�). We will also

de�ne the operations join (1), generalized product (
Q
) and root addition (�), as a

combination of the primitive operations. All the operators generate documents of

speci�c types, as shown in Table 7.

Expression Type New productions

D D

E � P last(P)
E�11 [R E�22 R R ! �1 j �2
E�1 �E�2 �

E�11 �R E�22 R R ! �1; �2
�
E

� �

Table 7: Types of Document Algebra operations and new created types.

A DA expression E� and its semantics are de�ned inductively as follows (assume

the usual notation M for a database with a �nite set of documents in the context of

Chapter 5. Conceptual Design 89

a DTD D):

Document The expression D represents the set of all documents in the database.

Thus, [[D]]M = M (D).

Path selection (�) Given a DA expression E� and a SPE P, E� �P is a DA expres-

sion that returns the set of documents rooted at last(P) obtained by traversing

the path P from each of the documents in E� . So, [[E� � P]]M = [[P]][[E�]]
M

.

Union ([) Union is the usual set union operation, without the restriction that both

operands of the union be of the same type. Given two DA expressions E�1
1 and

E�2
2 , the result of the union E

�1
1 [R E�2

2 is a set of documents of a new type R

which is created by adding a production for R with �1 and �2 in an option group.

To explain this operation, we use the notation RhSi to denote an expression

that includes the documents in the set S, each augmented with a special root

generic identi�er R. With this notation,

[[E�1
1 [R E�2

2]]
M = Rh[[E�1

1]]
M i [Rh[[E�2

2]]
M i

Here the operation [is the regular set union operation.

Intersection (\) The intersection operation is the usual set intersection operation

E�
1 \E�

2 , containing the set of documents that are both in E�
1 and in E

�
2 . Hence,

[[E�
1 \ E�

2]]
M = [[E�

1]]
M \ [[E�

2]]
M

Set di�erence (�) The set di�erence is the usual set di�erence operation E�
1 �E�

2 ,

containing the set of documents in E�
1 that are not in E

�
2 . Hence, [[E

�
1 �E�

2]]
M =

[[E�
1]]

M � [[E�
2]]

M

Cross Product (�) Given two DA expressions E�1
1 and E�2

2 , the expression E
�1
1 �R

E�2
2 is a DA expression, and it represents a set of documents with a new type

R the members of contain two subcomponents: one from the set E�1
1 and the

other from E�2
2 . In the resulting set, each member of the set [[E�1

1]]
M is combined

with each member of the set [[E�2
2]]

M . Hence,

Chapter 5. Conceptual Design 90

[[E�1
1 �R E

�2
2]]

M = fRhx; yi j x 2 [[E�1
1]]

M ^ y 2 [[E�2
2]]

M g

Here Rhx; yi represents a document with two components x and y.

Selection (�) The selection operation �
E
� extracts a subset of documents from

the input set E� that satisfy a selection condition
.
 can be of one of two

forms: (i) P�c where P is a path expression, � is in f3; 63g and c 2 dom, and

(ii)P1�P2 where P1 and P2 are path expressions and � 2 f=; 6=;�;(;\; 6 \g.
Mathematically, the semantics can be represented by:

i.. [[�(P�c)E
�]]M =

n
xjx 2 [[E�]]M ^ [[x � P]]M �c

o

ii.. [[�(P1�P2)E
�]]M =

n
xjx 2 [[E�]]M ^ [[x � P1]]

M �[[x � P2]]
M

o

5.1.2.2 Derived DA Operations

In addition to the primary operations described above, some additional operations

can also be observed to be useful. These are composite operations that can be derived

from one or more of the above primary operations. The types and productions created

by the derived operations are shown in Table 8.

Expression Type New productions

E�1 [E�2 �

�R
P1;P2;:::Pk

E� R R! first(P1); first(P2); : : : ; first(Pk)QR
E
�1

1
;:::;E

�n
n

R R! �1; �2; : : : ; �n

�RE
� R R! �

E�11 1
R
p1�p2

E�22 R R! �1; �2

Table 8: Derived DA operations and new created types.

Ordinary Union The union operation de�ned above is a more general operation in

which it is not necessary that the operands be of the same type. The normal

Chapter 5. Conceptual Design 91

union operation can be de�ned by composing the general union with a path

selection, as follows:

E�
1 [E�

2 � (E�
1 [R E�

2) �R:�

Projection (�) The projection operation extracts subtrees from document trees.

The projection expression �RP1;P2;:::Pk
E�creates a new type R containing the pro-

jected types in sequence from the expression E� . This operation can be de�ned

as a composition of cross product, selection and path selection operations. The

intuition behind this property lies in the projection-like capability of the path

selection operation �. In fact, path selection is like a single-item projection, and

to obtain multiple items, multiple path selections followed by cross product and

a �nal reconstruction needs to be performed, as the following projection of two

components illustrates:

�RP1;P2
(E�) �

�
�S:R:last(P1)\S:P1

�
�S:R:last(P2)\S:P2

((E� � P1 �R E� � P2)�S E
�)
��
� S:R

Generalized Product (
Q
) The product described above uses only two operands.

We can also de�ne a stronger generalized product operation with an arbitrary

number of operands n(n > 1) as:
QR

E
�1
1
;:::;E

�n
n
, which represents a set of docu-

ments that contain n subcomponents from the respective operands. In terms of

the primitive operations de�ned above, this operation could be written as:

QR

E
�1

1
;:::;E

�n
n

=

�RR1:�1;R1:R2:�2;:::;R1:R2:���:Rn�1:�n�1;R1:R2:���:Rn�1:�n

�
E�11 �R1

�
E�22 �R2

� � �
�
En�1 �Rn�1 En

�
: : :

��

Add Root (�) The add root operation �RE
� is a simple operation that takes docu-

ments from the expression E� and adds the rootR to them. It creates a new type

R containing only the type of E� . It is trivial to observe that �RE
� = E� [RE� .

Join (1) Join can be de�ned as a combination of cross product and selection, as

follows:

E�1
1 1

R
p1�p2

E�2
2 � �p1�p2 (E

�1
1 �R E

�2
2)

Chapter 5. Conceptual Design 92

5.1.2.3 Examples of DA Expressions

We now demonstrate how the algebraic expressions for the queries described earlier

in Section 5.1.1.4 can be formed.

1. Find all poems that contain the word \love" in the poem title.

�
poem::title3\love"Poem

2. Extract titles and authors of all poems in the database.

�ATpoem::title;poem::poetPoem

3. Find the period in which all poems had the word \love" in their titles. We solve

this query using stages.

Periods = Poem � poem::period
PT = �PTpoem::period;poem::titlePoem

Result = Periods� �PT � �
PT:title3\love"PT

� � PT:period

4. Find the pairs of names for poets who have at least one common poem title.

�P1::poet;P2::poet
�
�P1::poet6\P2::poet

�
�P1Poem 1

R
P1::title\P2::title

�P2Poem
��

5. Find the poems that do not have the word \love" in the title.

Poem� �
poem::title3\love"Poem

5.1.3 Properties of the Query Languages

5.1.3.1 Equivalence of DC and DA

We now show that the two languages (DC, DA) de�ned above are semantically equiv-

alent (i.e., any query written in the document calculus is equivalent to some document

Chapter 5. Conceptual Design 93

algebra expression, and vice versa). We prove this in two steps. First, we show that

any DA expression is equivalent to some DC query, and then we show the reverse.

Theorem If E is a document algebra expression, then there is an expression EC in

document calculus equivalent to E.

Proof. We prove this by strong induction on the number of operators in the

algebraic expression:

� Induction hypothesis. For any DA expression E with fewer than n operators

(n � 1), we can construct a safe DC formula EC with one free variable such

that E � fx j EC(x)g.

� Base case. (number of operators = 0) The only possible expression is D. The

equivalent calculus expression is: fxjD(x)g.

� Induction step. Denote a DA expression with n operators by En. We prove the

theorem by considering all the cases of the de�nition of DA expressions using

only the primitive algebraic operators.

1. En = E� � P. By the induction hypothesis, E� � fx j EC(x)g for some

safe DC formula EC , since E� has n� 1 operators. So we have

En �
n
yj9x xfwjEC(w)g � P(y)

o

2. En = E�1
1 [R E�2

2 . By the induction hypothesis, since the expressions E�1
1

and E�2
2 both have fewer than n operators, there are safe DC formulas EC

1

and EC
2 such that E�1

1 � fx j EC
1 (x)g and E�2

2 � fx j EC
2 (x)g. Hence,

En �
�
z j (z = Rhxi) ^ (EC

1 (x) _ EC
2 (x))

	

3. En = E�
1 \E�

2 . By the induction hypothesis, since the expressions E�
1 and

E�
2 both have fewer than n operators, there are safe DC formulas EC

1 and

Chapter 5. Conceptual Design 94

EC
2 such that E�

1 � fx j EC
1 (x)g and E�

2 � fx j EC
2 (x)g. Hence,

En �
�
x j EC

1 (x) ^ EC
2 (x)

	

4. En = E�
1 �E�

2 . By the induction hypothesis, since the expressions E�
1 and

E�
2 both have fewer than n operators, there are safe DC formulas EC

1 and

EC
2 such that E�

1 � fx j EC
1 (x)g and E�

2 � fx j EC
2 (x)g. Hence,

En �
�
x j EC

1 (x) ^ :EC
2 (x)

	

5. En = E�1
1 �R E

�2
2 . By the induction hypothesis, since the expressions E�1

1

and E�2
2 both have fewer than n operators, there are safe DC formulas EC

1

and EC
2 such that E�1

1 � fx j EC
1 (x)g and E�2

2 � fx j EC
2 (x)g. Hence,

En �
�
z j (z = Rhx1; x2i) ^ EC

1 (x1) ^ EC
2 (x2)

	

6. En = �
E
� . Since E� has n � 1 operators, by the induction hypothe-

sis, there is a safe DC formula EC such that E� � fx j EC(x)g. Now,

depending on the form of
, one of the following two cases may arise:

(a)
 = P�c. En � fx j xfzjEC(z)g � P�cg
(b)
 = P1�P2. En �

n
x j
�
xfyjE

C(y)g � P1

�
�
�
xfzjE

C(z)g � P2

�o

The proof follows by strong induction on n.

Calculus to Algebra We now show that for every safe DC query, there is an

equivalent DA expression. To prove this, we make use of a cannonical form of DC

queries. We de�ne a distinguished query to be a query of the following form:

Q'
D = fzj(z = R0hz1; z2; : : : zki) ^ (z1 = Rx1hx1i) ^ (z2 = Rx2hx2i) ^ : : : ^ (zk = Rxkhxki)

^'(x1; x2; : : : ; xk)g

Chapter 5. Conceptual Design 95

Here all the names Rx0; Rx1 ; : : : Rxk are distinct. The names follow the intuition that

all the variables in the formula are distinguished and can be individually projected

out from the query via a projection. This is, in general, not possible if two free

variables in a formula are of the same type. In the conversion theorem, we are going

to generate algebraic expressions corresponding to distinguished queries, and we use

the following lemma to get our �nal result:

Lemma 1. If Q'
D is the distinguished query corresponding to any SDC formula

'(x1; x2; : : : ; xn), then there exists a DA expression E'
D which is equivalent to Q'

D.

Proof. We present the proof by structural induction on the queries in DC:

� Induction hypothesis. For every safe DC formula with k free variables (k � 1),

of the form '(x1; x2; : : : xk), there is an algebraic expression E'
D � Q'

D, where

Q'
D is the distinguished query corresponding to '(x1; x2; : : : xk).

� Inductive proof. We will describe this proof by structural induction on the

calculus formula.

{ Base case. The base case is given by ' = D(x). We have, E'
D = �R0

(�RxD)

{ Atomic formulas. We consider all three variants of atomic formulas:

1. if ' = D(x), this case is the same as the base case.

2. ' = D � P(x) We have, E'
D = �R0

(�Rx (D � P))
3. ' = ((x)) ^ (x � P(y)). By the induction hypothesis, we have E

D �
Q
D. To avoid confusion, let us assume that the root generic identi�er

of E
D is R0 (i.e., E

D � fzj(z = R0hz1i)^ (z1 = Rxhxi)^ (x)g). Then

we have

E'
D = �RS:R0:Rx;S:Ry

(�S:R0:Rx:P\S:Ry:last(P)(E

D �S (�Ry(E

D �R0:Rx:P))))

{ ' = t�c. Here, t is a path term and is of the form xQ
 �P (recall that this

is an abbreviation of the expression (x)^x �P and Q = zj (z). By the

Chapter 5. Conceptual Design 96

induction hypothesis,we have E
D � Q

D. Hence,

E'
D = �R:Rx:P�cE

D

{ ' = t1�t2. Here, t1 = x
Q
 1
1

1 � P1 and t2 = x
Q
 2
2

2 � P2. By the induction

hypothesis, we have the expressions

E 1
D � fzj(z = R1hz1i) ^ (z1 = Rx1hx1i) ^ 1(x1)g

E 2
D � fzj(z = R2hz1i) ^ (z1 = Rx2hx2i) ^ 2(x2)g

Hence,

E'
D = fzj(z = R0hz1; z2i) ^ (z1 = Rx1hx1i) ^ (z2 = Rx2hx2i) ^ t1�t2g

= �R0

S:R1:Rx1 ;S:R2:Rx2

�
�S:R1:Rx1 :P1�S:R2:Rx2 :P2

�
QE
1 �S Q

E
2

��

{ ' = 1(x1; x2; : : : xm)_ 2(x1; x2; : : : xm). By the induction hypothesis, we

have

E 1
D � fzj(z = R0hz1; z2; : : : ; zm) ^ (z1 = Rx1hx1i) ^ (z2 = Rx2hx2i) ^

: : : ^ (zk = Rxkhxki) ^ 1(x1; x2; : : : ; xk)g
E 2
D � fzj(z = R0hz1; z2; : : : ; zm) ^ (z1 = Rx1hx1i) ^ (z2 = Rx2hx2i) ^

: : : ^ (zk = Rxkhxki) ^ 2(x1; x2; : : : ; xk)g

Notice that we have assumed that both the above expressions are rooted

at R0 to simplify matters. If they are not rooted at the same GI, we can

always make them rooted at the same GI using a projection followed by

an add-root operation. Hence,

E'
D = E 1

D [E 2
D

Chapter 5. Conceptual Design 97

{ ' = 1(x1; x2; : : : xm) ^ : 2(x1; x2; : : : xm). By the induction hypothesis,

we have E 1
D and E 2

D as in the previous case. So,

E'
D = E 1

D � E 2
D

{ ' = 1(x1; x2; : : : xm) ^ 2(y1; y2; : : : yn). In this case, notice that 1 and

 2 do not have the same free variables. They may have overlapping or

completely exclusive variable sets. To construct the equivalent algebraic

expression, it is necessary to create expressions in which the corresponding

documents for variables are properly matched and aligned. This is usually

accomplished by performing a series of product operations in the proper

order of the variables. Consider the following cases:

1. If 1 and 2 have the same set of free variables, the transformation is

easy. From the induction hypothesis, we know that we have expres-

sions E 1
D and E 2

D corresponding to these formulas. Furthermore, we

can also assume that they are of the same type, since they have the

same variables, and if they have di�erent types, we can make them the

same type using � and �. Hence, we can now write: 'E � E1 \ E2 .
2. If 1 and 2 have overlapping set of variables, the construction needs

to be performed in several steps. A general mathematical expression

for these steps is overly complex. We take one example to show how

in general this is done. Suppose '(x; y; z) = 1(x; z) ^ 2(y; z). The
following stages are necessary in the construction of E'

D:

(a) Using the induction hypothesis. By the induction hypothesis, we

have the following:

E 1
D � fuj(u = R1hu1; u2i) ^ (u1 = Rxhxi) ^ (u2 = Rzhzi) ^ 1(x; z)g

E 2
D � fvj(v = R2hv1; v2i) ^ (v1 = Ryhyi) ^ (v2 = Rzhzi) ^ 2(y; z)g

(b) Padding and Reorganizing. In this stage, each of the component

expressions need to be padded to include all the variables in the

Chapter 5. Conceptual Design 98

�nal expression, and the variables need to be reorganized so that

they have the same order in all the components, in the following

way:

E1 = �RR0:R1:Rx;R0:Ry;R0:R1:Rz

�
E 1
D �R0

�
E 2
D �R2:Ry

��

E2 = �RR0:Rx;R0:R2:Ry;R0:R2:Rz

�
E 2
D �R0

�
E 1
D �R1:Rx

��

(c) Final intersection. Now the expressions have the same type and

all the components are organized in the same way. So, we can

perform an intersection to obtain E'
D = E1 \ E2

{ '(y1; y2; : : : yn) = 9x (x; y1; y2; : : : yn). From the induction hypothesis, we

have

E
D � fzj(z = R0hz0; z1; z2; : : : zni) ^ (z0 = Rxhxi) ^ (z1 = Ry1hy1i) ^

(z2 = Ry2hy2i) : : : (zn = Rynhyni) ^ (x; y1; y2; : : : ; yn)g

Hence, we can write:

E'
D = �RR0:Ry1 ;R0:Ry2 ;���;R0:Ryn

E
D

Lemma 2. An algebraic expression equivalent to a distinguished query can be

converted to an algebraic expression that is equivalent to the corresponding non-

distinguished query fzj(z = Rhx1; x2; : : : ; xki) ^ '(x1; x2; : : : ; xk)g
Proof. The proof is simple. Since all the variables are distinguished by distinct

non-terminal symbols, we only need a projection for each variable. So, if the DA

expression equivalent to the non-distinguished version of the query is denoted by E'

and the distinguished version is denoted by E'
D, we have:

E' � �RR0:Rx1 :�1;R0:Rx2 :�2;���;R0:Rxk :�k
E'
D

Chapter 5. Conceptual Design 99

where �1; �2; : : : ; �k are the types of the corresponding variables x1; x2; : : : ; xk.

Lemma 3. If '(x1; x2; : : : ; xn) is an SDC formula, then there exists a DA expression

E' such that E' = fxjx = Rhx1; x2; : : : ; xni ^ '(x1; x2; : : : ; xn)g
Proof. The proof can be presented in three stages:

1. Given the formula '(x1; x2; : : : ; xn), we can construct a distinguished DC query

Q'
D corresponding to it, as shown in the construction of distinguished queries.

2. Using Lemma 1 we can show that there is an algebraic expression E'
D which is

equivalent to Q'
D.

3. Using Lemma 2, we then show that we can obtain E' from E'
D.

This completes the proof.

Theorem If Q = fx� j'(x�)g is a safe document calculus query, then there exists a

document algebra expression EQ is equivalent to Q.

Proof. The proof essentially follows from Lemma 3, noticing that ' has one

single free variable, so E' � fzj(z = Rhxi) ^ '(x)g from Lemma 3.

Hence, EQ = E' �R:� .

5.1.3.2 Safety Properties

We intend to show here that the algebraic language as well as the safe document

calculus language are safe (i.e., they map �nite sets of documents to �nite sets of

documents). Since it is proved that the two languages are semantically equivalent,

it su�ces to prove the safety using only one of the two variants. As pointed out

earlier, because of the procedural nature of the DA operations, safety and complexity

properties are easier to analyze using the algebraic language. In this section, we

demonstrate the safety of the language, and in the next section, we will discuss the

complexity of the language.

Chapter 5. Conceptual Design 100

Theorem The DA language is safe (i.e., it maps �nite sets of documents into �nite

sets of documents).

Proof. The proof is by structural induction on the DA operations:

� Induction Hypothesis. Given there are only a �nite number of documents in the

database, a DA expression E� with type � will only return a �nite number of

documents as the result.

� Base case. The base case is provided by the expression D. The proof fol-

lows from the assumption, since there are only a �nite number of documents

corresponding to D.

� Induction step. We denote the number of documents returned by a DA expres-

sion En by jEnj, and consider all possible cases for building En using only the

primitive algebraic operators:

1. En = E� � P. By the induction hypothesis, jE� j is �nite. Since each of

the documents in E� is of �nite size, the operation � only returns nodes

in the document structure, in the worst case, jEnj = jE� j �m, where m is

the maximum number of nodes among the documents returned by E� .

2. En = E�1
1 [R E�2

2 . By the induction hypothesis, jE�1
1 j and jE�2

2 j are �nite.
Since the operation is essentially a union operation, we have in the worst

case jEnj = jE�1
1 j+ jE�2

2 j, which is �nite.

3. En = E�
1 \ E�

2 . By the induction hypothesis, jE�
1 j and jE�

2 j are �nite. So
in the worst case, jEnj = max(jE�

1 j; jE�
2 j), a �nite number.

4. En = E�
1 �E�

2 . Since this is a regular set di�erence operation, in the worst

case, jEnj = jE�
1 j, which is �nite by the induction hypothesis.

5. En = E�1
1 �R E

�2
2 . By the induction hypothesis, jE�1

1 j and jE�2
2 j are �nite.

Hence, jEnj = jE�1
1 j � jE�2

2 j, a �nite number.
6. En = �
E

� . By the induction hypothesis, we have we know that jE� j is
�nite. Since the selection operation returns a subset of the input, we have

jEnj � jE� j, and hence, is �nite, regardless of the structure of
.

Chapter 5. Conceptual Design 101

In the above, we show that for every way of constructing a DA expression, if the

constituent expressions are �nite, the resulting size of the expression is �nite. Hence,

by structural induction, DA is safe.

5.1.3.3 Complexity properties

The query language described above is a simple yet powerful language for hierarchical

document structures. One important property of this language that we describe here

is that the language is in PTIME. In other words, all operations in the language can

be performed by algorithms in time proportional to a polynomial of the size of the

input. In this section, we prove this statement. Since we have shown above that

the document calculus language is semantically equivalent to the document algebra

language, it is su�cient to show that the operations allowed in the algebra are within

PTIME. Here, we �rst de�ne the notion of the input size in our model and then show

that it is possible to compute all algebraic operations in PTIME.

Input Size In our model for document databases, we treat a database as a set of

documents conforming to a given DTD. We further note that every document has only

a �nite size (i.e., has a �nite number of nodes in its structure). Suppose the number

of documents in a database is n, and the document with the maximum number of

nodes in it has m nodes. Then the product m � n gives us an approximate size

of the database. Notice that there are some expressions that increase the number of

nodes of the documents, but since the increase is always linear and there is no looping

mechanism, the complexity is restricted to a polynomial on the number of nodes of

the initial trees.

Theorem. Given a DA expression E on databaseD with sizem�n (as above), there
is an algorithm AE that can evaluate E in O(f(m;n)) time, where f is a polynomial

function with parameters m and n.

Proof. We prove this by strong induction on the number of operators of E, as

follows:

Chapter 5. Conceptual Design 102

� Induction hypothesis. Given an algebraic expression E with k operators (k > 0),

there is an algorithm AE that can evaluate E using at most f(m;n) operations,

where f is a polynomial function. The possible operations here are (i) traversal

based on node label (gi) and (ii) comparison of the leaf with a query value.

Both operations are considered atomic and are assumed to take constant time.

� Base case. The base case is trivial. Here E = D (number of operators = 0),

and D can be evaluated in constant time.

� Induction. We consider all the possible algebraic operators discussed above and

describe algorithms that can evaluate the expression. (Note that the algorithms

here are essentially brute-force algorithms, and no claim on e�ciency is being

made at this time.)

1. En = E � P. Consider the following algorithm:

{ Let the number of trees in E be nE.

{ For each GI in the path expression P, perform breadth-�rst search on

each of the nE trees to select trees rooted at that particular gi, append

any new matched node to a temporary list of trees, and after all the

original trees have been considered, replace original list by the created

temporary list. Continue this for every GI in P.
If the number of GIs in the path is p, then the maximum number of

traversal operations is given by:

m� nE +m� (m� nE) + : : :| {z }
k times

= m�f 0(m;n)�(1+m+m2+ : : :+mk�1) = fpoly(m;n)

where nE = f 0(m;n) is a polynomial in m;n by the induction hypothesis.

2. En = E�1
1 [R E�2

2 . This is trivial. By the induction hypothesis, we have

E1 and E2 can be computed in polynomial operations. Suppose E1 and

E2 return nE1
and nE2

trees respectively, and also suppose the maximum

number of nodes in these trees is m. A simple algorithm to compute the

union will start with one set, and for every element of the second set, check

Chapter 5. Conceptual Design 103

if the element is already in the result, including it if not. This step requires

comparison of two trees, and since exact matches are only considered, the

number of string comparison operations required is the minimum of the

nodes in the two trees (m in the worst case). The number of operations is

O(nE1
�nE2

�m), a polynomial from induction hypothesis. Note that this

is not necessarily the most e�cient way of performing this operation, but

it is su�cient to show that the operation has a polynomial complexity.

3. En = E�
1 � E�

2 . Computation of this operation is also trivial and similar

to the above, with the number of operations being O(nE1
� nE2

� m),

which is a polynomial (since by the induction hypothesis nEn and nE2
are

polynomials on the size of the input).

4. En = E�
1 \ E�

2 . Computation of intersection is also trivial and has the

same complexity as the above.

5. En = E�1
1 �R E

�2
2 . Once again, this operation can be computed by two

loops, one each for the two operands. Thus, the number of operations is

O(nE1
�nE2

�m), which is a polynomial (since by the induction hypothesis

nEn and nE2
are polynomials on the size of the input).

6. En = �
E
� . We need to consider the following two cases, based on the

form of
:

(a)
 = P�c. Suppose the expression E� has nE results. Consider the

following algorithm:

{ For each of the trees e� 2 E� , compute e� � P using the method

described above.

{ Compute the set membership of c on each of the results in the

previous step.

{ Select the e� which returns non-zero members.

Once again, the number of traversal operations in the �rst step is poly-

nomial from before. Since c is a constant, the number of comparisons

in the second as well as the third step is linear. Hence the total time

is also polynomial.

Chapter 5. Conceptual Design 104

(b)
 = P1�P2. This is essentially the same as the previous method,

the only di�erence being that, in the �rst step, both the operands

need to be evaluated, while in the second step, the operation is a

set intersection instead of membership. The combination is still a

polynomial operation.

Hence, the proof follows by induction.

5.2 Practical Query Languages

5.2.1 DSQL - An SQL-like Language

This section describes DSQL (Document SQL)3, an extended version of SQL which

is a user-friendly pseudo-natural language form of DC. An informal introduction and

examples of this SQL can be found in [Sen96]. The primary motivations behind

having such a language is to provide users of database systems with a simple means

for expressing queries using a natural language form. Also, since SQL is widely

accepted as a standard query language for relational databases, it was a natural

choice as a document database query language. DSQL is designed as an extension to

the standard SQL-86 [SQL86b]. Conceptually DSQL supports SGML documents as

the objects for constructing queries. From the language point of view, however, there

are only two major di�erences from the standard SQL, which are the following:

1. Path Expressions. Path expressions are handled in the same way they are

handled in the formal languages. To use path expressions, two main changes

are made to SQL. The standard \." operator used commonly in SQL to denote

relation attributes can now be cascaded to express listed paths. In addition,

a \.." operator is introduced, which is used to construct an abbreviated path

from a listed path.

3Note that DSQL (or Document SQL) is di�erent from SDQL (Standard Document Query Lan-
guage, which is a part of the ISO 10179 DSSSL (Document Style Semantics and Speci�cation Lan-
guage) standard [ISO94].

Chapter 5. Conceptual Design 105

2. Complex selections. Standard SQL deals with
at tables as primary objects, and

hence speci�es the output as a number of columns that constitute the output

table. In DSQL, the primary objects on which queries are built are documents.

To ensure closure, output of queries is also speci�ed using document formulation

constructs. To accommodate this feature, the select clause allows the creation

of composite document types from constituent components. This is similar to

the tuple construction operation in DC, using which, new types are created.

In this section, we present a subset of the complete DSQL language that we call

core DSQL. This subset contains the core SELECT - FROM - WHERE construct of the

language without any aggregate functions and nested queries. This core language is

used primarily to demonstrate the power of the proposed extensions to SQL. The

grammar for the complete language is given in Appendix A.

5.2.1.1 The Core DSQL

The core DSQL includes the basic SELECT - FROM - WHERE construct of SQL, with-

out any aggregate functions and nesting. In addition, the core language does not

include any grouping or ordering mechanism. In order to reduce the size of the

grammar, we remove any implicit operator precedence in the logical operations. In

addition, we only consider comparison predicates as in the formal language, but re-

strict the comparison operator to the 3 operator as described earlier. To simplify the

presentation, we represent the 3 operator with the simple equality symbol = (i.e.,

the expression A = c checks if the constant c is in the set returned by A).

The core DSQL syntax is presented below in a BNF form:

query-exp ::= SELECT output qry-body

output ::= outputname(target)

target ::= scalar-exp-list j �

scalar-exp-list ::= scalar-exp [; scalar-exp]�

qry-body ::= from-clause [where-clause]

from-clause ::= FROM db-list

db-list ::= db [; db]�

Chapter 5. Conceptual Design 106

db ::= path-exp [alias]

where-clause ::= WHERE search-cond

search-cond ::= [NOT] search-cond j search-cond AND search-cond

j search-cond OR search-cond j bool-term

bool-term ::= comp-pred j (search-cond)

comp-pred ::= scalar-exp = fsalar-exp

scalar-exp ::= atom j col

col-list ::= col [; col]�

col ::= path-exp

path-exp ::= path-list [::path-list]�

path-list ::= gi [:gi]�

The above BNF captures the complete syntax of the core DSQL language. The basic

idea is the same as the calculus language presented earlier, quanti�cations are the

only missing operations from the calculus presented earlier. The complete language

presented in Appendix A includes all the advanced features of SQL. The primary

motivation for a core subset of the language is to identify the most critical features of

the language and provide methods for implementation of such features. In Chapter 6,

we show how this language is implemented using available systems and languages.

The core DSQL is the most important starting point in the design of a practical

document query language. The most important aspect of this language is that it

provides a link to the theoretical foundations introduced earlier in this chapter and

allows extensions to the language to be implemented on top of the core component

with a known expressive power. We show here that any DSQL query can be expressed

using an equivalent DC query.

Theorem Any core DSQL query is equivalent to some DC query.

Proof. We prove this by taking a core DSQL query and showing how the same

query is equivalent to a DC query. A completely general query is di�cult to formulate,

Chapter 5. Conceptual Design 107

so we take a query representing all the features of the core DSQL:

SELECT R(D:Po0; A1:Po1; A2:Po2 : : : ; A3:Pok)

FROM D;D:Pa1 A1; D:Pa2 A2; : : :D:PakAk

WHERE D:Pj1 = D:Pj2

AND A1:Pc1 = a1

OR A2:Pc2 = a2

AND NOT Ak:Pck = ak

The above query is not fully general, but it includes most of the prominent features

of the core DSQL. In the above, Poi represents output path expressions, Ai represents

aliases, and ai represents constants. This query is essentially a rewritten version of

the following DC query:

QDC = fzjz = Rhz0; z1; : : : zki ^
D:Pa1(A1) ^D:Pa2(A2) ^ : : : ^D:Pak(Ak) ^
D:Po0(z0) ^ A1:Po1(z1) ^ A2:Po2(z2) : : : ; A3:Pok(zk) ^
D:Pj1 = D:Pj2 ^ A1:Pc1 = a1 _ A2:Pc2 = a2 ^ :(Ak:Pck = ak)g

The equivalent expressions for any core DSQL query can be constructed in a similar

manner.

5.2.1.2 Examples

Consider the same queries described earlier (Section 5.1.1.4), using the same database

schema as before. The following are the same queries in DSQL. All the queries cannot

be solved using the core DSQL, so we use the full DSQL language. Notice that these

queries are almost direct translations from the calculus queries shown in Section

5.1.1.4.

1. Find all poems that contain the word \love" in the poem title.

Chapter 5. Conceptual Design 108

SELECT poem

FROM poem

WHERE poem..title = "love"

2. Extract titles and authors of all poems in the database.

SELECT R(poem..title, poem..poet)

FROM poem

3. Find the period in which all poems had the word \love" in their titles.

SELECT X

FROM poem..period X

WHERE NOT EXISTS (

SELECT * FROM poem Y

WHERE Y..period = X

AND NOT (Y..title = "love"))

4. Find the pairs of names for poets who have at least one common poem title.

SELECT R(P1..poet,P2..poet)

FROM poem P1, poem P2

WHERE P1..title = P2..title

AND P1..poet <> P2..poet

5. Find the poems that do not have the word \love" in the title.

SELECT poem

FROM poem

WHERE NOT (poem..title = "love")

Chapter 5. Conceptual Design 109

5.2.2 SQL in the SGML Context

During the discussion on the closure requirements in Chapter 4, we observed two main

types of closure. Closure in the context of query languages primarily involves the

input and output of queries. To achieve closure, query languages need to provide the

result of queries in the same conceptual form as the inputs. In the relational model,

relational query languages (such as relational algebra and calculus) use relations as

the input and describe an output relation containing the result of the query. However,

we also mentionedQBE , a query language that uses relational skeletons to specify

queries. In this language, in addition to the inputs and outputs, the query language

itself is \closed" under the notion of tabular representations. This stronger notion of

closure can be easily achieved in a document database context by using SGML itself

as a query language.

In Chapter 2, we described SGML as a meta-language, which can de�ne languages

which, in turn, de�ne valid document instances. Thus, SGML can be conveniently

used to de�ne a query language. The DSQL syntax described in the previous section

can be translated into an SGML DTD which can be used to write valid queries. There

are a few distinct advantages of using SGML as a query language:

� First and foremost, this query language retains the properties of both SQL and

SGML. Being an application of SGML, this language is inherently portable and

is independent of the underlying system and platform. On the other hand, since

it is equivalent to DSQL, the DSQL DTD de�nes a �rst order, low complexity

query language.

� Since queries are in SGML, which is the same data format as the database itself,

the queries can be stored and managed in the same way as the data itself. This

immediately implies some interesting possibilities:

{ Queries can be stored as data and, subsequently, can be queried themselves

to extract information that will be very suitable in applications such as

data mining and performance tuning.

{ The capability of storing queries as data allows subsequent treatment of

Chapter 5. Conceptual Design 110

data as queries. This ability is commonly known as \re
ection" in pro-

gramming languages, and gives a language a higher expressive power and

the capability of performing meta-data queries. Many attempts of provid-

ing re
ection support in query languages have been researched [JMG95],

and the use of SGML as a query language for SGML databases provides a

natural way to achieve this property.

� Queries formulated and stored in SGML can easily be converted into any other

query language (including visual query languages) without much e�ort.

� Users posing queries in SGML can do so within their familiar environment of

SGML editors. This capability also ensures that they do not have to learn the

syntactic details of a new language, and a validating editor will ensure that all

the queries are valid DSQL queries.

� SGML queries can be seamlessly integrated within other SGML documents

(possibly using the SUBDOC feature of SGML) for dynamic document content.

Queries embedded in a document can be replaced by the results obtained from

the queries before presenting the �nal document. This is a natural way of

dynamic document content generation for the WWW.

A Document Type De�nition for the SGML implementation of DSQL and de-

scription of all the generic identi�ers is presented in Appendix A.

5.2.2.1 Examples

Consider the same queries described earlier (Section 5.1.1.4), using the same database

schema as before. Here, we present the same queries written in SGML using the SQL

DTD. The queries are completely normalized, so they display all the necessary open

and close tags, and hence have somewhat expanded size. However, in real situations,

these queries will be created using an SGML editor or a translator from the regular

SQL, and most of the tags as shown here will be hidden from the users.

1. Find all poems that contain the word \love" in the poem title.

Chapter 5. Conceptual Design 111

<select>
<output><scalar><col><pathlist><gi>poem</pathlist></col></scalar>
</output>

<from><db><pathlist><gi>poem</pathlist></db></from>
<where><cond><predicat><compare EQUAL>

<scalar><col><pathlist><gi>poem</pathlist>
<pathlist><gi>title</pathlist></col></scalar>

<scalar><atom>"love"</scalar>
</predicat></cond>
</where>
</select>

2. Extract titles and authors of all poems in the database.

<select><output name="R">
<scalar><col><pathlist><gi>poem</pathlist>

<pathlist><gi>title</pathlist></col></scalar>
<scalar><col><pathlist><gi>poem</pathlist>

<pathlist><gi>poet</pathlist></col></scalar>
</output>

<from><db><pathlist><gi>poem</pathlist></db></from>
</select>

3. Find the period in which all poems had the word \love" in their titles.

<select>
<output><scalar><col><pathlist><gi>X</pathlist></col></scalar>
</output>

<from><db alias="X"><pathlist><gi>poem</pathlist>
<pathlist><gi>period</pathlist></db></from>

<where><cond><predicat><exists NOT>
<select>

<output><all></output>
<from><db alias="Y"><pathlist><gi>poem</pathlist></db></from>
<where><cond>

<cond>
<predicat><compare EQUAL>
<scalar><col><pathlist><gi>Y</pathlist>

<pathlist><gi>period</pathlist></col></scalar>
<scalar><col><pathlist><gi>X</pathlist></col></scalar>

</predicat></cond>
<logic AND>
<cond NOT>

<cond>
<predicat><compare EQUAL><scalar><col><pathlist><gi>Y</pathlist>
<pathlist><gi>title</pathlist></col></scalar>
<scalar><atom>"love"</scalar></predicat></cond>

</cond>

Chapter 5. Conceptual Design 112

</cond>
</where>

</select>
</predicat></cond></where></select>

4. Find the pairs of names for poets who have at least one common poem title.

<select>
<output><scalar><col><pathlist><gi>P1</pathlist>

<pathlist><gi>poet</pathlist></col></scalar>
<scalar><col><pathlist><gi>P2</pathlist>

<pathlist><gi>poet</pathlist></col></scalar>
</output>

<from><db alias="P1"><pathlist><gi>poem</pathlist>
</db><db alias="P2"><pathlist><gi>poem</pathlist></db></from>

<where><cond><cond><predicat><compare EQUAL>
<scalar><col><pathlist><gi>P1</pathlist>

<pathlist><gi>title</pathlist></col></scalar>
<scalar><col><pathlist><gi>P2</pathlist>

<pathlist><gi>title</pathlist></col></scalar>
</predicat></cond>

<logic AND>
<cond NOT><cond><predicat><compare EQUAL>

<scalar><col><pathlist><gi>P1</pathlist>
<pathlist><gi>poet</pathlist></col></scalar>

<scalar><col><pathlist><gi>P2</pathlist>
<pathlist><gi>poet</pathlist></col></scalar></predicat></cond>

</cond></cond>
</where></select>

5. Find the poems that do not have the word \love" in the title.

<select>
<output><scalar><col><pathlist><gi>poem</pathlist>

</col></scalar></output>
<from><db><pathlist><gi>poem</pathlist></db></from>
<where>
<cond NOT><cond><predicat><compare EQUAL>

<scalar><col><pathlist><gi>poem</pathlist>
<pathlist><gi>title</pathlist></col></scalar>

<scalar><atom>"love"</scalar></predicat></cond>
</cond>

</where></select>

Chapter 6

Implementation

This chapter describes the architecture as well as the actual implementation of all

the components of the proof-of-concept prototype of a document database system,

which we call DocBase. DocBase has a client-server architecture. The server-side

applications and command-line client applications are Unix-based, but the query

interface clients are web-based and, hence, platform-independent. In this chapter, we

�rst introduce the platforms, supporting applications and languages that were used

to develop this prototype. We then describe the architecture and the physical data

representation used in the implementation of DocBase. We then describe the query

engine architecture and how queries from the user are processed. The implementation

of the web client interface is described in Chapter 7 as part of the user interface

development.

6.1 Languages, Platforms and Tools

C++ was the primary programming language used for the implementation of the

command-line and backend clients. The JavaTM programming language was used

for implementing the web-based query interface client. One important consideration

behind the use of object-oriented languages was that they ensure easy extensibility

using inheritance and overloading. Program components speci�c to particular plat-

forms were kept limited to subclasses of the platform-independent generic superclasses

implemented as virtual classes in C++. This type of design assures a simple design

through use of features of existing applications. In the prototype implementation, we

used external applications for storage management and index building.

The prototype system was designed to run on Unix. In particular, the storage

113

Chapter 6. Implementation 114

management server and SGML index management servers were Unix-based applica-

tions. Hence, all the storage and retrieval functions were limited to Unix platforms.

We used a SUN Sparc-5 system as a test server for the prototype application.

The query interface client developed in Java was, however, platform-independent

because of the availability of Java virtual machines on most platforms. The appli-

cation was developed on a Unix workstation but tested on all the platforms that

support Java, and it was found to work satisfactorily. More details on the design and

implementation of this Java interface are given in Chapter 7.

The primary supporting applications in the prototype were storage management

and index management applications. The function of the storage manager was to store

the special indices and catalogs, and the function of the index management module

was to create special indices on the SGML documents and to facilitate navigation of

the hierarchical document structure using these indices. Query processing capabilities

were built into clients of the storage management system. Figure 13 shows exactly

where these applications are used in the architecture of DocBase. Details on these

applications are presented next.

6.1.1 Storage Management Applications

The Exodus storage manager [CDF+86] was the primary storage management server

used in this prototype. Exodus is a storage manager developed at the University of

Wisconsin which is frequently used in the management of extremely large volumes

of data. Exodus allows low-level handling of its data using a native Application

Programming Interface (API) that can be used in an application to manipulate the

stored object in the storage manager.

Exodus has a client-server architecture. Exodus clients are applications that use

pre-de�ned procedures from a client-library provided by Exodus. These client library

procedures are used to establish a connection with the server and to initiate storage

and retrieval tasks.

Exodus provides three primary kinds of services to its clients:

Chapter 6. Implementation 115

Catalog

Query

Results

Information
Index

Query Engine

Query
Optimizer

Translator
Query Parser/

FROM Book B
WHERE B..section.footnote = "SGML"

Q
uery

P
rocessing

Index Manager

Interface
Query/View

Exodus Pat

SGML Documents

USER/VIEW LAYER

QUERY PROCESSING
LAYER

MANAGEMENT
LAYER

STORAGE/INDEX

SELECT B..TitleUser

Query

Query

Storage Manager

Procedural

Optimized

Index structures

Query

Figure 13: The architecture of DocBase

Chapter 6. Implementation 116

� Storage Management. Storage management services include storage abstrac-

tions and procedures to manipulate these abstractions. The basic storage ab-

straction in Exodus is an object of any arbitrary size. Objects are stored in

pages of �xed sizes. Exodus is capable of building linear hash and B-tree in-

dices on the objects based on a key in order to speed up the retrieval process.

Storage management objects are persistent (i.e., the objects are preserved in

secondary storage even after the client terminates).

� Bu�er Management. Bu�er management services include the process of e�-

ciently using the available main memory to store data temporarily to speed

up the read and write operations. Bu�ers are volatile objects (i.e., they are

not saved in secondary storage unless their contents are explicitly saved by the

client). Clients can have local bu�ers that are in the clients' memory space

and are removed when a client terminates. Clients can also utilize server-side

bu�ers that are in the server's memory space and are only removed when the

server terminates.

� Transaction Management. Transaction management involves controlling con-

current access to the stored data for read and write operations, as well as

recovery of stored data in the case of an abnormal server shutdown. Clients

need to initiate transactions and commit the transactions when the operations

are completed. The server keeps a log of these transactions and uses the log to

recover from any unexpected failure.

Later in this chapter, we will discuss in detail the types of objects used in this

prototype. The primary objects stored by clients in the prototype are simple data-

o�set pairs and derivatives of such objects. Exodus was chosen in this prototype

for its ready availability and its
exibility on the types of objects it can handle as

well as its capability of providing built-in index structures. However, the storage

management features can be performed easily by any system that is able to store and

retrieve simple binary records. For example, a relational database system can be used

Chapter 6. Implementation 117

to store and retrieve the storage objects1.

6.1.2 Index Management Applications

The primary index management application used in this prototype is the Pat system

from Open Text [Ope94]. Pat was developed at the University of Waterloo as a

full-text searching and indexing system for text repositories. Pat uses the Patricia

tree structure (discussed in Chapter 3) for its internal index representation. Pat has

a client-server architecture, although unlike normal client-server systems, the Pat

server does not run continuously waiting for connections from clients. Clients using

the Pat API typically invoke Pat in a \quiet mode" as a child process and redirect the

input/output operations from Pat using Unix pipes. Inputs sent to Pat use the query

language provided by Pat (discussed below), and the outputs from Pat use a tagged

format that can be parsed either by the client code or with the \SINSI" application

programming interface provided as part of the Pat distribution.

Data is added to a Pat database using an indexing process. Pat does not have

its own storage management features. Documents indexed by Pat are left in the

secondary storage as standard �les. Pat only creates special index �les that can be

used to speed up the search process. Two primary types of index structures are

created by Pat when used on a document repository structured by SGML. The �rst

index structure, called the \main index" or the \word index", is based on the Patricia

tree structure [BYG89]. A short description of this structure is given in Chapter 2.

The second structure, called the region index, is a similar structure created using only

the meta-data information contained in the SGML tags in the document.

The Pat query language. Pat provides a query language that re
ects the capabil-

ities of the Patricia tree structure [BYG89, GBY91] (the basic building block of Pat

indices) and allows e�cient computation of various kinds of searches, most common

among them being pre�x searches. Every operation in the Pat query language returns

a set of o�sets (positions in the documents) where a match is found. Queries in this

1In fact, an alternative implementation of the storage management module was built using the
Sybase relational database management system. This storage manager was used primarily for the
purpose of testing the primary storage manager.

Chapter 6. Implementation 118

language can return the o�sets of either the data that match the query or the regions

(meta-data) within which the match is obtained. The types of Pat query language

operations that were used most frequently in this implementation are the following:

� Pre�x search. A string enclosed within double quotation marks constitutes

a pre�x search and returns document positions where strings with the given

pre�x are located. For a small search string, the complexity of this operation

(measured by the number of traversal operations on the index structure) is

proportional to the length of only the input string (see Chapter 3 for a discussion

on pre�x searches with Patricia trees).

� Bounded pre�x search. A query of the form \region A including "string""

returns document positions rooted at the GI \A" that contain the pre�x \string."

The implementation of this query in Pat involves a search for the region \A" in

the region index and a search for the pre�x \string" in the word index, followed

by an inclusion test. The �rst two operations are linear in complexity to the

search strings (using pre�x search algorithm on Patricia trees). The intersection

can be performed by scanning both sets and selecting common elements, with a

complexity linear to the number of elements in each set. This linear complexity

is possible since Pat index operations always return results sorted by the o�sets,

because of the left-to-right storage and retrieval method in Patricia trees. How-

ever, because of the proprietary nature of the data structures and operations

implemented in the commercial Pat software, it is not known whether Pat uses

this exact strategy.

� Traversal to ancestor nodes. A query of the form \region A including region

B" returns document positions rooted at the GI \A" that include document po-

sitions rooted at the GI \B" and, in e�ect, returns the ancestors of \B" with

label \A." This operation involves selection of elements from the second set

which are included within the bounds of some element of the �rst set, and can

be performed using a linear scan operation. The complexity, as before is linear

in the size of the individual components (i.e., the number of elements of \region

A" and the number of elements in \region B").

Chapter 6. Implementation 119

� Traversal to descendant nodes. A query of the form \region B within region

A" returns document positions rooted at the GI \B" that fall within document

components rooted at the GI \A". This operation can also be computed in

linear time using a scan operation on the two sets.

� Set union. A query of the form \Q1 + Q2" returns a set union of the results

of the two queries Q1 and Q2. Since in Pat, the results are always ordered in

terms of the o�set, the actual union operation only has linear complexity.

� Set intersection. A query of the form \Q1 ^Q2" returns a set intersection of Q1

and Q2, and has a linear complexity on the size of the sets, using a linear scan

and merge operation to combine the two sets.

6.2 An Architectural Overview of DocBase

The architecture of DocBase closely follows the tri-level design of database systems

described in Chapter 5. In this architecture, there are three distinct layers: (i) a top

layer involving interaction with the user, (ii) a middle layer involving query parsing,

translation and optimization, and (iii) a bottom layer involving actual processing of

the query using a storage manager and an index manager (see Figure 13).

Figure 13 presents an overall view of the DocBase system and the life-cycle of

a query during its processing. Details on each of the components will be presented

later in this chapter. The rest of this section describes the distribution of the data

and indices as well as the typical data
ow process for evaluation of a query.

6.2.1 Data Distribution

In this section, we describe the distribution of the data in the prototype among the

applications that process the data. In particular, we consider the data (in the form of

SGML documents and document type de�nitions), the index structures and the meta-

data or catalog information. In the current implementation of DocBase, a structured

document database is physically viewed as a collection of SGML documents, each

Chapter 6. Implementation 120

document (or possibly a set of interlinked documents) conforming to a valid SGML

document type de�nition (DTD). There could be multiple DTDs, but every document

must conform to one of these DTDs. All of these documents are stored as standard

text �les in the �le system. In addition to the documents, special structures for

the purpose of indexing and searching are also stored. In this section, we present

the details on how the data (SGML documents), indices, and catalogs are physically

stored in DocBase.

Data. In the current prototype, the data is stored in the form of SGML docu-

ments in a �le system. While not an ideal method for a database representation, this

was necessary to allow the use of Pat for the index creation process. For this proto-

type, advanced storage management issues such as concurrency control and recovery

of documents were not considered. In addition, in order to keep a correspondence be-

tween the documents and their physical storage, documents conforming to the same

DTD were stored in the same distinct directory of the �le system.

However, this distribution is not crucial for the functionality of the system. The

current implementation of DocBase only has support for the core DSQL language

including simple selections and joins, and hence the input SGML data is never mod-

i�ed by a query. The SGML documents are only accessed by Pat and its indexing

applications (see Figure 13).

Indices. Two types of indices were used for processing queries. Indices of the

�rst type are created by the Pat indexing applications. Indices of the second type are

created to speed up queries that cannot be processed using the Pat query language

described earlier in this chapter (Section 6.1.2). As shown in Figure 13, the Pat-

speci�c index structures are accessed and modi�ed by Pat, and the auxiliary index

structures are managed by the storage manager.

1. Pat Indices. In order to support the operations provided by the Pat query

language, a Pat application needs to create some speci�c indices based on the

input documents. The Pat indices are special binary �les in a Unix �le system.

Pat indices of many types were created and used in this prototype: (i) word

indices to speed up the search for words or phrases in the database (�les with

an extension of .ind), (ii) region indices for searching for keywords delimited

Chapter 6. Implementation 121

by SGML elements (�les with an extension of .rgn), and (iii) fast �nd indices -

a special auxiliary index structure supported by Pat for databases spread over

multiple �les in a �le system (�les with an extension of .ffi). Because of the

proprietary commercial nature of Pat, the internal formats of these indices were

not available. However, it was known that both the word and region indices use

the Patricia tree structure discussed earlier (Section 3.2.2.1).

2. Join Indices. In addition to the Pat indices, auxiliary index structures were

created for the processing of queries not supported by Pat (typically the queries

involving joins). The auxiliary indices developed for the purpose of processing

queries involving joins were created and maintained using the Exodus storage

manager. These auxiliary indices can be speci�cally built or can be dynamically

created when necessary. These join indices are created by �rst using a Pat query

to extract the proper o�sets, and then indexing the result obtained from the

query. Details on these index structures are given later in this chapter.

Catalog. Pat keeps track of the indices it creates in a data description �le using a

tagged format. This �le (known as the data description �le, with an extension of .dd)

is also stored in the �le system as a regular text �le. The information contained in this

�le is primarily for use by Pat in processing its queries. The current implementation

of DocBase also creates a detailed catalog of objects in the database, including a

binary representation of the document structure and a list of the di�erent types of

objects (e.g., SGML documents, DTDs, stored queries, auxiliary join indices and

temporary structures). More details on these structures will be provided later in this

chapter. As shown in Figure 13, the storage manager has full control over this catalog

information.

6.2.2 The Life Cycle of a Query

This section describes the process by which a query is formulated, processed and

evaluated in the current implementation of DocBase. Note that this section only

describes the
ow of the query as shown in Figure 13. The details on the operations

and associated algorithms will be presented later.

Chapter 6. Implementation 122

A query is usually formulated by the user by using either (i) a command-line inter-

face to directly specify the query in DSQL, or (ii) a graphical user interface to express

the query using a simple visual template. Details on the design and implementation

of the visual interface are described in Chapter 7.

Queries from the user interface are processed by a parser. In addition to deter-

mining the validity of the query, the parser also translates the query into a list of

individual operations (or query fragments).

The query components generated by the parser are optimized by a query optimizer

and evaluated by the query engine. Currently the query optimizer is used primarily

to determine the nature of each of the query fragments and to determine an access

plan for processing each fragment. Based on the type of query fragment, the target

element of the query fragment when it is evaluated, and the current state of the

computed result, one of three possible decisions is made:

� Evaluate later. The query fragment can be easily processed by Pat, and the

current state of the query allows it to be evaluated using the Pat query language.

In this case, the optimizer simply generates the query in the Pat query language

and stores the current result of computation as the query itself.

� Evaluate now. The query can be evaluated by Pat but cannot be further pro-

cessed using Pat itself. In this case, the appropriate query is constructed and

sent to the Pat server for evaluation. The result is left in Pat's storage space.

� Store now. The current state of the query and the new query fragment cannot

be combined using Pat operations. This is usually the case for join queries.

In this case, the results are extracted from Pat and indexed in the storage

manager, while the rest of the computation continues in the storage manager

or, if possible, the result is written back to Pat's storage space for use with

subsequent query fragments.

The primary function of the query engine is to evaluate the query components gen-

erated by the parser using one or more of the methods described above. For the most

part, the query operations are translated to corresponding index operations using the

Chapter 6. Implementation 123

Pat query language. The results of these operations are stored as Pat queries, but the

actual evaluation of the queries is delayed as much as possible. Joins are given special

attention since they cannot be performed using the Pat index operations. When a

join is detected, the query is processed in the following steps: (i) identifying the two

components of the join operation, (ii) evaluating the components separately using Pat

indices, (iii) dynamically creating storage manager indices based on the intermediate

results (if such an index does not already exist), and �nally, (iv) performing the join

using these special index structures.

Once all the query fragments have been processed, the query engine determines

the structure and format of the output and then combines the query fragments. If all

the query fragments can be processed by Pat, this �nal stage consists of sending the

resulting Pat query to the Pat server, extracting the result, and possibly rearranging

it for presentation. In the case that portions of the query cannot be evaluated using

Pat, the storage manager indices are used to evaluate those portions, and the result

is converted back into Pat's storage space to combine the result with the rest of the

query. The �nal result is extracted from Pat as a set of SGML document fragments.

The current prototype of DocBase does not implement nested queries. However, it

allows results of queries to be stored internally as a set of \virtual documents", similar

to database views in relational databases. These \virtual documents" are not proper

SGML documents; they are simply a set of o�sets in the document from which the

fragments were extracted. These virtual documents can be used later in a query to

achieve the e�ect of nesting.

6.2.2.1 Examples of the query processing method

The query life cycle is best demonstrated using examples. Suppose we want to pro-

cess the following query on the sample database for which the structure is shown in

Figure 14:

SELECT B.author

FROM Book B

where B..chapter..head = "SGML"

Chapter 6. Implementation 124

and B..section..head = "optimization"

This is a simple query without any join conditions. When the query is parsed, a

query tree is built in which the two main query components are the two conditions

in the WHERE clause. Currently, there are no optimization methods for reordering the

conditions, so they are evaluated in the order they appear in the query. Moreover,

since the FROM clause contains only one document component, only one accumulator

is su�cient to evaluate this query. The following steps are used in the evaluation of

this query:

1. Evaluate the query components in the FROM clause. Since there is only one

component, we only have one accumulator B, and it is initialized with B =

region Book

2. Evaluate the �rst condition. The \evaluate later" method is used, and the query

is stored as the Pat expression q1=(region head within (region chapter

within (*B))) incl "SGML"

3. Evaluate the second condition. The \evaluate later" method is used again, and

the query is stored as the Pat expression q2=(region head within (region

section within (*B))) incl "optimization"

4. The logical connective is now found. Since two unevaluated queries need to

be combined, a series of operations are performed using the \evaluate now"

method. In this case, because of the conjunction, a set intersection operation

is used to combine the individual selections. The following operations are per-

formed:

q1 = (*B) incl (*q1)

q2 = (*B) incl (*q2)

q3 = *q1 ^ *q2

In the �rst step, the �rst condition is processed by evaluating it relative to the

corresponding accumulator. The second condition is similarly evaluated, and

then an intersection operation is performed to combine the two results.

Chapter 6. Implementation 125

5. Finally, the result needs to be determined. The path expression in the SELECT

clause requires a traversal down to the author region. Since all the conditions

have been evaluated, the accumulator is �rst updated with the result of the

conditions, and then a traversal for the path expression is performed to obtain

the �nal result, as follows:

B = *q3

final=(region author within *B)

In the case of a query with a join condition, the comparison is usually between two

path expressions. In this case, both the path expressions are evaluated and stored

using a \store now" method and evaluated in the storage manager. The details on

processing of queries with join conditions will be presented shortly.

6.3 Physical Data Representation

A single storage manager can be used to handle the data as well as structures built

on top of the data. A single storage manager is su�cient if the storage manager is

capable of creating and processing the index structures in addition to storing and

handling the data and the catalog. However, if the index structures are created and

managed by an external system, it is often necessary to let this system manage its

data and indices. This does a�ect the control that the storage manager has over

the data, but it provides more
exibility in the implementation, since this enables

the use of external indexing applications in managing the indices and reduces the

complexity of the internal indexing process. In this section, we �rst describe an ideal

data representation that facilitates processing of the class of queries described as

\Core DSQL" in Chapter 5. We next describe a variant of this structure that was

implemented and brie
y compare the two methods.

6.3.1 Ideal Data Representation

The ideal implementation would have all of the data controlled by one storage man-

ager. In this case, the storage manager would have full control over the documents,

Chapter 6. Implementation 126

catalog information, full-text indices, and structure indices. The advantage of a single

storage manager is that the various components of the stored elements (e.g., data,

catalog, indices) can be kept synchronized easily, since the storage manager can eas-

ily determine the dependencies between data and indices and decide when an index

needs to be rebuilt. Any external system will then need to access the data through

the storage manager. The primary types of data to be managed are (i) native data

(SGML documents) (ii) meta-data (catalog information) and (iii) auxiliary struc-

tures (indices). Figure 14 depicts a simpli�ed representation of the interaction of

these three types of information handled by the storage manager. Analogous to the

above three types of data to be handled, three primary types of data structures are

necessary for the query processing: (i) a hierarchical structure for the actual parse

tree for document instances, (ii) a hierarchical structure for the catalog (represent-

ing the DTD) and (iii) optional auxiliary index structures on the meta-data for the

purpose of e�cient query processing (see Figure 14).

6.3.1.1 The Parse Tree

The parse tree shown in Figure 14(c) is an instance-level structure representing the

hierarchical structure of the actual document instances. Prior to the incorporation

into the database, every document needs to be parsed by an SGML validating parser

to assure the conformance of the document to a DTD. The structure created by the

parser is the parse tree generated from the particular document instance. This parse

tree contains all the information about the structure of the document, but does not

replicate the actual text present in the document. Instead, each node in the parse

tree contains information on the o�set in the actual document from which the data

can be obtained. This not only reduces the size of the tree but also eliminates the

necessity of recreating documents as query results from fragmented components. The

additional overhead of performing a \seek" in the original document can be reduced

by implementing the storage manager accordingly.

The basic structure of the parse tree is a normal tree structure with bidirectional

edges between parents and children. This structure is primarily used for performing

Chapter 6. Implementation 127

1. <!DOCTYPE book SYSTEM "book.dtd">
2. <book>
3. <title>More about SGML</title>
4. <author>Jane Doe</author>
5. <body>
6. <chapter>
7. <head>First chapter</head>
8. <section>
9. <head>The SGML standard</head>
10. <para>First para</para>
11. <para>Second para</para>

13. </chapter>
14. <appendix>
15. <head>SGML DTD</head>
16. <para>The DTD is pretty big</para>
17. </appendix>
18. </body>
19. </book>

12. </section>

book

title author body

chapter appendix

head section

head para

head para

author (4,4)

head (7,7)

book (2, 19)

body (5,18)

chapter (6, 13)

section (8,12)

head (9,9) para (10,10) para (11, 11)

appendix (14, 17)

head (15, 15) para (16, 16)

title (3, 3)

headindex

paraindex

(a)

(b)

(c)

Figure 14: A simple representation of the data structures: (a) the SGML document
(b) the catalog structure and (c) the parse tree and auxiliary indices

Chapter 6. Implementation 128

the necessary structure traversal for evaluating path expressions. The simplest ap-

proach for �nding path expressions is to perform a breadth-�rst search, optimizing

the search by pruning nodes that can never express the given path expression. The

details of an algorithm for evaluating path expressions is given in Section 6.4.2.2.

6.3.1.2 The Catalog

The catalog (see Figure 14b) is a schema-level structure representing the hierarchy of

the generic identi�ers de�ned by the DTD. The catalog is essentially a simple internal

representation of the DTD but only includes the structural relationship and not the

additional information needed for parsing (e.g., attribute types, omission rules). In

addition, the catalog structure does not distinguish between the di�erent types of

content groups (e.g., option groups, sequence groups), but only includes all elements

in the content group of a particular GI as child nodes of the GI in the tree representing

the structure. Technically, the catalog is also a tree structure with bidirectional links,

created from the DTD.

The catalog is used primarily to evaluate and optimize path expression queries.

Any path expression is �rst compared with respect to the catalog to decide if that

path expression can ever be evaluated in the given DTD. In this way, the catalog can

be used to prune the search paths that can never match the path expressions. Details

on the algorithms will be given in a later section (Section 6.4.2.2).

6.3.1.3 Join Indices

In addition to the parse tree structure that can be considered as a special index

structure, additional index structures need to be created in order to speed up the

processing of join queries, which cannot be evaluated using the Pat query language.

These auxiliary join indices are shown in Figure 14(c) as horizontal chains across

the parse tree, connecting similar nodes in the parse tree. The simplest type of

index is just a linked list of the nodes for a particular GI, although usually they are

implemented using B+-trees, hash structures, or application-speci�c index structures.

Not all GIs need to be indexed, and the catalog contains information on whether a

Chapter 6. Implementation 129

particular GI is indexed.

Although termed as join indices, these auxiliary indices can also be used for fast

processing of queries involving selection on the particular GI on which the indices

are created. In the prototype, these indices are often built \on the
y" when a join

operation is evaluated.

6.3.2 Implementation of the Data Structures

The current prototype of DocBase makes a trade-o� between the implementation

of the necessary structures from scratch and the use of available commercial and

non-commercial applications that implement similar structures. Instead of using a

standard SGML parser to parse the SGML documents and building the parse tree

structure, the implementation uses Pat region index and word indices, since most2 of

the navigational operations on the parse tree can be performed using these indices.

The Pat region index is implemented using a Patricia tree of the document tags (re-

gions) and has approximately the same functionality as a parse tree. The Pat word

index creates a Patricia tree index based on the character data in the document,

thereby speeding up word searches. To ensure that the system is not completely

dependent on the Pat indices, the index manager is implemented using a virtual su-

perclass \Hier engine," with the Pat-speci�c functionality in a subclass \pat engine"

(see Figure 15). This ensures that support for other index management applications

can be added to DocBase merely by implementing a new subclass of \Hier engine."

For the programming-level interface of these classes, refer to Appendix B.

The catalog structure is created as described above from a DTD and an optional

con�guration �le that includes the GIs that need to be indexed. If no con�guration

�les are present, all the GIs are indexed. The con�guration �le allows the user to

select a subset of GIs for the purpose of querying. If a GI present in a DTD is not

included in the con�guration �le, no queries can use that GI in a term. However, the

2Not all tree traversal operations can be performed using the Pat indices. Because of the way
Pat
attens the structure to perform its queries, it is not possible to obtain an immediate child or
immediate parent of a node using the Pat indices. Navigation can only be performed to named
ancestors and descendants.

Chapter 6. Implementation 130

DocBase

Storage_manager

List

query_engine

��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�

��������

�
�
�
�

�
�
�
�

����

��

Hier_engine

Pat

tree

Treenode

generic

explist

expression

symtab

Mlist Patlist Plist

pat_engine

Component

Inheritance / ISA

catalog

Exodus Sybase

Figure 15: The class hierarchy of the DocBase query processing system.

Chapter 6. Implementation 131

elements in the instances corresponding to the non-indexed GIs are still available in

the parse tree (implemented using the region index of Pat). The con�guration �le

follows a very simple syntax, containing three �elds in each line: (i) the �rst �eld

containing the name of the GI (case insensitive), (ii) the second �eld containing a

description of the GI separated by a `/' from the �rst �eld, and (iii) an optional

third �eld, consisting of a single asterisk `*' for one of the GIs, indicating that the

corresponding GI is to be used as the default GI for the purpose of querying. The

catalog is a component of the \query engine" class and is implemented as described

above using a \tree" class consisting of nodes implemented by the \treenode" class

(see Figure 15).

The catalog is created using a combination of perl and C++ code. The perl code

was used primarily to utilize perlSGML, a library of perl routines for manipulating

SGML documents and DTDs in particular. The perl routine reads the DTD and the

con�guration �le, and creates an intermediate structure which is used as the input

to the index-building routines written in C++, as well as the Java code in the user

interface for automatically generating the structure display (see Chapter 7 for details

on the user interface).

6.3.3 Storage Management Functions

Storage management is typically performed using a client-server architecture. A server

having the essential functionality of a storage manager (e.g., concurrency control,

recovery) runs continuously and waits for connections from clients. Clients attempting

to perform storage management tasks send requests to the server as necessary. In

DocBase, the storage management functions are implemented using Exodus [CDF+86,

Uni93], a popular storage manager developed at the University of Wisconsin. Exodus

has a client-server architecture; it acts as a server for DocBase, which is an application

built using the library of functions provided by the Exodus Application Programming

Interface (API). The storage management module of DocBase uses this interface to

communicate with the Exodus server that processes requests for storage management

functionality.

Chapter 6. Implementation 132

The storage management functions in DocBase are fairly limited. Since all the

data is stored as regular text �les on the �le system and are only accessed using the

Pat query language, no special storage management operations are performed on the

input SGML documents. However, all the persistent structures such as the catalogs

and auxiliary join indices created on the data are managed by the storage manager.

In addition to persistence of the structures, the storage manager also performs con-

currency control on these structures. Descriptions of these structures are given in the

next section under index management functions.

The storage management clients were implemented in an object-oriented fashion,

allowing the interchangeability of storage managers and incorporation of other servers

in the future. The most essential storage management functionality was included

in the virtual superclass \Storage manager," and the actual implementations were

included in the subclass \Exodus" implementing the Exodus storage management

client3.

6.3.4 Index Management Functions

The Open Text Pat system was used for the purpose of creating indices in the proto-

type implementation. However, to ensure that the system is not completely depen-

dent on the Open Text indices, the required navigation procedures were included in

a virtual class \Hier engine," and the Open Text index processing was handled by

a subclass \Pat engine" of the \Hier engine" class. The \Hier engine" class includes

mechanisms for traversing the hierarchical structure and for extracting nodes from

the tree based on string matches. Appendix B describes the details of the methods

that any hierarchical structure manager must implement. The primary ones include

basic structure navigation and ancestor/descendant searches.

The auxiliary join indices were implemented as lists of (o�set, data) pairs and had

three variations. All the generic functionality of the list class was incorporated in the

class \List", and the functions speci�c to platforms were included in subclasses of this

3As Figure 15 suggests, the storage management functions were also tested using Sybase, in
which the indices were stored as
at tables. This was possible because of the simple o�set-data pair
structure of the indices.

Chapter 6. Implementation 133

class (see Figure 15). In particular, three subclasses were implemented: (i) \Mlist"

or memory list, that implements small main-memory lists primarily for temporary

computation purposes such as sorting; (ii) \Plist" or persistent lists that implement

the join indices and stored query results (views); and (iii) \Patlist" or Patricia tree

lists. The last type of list refers to temporary structures in the memory space of

the Pat engine - structures used primarily for the exchange of data between Pat and

the external functions that use the data from Pat; and also for storing intermediate

results for the processing of large queries. Information regarding the names and

other properties of these structures were stored in an extension of the catalog. This

information was used to update and remove these objects when necessary.

6.4 Query Engine Architecture

Queries using DocBase can be formulated using either a command-line interface or

a graphical user interface. In the command-line mode, the results of the queries are

displayed on the standard output. The graphical user interface is implemented as a

WWW client, in which the query is formulated using the interface, and the results

are processed by a DocBase running as a CGI application. When run in this mode,

DocBase generates the output speci�cally for display on a WWW browser. In either

case, the query is �rst parsed and translated into a sequence of operations which are

then evaluated and combined by the execution system as shown in the architectural

overview (Figure 13). In this section, we brie
y describe the parser and the translation

routines, showing the query processing algorithms in details. Appendix B gives a

detailed description of the source �les used for these purposes.

6.4.1 The Parser and Translator

The query parser for the DSQL language was implemented using lex and yacc [LMB92].

The parser supported the entire DSQL language described earlier in Chapter 5 and

implemented all the productions shown in the BNF presented there. Three parsers

based on the same grammar were created during the implementation stage. The �rst

Chapter 6. Implementation 134

parser, containing only the DSQL productions in the yacc syntax with no special han-

dlers, was designed primarily for the purpose of validating the grammar and removing

the shift-reduce and reduce-reduce con
icts in the grammar. Although the prototype

restricted queries to the core DSQL language, the parser is capable of parsing the

full DSQL language. The yacc source code for this parser is shown in Appendix B.

This source can be used as a skeleton for other advanced applications that require

parsing of the DSQL queries, similar to the ones described below. The grammar has

one shift-reduce con
ict which is acceptable in this situation.

The second parser was designed as a translator from DSQL queries to queries

written in SGML conforming to the DSQL DTD (see Chapter 5). This parser uses the

BNF rules activated during parsing of the DSQL query to generate the corresponding

SGML tags in the DSQL DTD.

The above two parsers were created to test the parsing process. In the current

prototype implementation, queries formulated in SGML are �rst translated into an

equivalent DSQL query and then parsed using a DSQL parser. This apparently

reverse translation was performed only because of the easy availability of lex and

yacc. However, once SGML applications are readily available, using SGML parsers

to do the query parsing of the SGML queries should be more feasible. DSQL queries

can then be evaluated by �rst translating to SGML using the second parser described

above and subsequently processing it within the SGML application.

The third parser invokes the query processing system. This parser is capable of

parsing queries written in complete DSQL but can only process queries in the core

DSQL language, exiting with a warning otherwise. This parser receives the DSQL

query in the standard input and creates instances of the storage management, in-

dex management and query engine classes, invoking appropriate methods of these

instances to evaluate and process the query. The unimplemented features are, how-

ever, not impossible to implement in this setting and were only dropped because

of the limited resources and the proof-of-concept nature of the prototype. Since

the infrastructure is very similar to the relational query implementations, techniques

used in relational databases for evaluating nested queries (such as tuple substitution

Chapter 6. Implementation 135

[SAC+79]) can also be used in this setting. Moreover, grouping, ordering and ag-

gregate operations can be implemented using �lters on the result of the queries. We

intend to show here that a reasonably self-contained subset of queries can be imple-

mented using the proposed model and structures, and to propose the implementation

methods for the rest of the queries as future work. The details on the evaluation of

queries are described in the next section.

6.4.2 Query Evaluation

As described above, queries are evaluated by the DSQL parser module by initially

creating instances of the storage management, index management and query engine

classes, invoking appropriate methods of these classes in response to the rules pro-

cessed by yacc. The actual evaluation of the queries takes place in the query engine

class, and the algorithms for processing queries are described in the rest of this sec-

tion. Here, we �rst show the basic algorithm for processing a simple select query (i.e.,

a query without any joins and path expressions that require special processing). We

then show how path expressions and joins are processed, how other DSQL operations

are implemented, and how the prototype system can be augmented with some of the

unimplemented operations.

The current implementation of DocBase uses an accumulator-based evaluation

method. An accumulator here is simply an internal representation of a document

relation used in the query. One or more accumulators may be needed depending

on the number of relations used in the FROM clause of the query. An accumulator

can be conceptualized as a list of (o�set, data) pairs, possibly sorted in ascending

order of either the o�set or the data, depending on how it is used. The concept

of o�sets is speci�c to the Pat system - Pat calculates an o�set value for speci�c

positions in the �les in its multi-�le system. The accumulator denotes a list of virtual

SGML documents rooted at a particular GI starting at the given o�set in the SGML

repository. Hence every accumulator corresponds to a GI (we will refer to this GI

as accumregn in the following discussion). For normal evaluation, we assume that

the accumulator is sorted in ascending order of the o�set, which is the same order in

Chapter 6. Implementation 136

which the data appears in the document.

Given an accumulator, it is possible to traverse the document structures upwards

or downwards from the accumulator. Given an accumulator and its corresponding

GI accumregn, a traversal down to a target GI results in an accumulator associated

with the target GI, containing a list of document components rooted at the target

GI that are descendants of accumregn. Similarly, an upward traversal results in an

accumulator with elements rooted at the target GI that are ancestors of accumregn.

In addition, given an accumulator and a path expression, it is often necessary to

only retain the elements that match a path expression P so that accumregn matches

last(P). The three algorithms are described in Figure 16.

We now consider a brief analysis of the traverseup, traversedown and selectpath

algorithms in Figure 16. Notice that the algorithms here are presented in general

terms, using a method that would be used if the Pat indices were not available. This

is necessary to get a feel for the actual complexity of these operations. However,

these operations are implemented using the Pat queries which use the Patricia tree

indices. Hence, for analysis purposes, we will also mention the implementation of the

algorithms with Pat operations and the complexity of the operations if Pat indices

were to be used. The primary di�erence between the use of Pat operations and

regular tree operations lies in the fact that a search for a string in a Pat index

depends only on the length of the string being searched (see Chapter 2 for details).

In particular, this implies that searching for a node labeled with a given generic

identi�er in a tree component does not require a full breadth-�rst search as described

in the above algorithms, thus signi�cantly improving the search performance. Another

important distinction is that the operations allowed by the Pat query language are

applied to a set of document positions, never individually applied to a single document

position. Hence, although realistically some operations (in particular, the selectpath

algorithm) are more naturally applied to every individual element, it is more e�cient

to perform the same task using set operations with Pat.

� traverseup. Since SGML documents are strictly hierarchical, this algorithm

is quite simple. Every node can have exactly one parent. For every element

in the accumulator, the worst-case cost of traversing up to the given region

Chapter 6. Implementation 137

traverseup(list accumulator, GI accumregn, GI targetgi:input)
begin

if ((accumregn == targetgi) ||(targetgi==null)) return;
templist = empty
for each element e in accumulator do
| repeat
| | follow the parent of e upwards
| | if parent node has GI targetgi
| | if parent not already in templist
| | append parent to templist
| | endif
| | endif
| until no more parents
endfor
return (templist, targetgi);

end traverseup

traversedown(list accumulator, GI accumregn, GI targetgi:input)
begin

if ((accumregn == targetgi)||(targetgi==null)) return;
templist = empty
for each element e in accumulator do

starting for e, do breadth-first search for nodes labeled targetgi
during search, do not add nodes that can can never reach targetgi

using the catalog
append matched nodes not yet visited to templist

endfor
return (templist, targetgi);

end traversedown

selectpath(list accumulator, GI accumregn, string pathexp)
begin

if (first(pathexp) == root GI of the DTD)
create a finite automaton for pathexp

else
rootgi = root GI of the active DTD
create a finite automaton for rootgi..pathexp

endif
for each element e in accumulator do

construct the path by traversing from e up to the root and reversing it
if the constructed path is accepted by the FA, retain e
else reject e

endfor
return (accumulator, accumregn);

end

Figure 16: Upward and downward traversal algorithms

Chapter 6. Implementation 138

is thus the maximum height of the parse tree of the document instance. For

document structures without recursion, this height is constant and is governed

by the DTD, since the document structures cannot be inde�nitely deep. For

recursive structures, however, the worst case can be the number of nodes in

the tree. With Pat, this operation is simply performed by an ancestor search

using the \including" operator of the Pat query language, which has a linear

complexity proportional to the number of nodes in the accumulator and the

number of nodes with the region to traverse to (see Section 6.1.2). To see that

this achieves the desired result, notice that the above Pat expression selects only

the nodes (of the given GI) which include (i.e., have as a descendant) at least

one of the accumulator nodes. This has the same e�ect as traversing upwards

from the accumulator nodes to the given GI.

� traversedown. The worst-case complexity of this algorithm is the total num-

ber of nodes in the elements of the accumulator. However, in practical cases,

however, it is easy to determine from the DTD if a particular GI will ever

have a descendant with label g, and in a practical document structure, this

will immediately prune many branches. Using the Pat client, this operation

is signi�cantly simpler, since traversal downwards simply requires a bounded

search for the given GI, with the boundaries marked by the start and end tags

of each of the elements in the accumulator. In the Pat query language, this

operation is performed by a descendant search using the \within" operator in

the Pat query language. Once again, to see that this Pat operation produces

the correct result, note that the \within" operator produces regions with the

given GI which lie within (i.e., are descendants of) the accumulator nodes.

� selectpath. Any non-null path expression can easily be represented by a deter-

ministic �nite automaton (see Figure 17). The reasoning behind this lies in

the fact that the all path expressions can be written as a regular expression by

replacing the \.." operators with gi�, where gi is the set of generic identi�ers

in the DTD. For example, the path expression A.B..C is the same as the regu-

lar expression AB(gi)�C). If we have a fully expanded path (which is what is

Chapter 6. Implementation 139

created in this algorithm), the cost of determining if the path satis�es the given

path expression is simply the length of the path, which is once again, in the

worst case, the maximum height of the tree structure representing the document

instance. This general algorithm is used on each node, and the nodes for which

the path expressions satisfy the DFA are selected. Using Pat operations, this

requires evaluating the path expression and performing an intersection of the

result with the original list. The intersection operation has a linear complex-

ity since the lists are sorted on the o�set values. Notice that this operation is

performed on sets, by �rst evaluating the set of nodes satisfying the given path

expression and then performing a set intersection with the accumulator.

A B C

gi -{C}
C

gi - {C}
gi - {A}

gi - {B}

S 1 2 3

 4 gi

Figure 17: Example of constructing a deterministic �nite automaton for the path
A.B..C

To demonstrate the correctness of this operation, note that the path expression

evaluation using Pat ensures that the resulting nodes satisfy the path expression.

Moreover, the intersection performed also ensures that the selected nodes are

from the accumulator. Hence, all selected nodes are the accumulator nodes

that satisfy the given path expression. The path expression evaluation uses the

traversedown algorithm described above, and is shown to be correct.

The algorithms described in the following sections use only the above three set-based

algorithms, so that the implementation uses the Pat indices and query language. We

also assume that the Pat implementations of the above algorithms terminate, and we

use this fact in the analysis of the following algorithms.

Chapter 6. Implementation 140

6.4.2.1 Simple Select Queries

Simple select queries have a plain \SELECT - FROM - WHERE" structure without any

nesting of the queries and without any joins. We assume that every condition is sim-

ple, and involves the comparison of a region with an atomic value (character strings).

We further assume that there are no composite path expressions (path expressions

with more than one label) either in the SELECT clause or in the WHERE comparisons.

In other words, regions on which comparisons are to be made or regions which need

to be selected are speci�ed only using the generic identi�er (GI) corresponding to

that region. For example, the query \�nd all the titles in the book database in which

a paragraph has the word `SGML' in it" could be written as:

SELECT title

FROM book

WHERE para = "SGML"

Notice that instead of specifying path expressions such as \book.head.title", we

simply used \title." Obviously, if there are multiple ways of reaching the title

GI, it cannot be solved using a simple DSQL query (we will deal with such queries

later). Simple select queries form the basis on which most queries are processed in

the prototype engine.

The basic algorithm for processing simple select queries is somewhat di�erent from

the ones deployed in relational database systems. In relational database systems, if

there are no joins or products, all the attributes are obtained from the same table.

Because of the
at nature of the relational databases, this makes simple selections

quite easy. However, in the case of a hierarchical structure, the target region can

be deep inside the structure, which would require traversal of the structure to the

speci�c region.

Since the underlying structure is essentially hierarchical, simple select queries often

not suitable for selections that involve di�erent branches of the tree structure. Let us

clarify this with an example. Suppose we have the structure described in Figure 14.

Consider the query: \Find the chapters in the books written by Goldfarb in which

the chapter heading contains `logic'. " One may be tempted to implement this query

Chapter 6. Implementation 141

using a simple selection query such as the following:

SELECT chapter

FROM book

WHERE author = "goldfarb"

AND head = "logic"

Suppose we ignore for the time being that the region head could appear in multiple

places in the structure other than chapter. The above SQL query still does not provide

the correct answer to the search problem in question. The reason is clear if we consider

the equivalent DC form of the above SQL query:

fx::chapterjBook(x) ^ x::author = \goldfarb" ^ x::head = \logic"g

Clearly, the above query returns all chapters of books written by Goldfarb such that

the book contains at least one chapter with `logic' in the chapter heading. The correct

query for this problem is:

SELECT Y

FROM book X, X.chapter Y

WHERE X.author = "goldfarb"

AND Y.head = "logic"

Obviously this is not a simple select query since it requires path expression evaluation

and the use of multiple accumulators.

The above discussion indicates that the scope of simple select queries is quite

limited. We are still interested in simple select queries because they form the core of

the query engine, and give an intuition on how more complex queries are evaluated.

Simple select queries are evaluated by the use of a single accumulator. Query

fragments representing each condition are evaluated relative to this accumulator, and

are incrementally combined using set intersections or unions based on the logical

operation performed. For every condition, a mini-selection based on the accumulator

is performed into a temporary structure for that particular condition. Each mini-

select involves a traversal down from the accumulator to the region on which the

Chapter 6. Implementation 142

comparison is being performed. This operation results in the selection of only the

regions that match the given condition, and a traversal back up to the accumulator to

select only the elements in the accumulator that resulted in a match. Note that the

accumulator is left unchanged. The resulting subset of the accumulator is stored in a

temporary structure until all the conditions are evaluated. The mini-select algorithm,

in general terms, is given in Figure 18. In this algorithm, a condition has a GI, an

operator, and an atom: the GI is compared with the atom using the operator.

miniselect(condition C, list Accumulator, GI accumregn : input;)
/* c is of the form (gi, op, searchstring) op is = or <> */
begin

/* Make a temporary structure */
temp_acc = Accumulator; temprgn = accumregn;
/* traverse down to the condition target */
traversedown(c.GI, temp_acc, temprgn);
for each item in Accumulator

if item does not match c according to (c.op, c.searchstring)
remove item from temp_acc

end for
/* go back to the accumulator level */
traverseup(accumregn, temp_acc, temprgn);
return (temp_acc, temprgn);

end

Figure 18: Algorithm for evaluating an individual selection condition in a simple
query

Analysis of miniselect. The miniselect procedure is self-explanatory. It uses the

traverseup and traversedown procedures introduced before. In addition, miniselect

has a for loop corresponding to each item in the accumulator resulting from the

downward traversal. A sequential search through this, as shown here, is obviously not

e�cient, so the actual search may be implemented using di�erent types of indices. In

the prototype implementation, we use the Pat indices and the including operator to

perform a bounded pre�x search which has a very low complexity (linear in the length

of the search string). To demonstrate its correctness, observe that the procedure works

by �nding all elements with the given GI under every node of the accumulator, selects

only those that match the given condition, and traverses back up to the accumulator

Chapter 6. Implementation 143

region, in e�ect selecting only those accumulator elements that match the original

condition.

Once all the conditions are evaluated, they can be combined using the logical oper-

ations between them. The order of evaluation is governed by the parsing mechanism.

The parser creates a tree structure based on operator-precedence and the presence of

parentheses. The parser generates the conditions a node at a time, with two branches

and the logical operation that connects them. The complete algorithm is shown in

Figure 19.

simplequery(SQL query:input; list accumulator, GI accumregn: output)
begin

accumregn = GI in FROM clause;
accumulator = all elements rooted at GI;
parse WHERE clause into condition tree;
(accumulator, accumregn) =

evaluate (conditionroot, accumulator, accumregn);
/* the evaluate procedure is shown below */

traversedown(accumulator, accumregn, GI in select clause);
end simplequery

evaluate(Condion_node cond, list Accumulator, GI accumregn: input)
if (cond is composite)

/* cond is of the form condition1 logic condition 2 */
(accumc1, c1reg) = evaluate (condition1, Accumulator, accumregn);
(accumc2, c2reg) = evaluate (condition2, Accumulator, accumregn);
if (logic == AND)
accumc3 = intersection of accumc1 and accumc2

else if (logic == OR)
accumc3 = union of accumc1 and accumc2

endif
c3reg = c1reg;

else /* base case: cond is simple */
(accumc3, c3reg) = miniselect(cond, Accumulator, accumregn);

endif
end evaluate

Figure 19: Algorithm for processing a simple query

Analysis of simple queries An example of processing a simple select query with

path expressions has already been shown in Section 6.2.2.1, which uses the algorithm

described in Figure 19. This algorithm described may seem to be somewhat ine�cient,

Chapter 6. Implementation 144

since we perform individual selections and then a union and intersection based on the

logical operation used (\AND" or \OR"). As mentioned earlier, this implementation

strategy is in
uenced by the use of Pat indices, since the operations on these indices

are primarily set operations. An evaluation system that does not use a Pat engine

can also use the above algorithm by simply keeping track of the requested operations

and performing the whole operation at the end on every individual tree.

Termination. In this algorithm, we have assumed that there are no composite

path expressions. So, as shown in the the pseudocode, the algorithm uses a recursive

evaluation strategy to evaluate the conditions in the WHERE clause. Since there can

be only a �nite number (say, n) of such conditions in a DSQL query, the evaluate

procedure is called a maximum of 2n � 1 times. Hence, this algorithm terminates,

knowing that the traverseup and traversedown procedures terminate.

Correctness. The correctness of the evaluation method for simple select queries

follows from the semantics of the calculus language DC, on which DSQL is based.

Recall that a DSQL query of the form select A from R where condition is equiv-

alent to the DC query zfxjR(x)^conditiong � A. This indicates that all the evaluation

is based on the single accumulator x which is initialized to all of R, and after the

conditions are evaluated, the �nal selection is performed by a path traversal. The

correctness of the evaluation of the condition can be determined by noticing that

since all the conditions are combined with respect to the same region (that of the ac-

cumulator), intersection of the accumulator elements does correspond to conjunction

and union of the accumulator elements corresponds to disjunction.

Complexity. To estimate the complexity of the above algorithm, notice that for

each of the conditions, in the worst case, there would be one matching operation, one

traverseup and one traversedown operation. In addition, if there are k conditions,

we will also have k�1 unions or intersections. The complexity of all these operations

are linear, since the Pat indexing process and the retrieval using the Pat indices

always yield results sorted by the o�sets. Hence, the combined complexity of the

operations using Pat indices is O(n� (k� 1)) where n is the number of nodes in the

document tree and k is the number of conditions, as above. Hence for a �xed query,

the complexity of processing the query is only linear to the size of the document.

Chapter 6. Implementation 145

6.4.2.2 Queries Involving Path Expressions

In the above discussion of simple select queries, we have assumed that all path expres-

sions are speci�ed by simply its target GI. Here we present a complete processing of

path expressions. Path expressions can appear in di�erent places: (i) in the SELECT

clause, to specify the output from the query; (ii) in the FROM clause, to give aliases

to speci�c paths relative to de�ned document types; and (iii) in the WHERE clause, to

specify the region on which a comparison or a complex operation (such as EXISTS,

IN) is to be performed.

Path expressions in the SELECT clause primarily signify projections. Unless some

optimization strategy causes the projections to be evaluated earlier, when a projection

is applied, the evaluation of the query without the projection can be assumed to be

complete. Hence, the path expression evaluation can be performed by traversing

down the document structure while traversing the path expression. Path expressions

in the FROM clause also can be evaluated top-down, with the condition that the FROM

clause does not have any forward referencing in its alias variables.

The path expressions in the WHERE clause are somewhat more tricky to evaluate.

Although a top-down traversal can be applied to reach the target region for the

purpose of the comparison, since all the comparisons are relative to some accumulator,

the result needs to be traversed back to the accumulator using an upward traversal.

The evaluation of simple select queries described in Section 6.4.2.1 has all three of

these cases in a simpler way, since there we assumed that path expressions only

consisted of a single GI. The basic strategy, however, does not change if the path

expression contains multiple GIs, since the evaluation would still involve repeated

application of the traversedown algorithm described in Figure 16, followed by the

extraction of the elements that match the condition, and a �nal traverseup to reach

the accumulator level (see Figure 18 for this process applied to simple select queries).

The only di�erence in path expression evaluation lies in the fact that the traversedown

procedure is called once for each element in the path expression. The algorithm, and a

basic understanding of its correctness of the downward evaluation of path expressions,

is given below.

Chapter 6. Implementation 146

Path expression evaluation Path expressions are evaluated top-down (i.e., start-

ing from the topmost GI in the path and traversing the structure down the tree,

following the rest of the GIs of the path). An algorithm performing this traversal

will only need to start from a the current accumulator, and for every GI in the path

expression, traverse down from the current set to the GI. If the path operator is \.",

then the traversal involves only a scan through the immediate children of the current

node. If the operator is \..", the traversal involves a depth-�rst search through the

structure resulting in all the GIs of the required type that are descendants of the

elements in the original accumulator. To determine the initial accumulator, the �rst

symbol of the path expression needs to be used. If the �rst symbol refers to an alias

declared in the FROM clause, then the accumulator is obtained from a symbol table

that stores the aliases. Otherwise the default accumulator from the database in the

FROM clause is used. The algorithm is described below:

evalpedown(string pathexp, GI accumregn,list accumulator:input)
begin

f = first symbol of pathexp
if f is an alias

verify that the accumulator being used corresponds to the same alias,
return if not

else if (f != accumregn)
(accumulator, accumregn) = traversedown(accumulator, accumregn, f);

endif
for each of the rest of the symbols g in pathexp do

templist = empty
if (connector is .) /* can not evaluate using Pat */

for each element e in accumulator do
if e has a child with label g add the child to templist

endfor
accumulator = templist; accumregn = g

else /* connector is .. */
(accumulator, accumregn) = traversedown(accumulator, accumregn, g)

endif
endfor

end evalpedown

Figure 20: Evaluation of path expressions in the from and where clauses

Chapter 6. Implementation 147

Analysis of path expression evaluation Termination. Termination of the

evalpedown algorithm is trivial to determine, observing that the main loop is on the

symbols in the path expression and that a path expression can only have a �nite

number of symbols. (Note that here we consider only the GIs in the path expression

to be symbols. In our setting, path expressions cannot have a variable in the middle,

but only in the beginning, which refers to another pre-evaluated path expression in

the symbol table.) The inner loop for the evaluation of pat expressions with the \."

operation also terminates based on the assumption that there are only a �nite number

of elements in each accumulator.

Correctness. The evalpedown procedure is a simple case of determining the

starting position of the traversal and traversing down the document structure through

each of the symbols in the path expression. Note that, since the Pat query language

operations uses a
at view of the document and does not use the document structure

as a tree, the immediate child (. operator) cannot be computed using Pat. The only

downward traversal operation in the Path query language, within, returns descendants

of the given element. This is a drawback which cannot be remedied without having

more low-level access to the Pat indices. Given this restriction, all path expressions

are actually evaluated by treating the . operation as a .. operation. To demonstrate

the correctness of evalpedown, notice that the traversedown operation retrieves all

descendants of the every accumulator element matching the target region. If any

candidate match for the path expression is not retrieved by the algorithm, there must

be one step where a symbol in the path expression is not reachable as a descendant of

the previous symbol, which contradicts the assumption that the candidate matches

the path expression.

Complexity. The evaluation method of a path expression with k symbols involves

an initial selection, followed by traversal of the structure downwards k�1 times. Each

of these operations can use a descendant traversal operation (within), for which the

complexity is linear on the number of corresponding nodes in the document. The

absolute worst-case complexity of the algorithm is thus O(k � m) where k is the

number of symbols in the path expression, and m is the total number nodes in the

document structure (or the of SGML elements in the document).

Chapter 6. Implementation 148

6.4.2.3 Queries Involving Products and Joins

Here, we present a complete algorithm for evaluating a query having all the imple-

mented core DSQL features | in particular, products and joins involving more than

one hierarchical component. These components can come from multiple DTDs, dif-

ferent branches of the same DTD, or even multiple instances of the same DTD. In

the above discussions, we primarily used only a single accumulator. However, for a

general query processing algorithm, we need to use multiple accumulators, equal to

the number of di�erent hierarchical components on which the query is evaluated. A

brief description of the prodjoin algorithm is shown in Figure 21.

Analysis of queries with products or joins The queries involving product and

join operations use the de�nition of product and join introduced in Chapter 5. The

basic idea behind the product and join operations is the creation of a new GI with the

roots of the component documents as immediate children. The current implementa-

tion of DocBase uses a binary product and join operation (i.e., only two components

can be involved in one particular product or join operation). The creation of new

elements is implicit in the implementation. Because of the lack of good DTD process-

ing tools, new DTDs are not created. The newly created document components are

stored as \virtual documents" in the storage manager, and the newly created region

is added to the catalog. Subsequent projection operations can be used after the joins

and products to extract the relevant components of the results. The limitation of not

creating output DTDs is often felt | this is planned in the future enhancements of

the system.

The algorithm in Figure 21 has 7 component steps. We discuss each of these steps

in turn.

1. While discussing simple SELECT queries, we used only one accumulator, be-

cause the engine only uses one document tree to process simple select queries,

allowing the results to be computed iteratively by keeping one intermediate

result and combining each WHERE clause condition to the intermediate result.

Chapter 6. Implementation 149

prodjoin(SQL query: input; list accumulator, GI accumregn:output)
begin

1. Using the FROM clause, determine number of different query components n
Allocate n accumulators and n accumregn's

2. Evaluate expressions in the FROM clause, update symbol table with aliases
initialize each accumulator with the evaluated path expressions.

3. In the WHERE clause, evaluate simple (non-join) conditions according
to the order of evaluation determined by precedence. Results of each
condition is combined with any other condition based on the same
accumulator. Disjunctions within accumulators can be immediately
evaluated, however disjunctions between different accumulators are
delayed until the end (see Step 6).

4. For each join condition in the WHERE clause do
4a. Evaluate both sides and store into persistent lists
4b. Perform sort-merge join on the persistent lists into a new

structure containing (offset-left, offset-right, data).
Associate this structure with new catalog entry

4c. Perform traverseup on each element of each pair of this
structure to the appropriate accumulator level.

4d. Combine each of the branches with the computed values of
the corresponding accumulator from Step 3.

endfor

5. Update all accumulators with results from the combined conditions and
perform inter-accumulator disjunction operations if any..

6. Resolve dependency between accumulators.

7. Finally, evaluate the SELECT clause using the different accumulators
and the path traversal algorithms.

end prodjoin

Figure 21: Evaluation of SQL queries involving products and joins

Chapter 6. Implementation 150

However, in queries involving joins or products, there are potentially many doc-

ument trees involved. The di�erent WHERE clause conditions may refer to the

di�erent trees, which cannot be combined right away. This step of the algorithm

identi�es the number of required accumulators and allocates them in a symbol

table. This stage terminates trivially, since the number of accumulators is the

same as the number of objects in the FROM clause.

2. This step of the algorithm is to evaluate the path expressions in the FROM clause

and stores the results in accumulators in step 1. In this implementation, we

enforced the rule that the aliases in the FROM clause cannot be forward referenced

(i.e., FROM Book B, B.Title C is valid, but FROM B.Title C, Book B is not).

This ensures that the FROM clause can be processed using a single pass. This

stage terminates because there can only be a �nite number of objects in the

FROM clause and no forward references are allowed. Each of the objects can be

evaluated using the path expression evaluation algorithms described earlier.

3. The WHERE clause conditions are evaluated next, using the accumulators for the

corresponding document components. As in the case of simple select queries,

the conditions are formed into a tree according to the order of evaluation, and

evaluated in their logical order. If there are no disjunctions between di�erent

accumulators, all the conditions that do not involve a join can be evaluated at

this stage. Because of the way accumulators are used in this step as well as in

steps 4 and 5, the evaluation of disjunctions between accumulators is delayed

until step 6. For each of these comparisons, the path expressions involved are

evaluated top-down as described above and �ltered according to the compari-

son operation. The selected elements are traversed up (as in the simple select

queries) to go back to the level of the accumulator they originated from. The

termination of this phase is based on the observations that there can be only a

�nite number of WHERE clauses and that each of them can be evaluated using a

terminating algorithm described earlier.

4. The join conditions are evaluated next. Using this method, the two compo-

nents for the join are evaluated �rst and then stored in the storage manager.

Chapter 6. Implementation 151

The actual join operation on these two components is then performed in the

storage manager, using a sort-merge algorithm on the data counterpart of the

(o�set-data) structure of the stored accumulators. The sort-merge algorithm is

used because of the built-in sort feature of Exodus using the B-tree structure.

However, any join algorithm can be used here. The join operation creates a

structure which is slightly di�erent from the usual (o�set-data pair) structures

that are commonly used otherwise - the di�erence being the additional o�set

values arising from the join operation. After the join is performed, each of the

components of the new structure are traversed up to the level of the accumu-

lator they originated from. If the join follows a conjunction, each of the left

and right components of the structure is combined with the appropriate set of

matches (evaluated in Step 3). The join conditions are also evaluated by path

expression evaluation procedures which were previously shown to terminate.

The sort-merge join is a well-known method for computing joins and only re-

quires each of the components to be �nite in order to terminate { a requirement

satis�ed from the assumption that the database is a �nite set of documents.

5. Since individual conditions use the original accumulators as starting positions

for traversing the path expressions, the original accumulators are not modi�ed

during the processing of the WHERE clause. An optimization measure that can

easily be incorporated in this algorithm is to update accumulators after the

evaluation of each condition if the query is completely conjunctive. However, in

a query with disjunctions, evaluations of inter-accumulator disjunctions can only

be performed after all the conditions have been evaluated. Intra-accumulator

disjunctions are performed as they appear in Step 3. Since there can only be

a �nite number of accumulators and a �nite number of disjunctions between

them, this step terminates.

6. In DSQL, it is possible to have dependent accumulators, since path expressions

are allowed in the FROM clause. Hence, after the accumulators are updated,

any change in the accumulators is propagated back to the dependent accumu-

lators. Note that in Step 2, these accumulators are intialized using values from

Chapter 6. Implementation 152

other accumulators that they depend on. However, after all conditions are pro-

cessed and accumulators updated, the changes need to be propagated again to

the dependent accumulators. The updates may be performed using union or

intersection operations as necessary. We stated earlier that DSQL only allows

backward referencing of accumulator dependencies. Hence, this step terminates.

7. Finally, the SELECT clause is processed to generate the results, based on the

computed accumulators. Once again, this is computed using the path expression

evaluation algorithms described earlier, previously shown to terminate.

Termination. The termination of the algorithm is based on the proper termina-

tion of the individual stages, described above.

Correctness. The correctness of the algorithm given here is based on the cor-

rectness of the individual step. The basic logic of the algorithm is to �rst perform

the selection conditions (step 3) and then perform the join/product operations (step

4) and the projection operations (step 7) - the usual process followed in evaluating

SQL queries in relational databases.

Complexity. A single join operation in the above algorithm requires an ini-

tial dump of the respective accumulators into the persistent storage, followed by a

standard join operation and the extraction of the components generated by the join

operation. The most signi�cant operation among these is the intermediate join on the

persistent lists. Since we used the standard sort-merge join operation, this operation

carries a worst-case O(n2) complexity. The initial dump and the �nal extraction op-

erations have linear complexity. The e�ciency of the join operation can be improved

by using advanced join techniques such as \hash joins." In the implementation, sort

operations were built in to both Pat and Exodus. Thus, the actual evaluation of the

join operation only involves a merge. The sort-merge algorithm was chosen for this

reason, to simplify the implementation. The built-in sort operation of Pat, however,

did not show optimal performance and was discontinued in favor of the B-trees in the

implementation.

Chapter 6. Implementation 153

6.4.3 Query Optimization

Some optimization techniques have been implicitly discussed in the last few sections.

These include (i) the use of the catalog to block sections of the document tree from

being traversed, (ii) the evaluation of simple selections prior to the computation of

joins, and (iii) the incremental updates to the accumulator after the evaluation of

each condition in a conjunctive query. Another optimization technique implicit in

the implementation is the use of set-oriented evaluations instead of element-oriented

evaluation because of the nature of the Pat query language. Apart from these op-

timization techniques that have been proposed and implemented, many other tech-

niques common in the relational query processing can also be applied in this setting.

We have left the implementation of such optimization as future work (see Chapter 8).

Chapter 7

User Interface Design

The success of any system depends not only on the features of the system but also on

its \usability." Even if a system is feature-rich, such features are useless if they cannot

be easily accessed by the users. \User interface" is a generic term given to the way

a system interacts with its users. To design usable systems, the design process needs

to incorporate usability considerations into the early stages of the design process. In

Chapter 2, we described the essential components of the process for designing for

usability. In this chapter, we describe the visual query language that we term \Query

By Templates (QBT)." We also discuss the usability analysis process and explain the

results obtained from this analysis.

7.1 QBT: A Visual Query Language

This research generalizes the Query By Example (QBE) method described earlier

(Chapter 2) for application in databases containing complex structured data. QBE

is suitable for relational databases since it uses tabular skeletons (analogous to tables

in the relational model) as a means for constructing queries. Thus, the template for

presenting queries in QBE is similar to the conceptual structure of the instances in

the database. We use this idea to generalize QBE for databases where each data

instance, albeit complex, has a simple visual model. We base this assumption on the

fact that human beings form a mental model for the tasks that they intend to perform

[Boo89]. For example, users performing a search in a dictionary may not know the

internal structure and representation of each de�nition, but they usually have an idea

about a visual structure of a dictionary entry, assuming they have used dictionaries

in print. In our method, that we term \Query By Templates" (QBT), the basis of

154

Chapter 7. User Interface Design 155

the interface is a visual template representing an instance of the database. Simple

examples of templates include (i) a small poem for poetry databases, (ii) a table for

relational databases, (iii) a representative word de�nition for a dictionary database,

and (iv) a sample entry in a bibliography database.

QBT is primarily designed to be a simple point-and-click interface for posing

queries in document databases without the necessity of knowing and understanding

the internal structure of the database and without learning complex query language

syntax. In spite of its apparent simplicity, QBT is a powerful language and can

express the same class of queries as the core DSQL language introduced in Chapter 5.

As in the core DSQL, the current design of QBT does not address nesting of queries.

In this section, we describe the rationale behind the QBT interface. Next, we intro-

duce the concept of templates and describe the various types of templates considered

in this design. We then describe the process of formulating queries using templates.

Subsequent sections will describe implementation and analysis of the QBT interface.

7.1.1 Rationale

The main rationale for the idea of querying using templates comes from the fact

that users tend to form a distinctive mental model for tasks they perform [Boo89].

Simply described, a mental model is a mental image of the expected task (both the

process of performing the task as well as the result on completion of the task) that

the users conceive of before they actually begin any task. For example, users planning

to write a letter may have a mental image of what the letter would look like once

it is completed. During the process of carrying out the task, users try to use a tool

that can help them achieve their conceptual goal. Analogously, in order to search for

information in a repository, users form similar visual images of what they are looking

for. This visual image is what we try to capture using the concept of templates.

Let us explain this further with an example. Jane Doe was looking for a poem in

a database of poems. She knew that the poem was written by Blake, and she knew

that it mentioned the word \tiger" in the �rst line. However, using the conventional

search techniques, she either could not retrieve the poem, or had too many matching

Chapter 7. User Interface Design 156

poems. On subsequent brainstorming, she also remembered the occurrence of the

word \burning" in the �rst line, and with some e�ort, she could retrieve Blake's poem

\The Tyger." Of course, the word \tiger" in this particular instance was spelled as

\tyger."

One might correctly argue that Jane's problem could be solved using a search

method that can perform approximate searches. However, the goal of this research is

not to design approximate search techniques. What is more important in the above

instance is the fact that Jane acquired a mental image of a poem that she wanted to

retrieve, and the only portions of the poem that she could remember were the poet's

name and a portion of the �rst line. Although her initial guess was unsuccessful, a

re�nement of the guess eventually resulted in a match. In this case, she had a mental

image of a poem (similar to Figure 22 a) which resulted in a retrieved instance (in

Figure 22 b).

tiger?

Blake

burning

The Tyger

William Blake, 1757-1827

Tyger Tyger, burning bright,
 In the forests of the night;
What immortal hand or eye,

In what distant deeps or skies
 Burnt the fire of thine eyes!

 What the hand, dare sieze the fire?

And what shoulder, & what art,
 Could twist the sinews of thy heart?
And when they heart began to beat,
 What dread hand? & what dread feet?

(a) (b)

 Could frame thy fearful symmetry?

On what wings dare he aspire?

Figure 22: An example of a conceptual image of a search and the retrieved result

Chapter 7. User Interface Design 157

As mentioned above, the goal in this research is to capture the mental image that

users develop prior to starting a search task. QBT accomplishes this by presenting

the search interface using a simple representative of the database instances. Any

database that has a simple visual representation of its content can be used with

QBT. For databases that do not have a general visual content, we can always revert

to tables (or even forms) for use as representative templates. One of the main goals for

the design of QBT was to retain all the prominent properties of QBE. The intended

properties of QBT that are analogous to those of QBE (as discussed in Section 2.2.2.3)

are (i) simplicity, (ii) equivalence, (iii) closure and (iv) completeness. First, QBT

is designed to be simple, and it does not require users' knowledge of the complex

document structure. Second, it uses templates that are conceptually equivalent to

the instances of the databases. Third, QBT is \closed" in its template domain by

displaying the results using the same template as the query. Fourth, one can formulate

most commonly occurring queries using QBT. In the rest of this section, we describe

the various types of templates with illustrations, to elicit the foundation for the design

of QBT.

7.1.2 Design Details

AQBT interface, in its simplest manifestation, displays a template for a representative

entry of the database. The user sees a sample of the type of data she would expect

to �nd in the database (e.g., a poem in a poetry database). She speci�es a query by

entering examples of what she is searching for in the appropriate areas of the template,

and the system retrieves all the database entries that match the example she provided.

To illustrate the interface, we will use a simple template for a poetry database, as

in Figure 23. In this �gure, we indicate a prominent logical region of the poem by

circling it and labeling it with the corresponding region name. Physically, the QBT

interface consists of a small template image divided into areas corresponding to the

di�erent logical regions in the database, as in Figure 23. Depending on the layout

of the regions, the templates can be of several types as discussed in the subsequent

sections.

Chapter 7. User Interface Design 158

Stanza

First Line

Poem Title

Collection Historical Age

Poet Name

Any line

by Felicia Hemans

 Shone round him o’er the dead.

 As born to rule the Storm,
The Creatures of Heroic blood
 A proud, though child-like form.

Casabianca

The boy stood on the burning deck
 Whence all but he had fled,
The flames that lit the battle’s wreck

Yet beautiful and bright he stood,

Poems by Felicia Dorothea Hemans 1808 (Early Eighteenth Century)

Figure 23: A simple template for poems, with its logical regions

7.1.2.1 Flat Templates

As described in the previous section, QBT relies on the presence of a simple visual

template for the instances in the database. In most cases, this template could be

planar or
at. This means that all logical regions of the template can be displayed

simultaneously in a two-dimensional image without overlapping (see Figure 23). We

call these templates \
at templates." Flat templates are usually easier to display and

use, as the structural regions can be simultaneously displayed in a plane, possibly

by showing multiple instances of some regions. For example, in Figure 23, the First

Line and Any Line regions are sub-regions in Stanza. To display these sub-regions,

the template needs to include a second stanza that is broken into its components.

7.1.2.2 Nested Templates

Although
at templates are easy to display and navigate, they cannot model struc-

tures with deep levels of nesting. In this case, we use templates that can be nested.

In nested templates, regions are allowed to overlap. In particular, certain regions can

Chapter 7. User Interface Design 159

be completely inside other regions to represent sub-regions. To display embedded

logical regions, we use one of the following methods:

(b)

Stanza

Any line

First line

by Felicia Hemans

(a)

Casabianca

The Creatures of Heroic blood
 A proud, though child-like form.

Stanza

First line

Any line

 As born to rule the Storm,

The boy stood on the burning deck
 Whence all but he had fled,
The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Yet beautiful and bright he stood,

The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Yet beautiful and bright he stood,
 As born to rule the Storm,
The Creatures of Heroic blood

 Whence all but he had fled,

Casabianca
by Felicia Hemans

The boy stood on the burning deck

 A proud, though child-like form.

The boy stood on the burning deck

 Whence all but he had fled,
The flames that lit the battle’s wreck

 Shone round him o’er the dead.

Figure 24: Templates with (a) Embedded Regions and (b)Recursive regions

Embedded Regions In this method, sub-regions are displayed inside the parent

region. As in
at templates, all regions are displayed simultaneously in the same

plane of the image. Component regions no longer need to be mutually exclusive.

This method is a simple extension of
at templates, but it makes templates much

more powerful while retaining the simplicity. However, this method is again limited

to structures in which the nesting level is not very deep and the top-level region is

physically large enough to include all the nested regions without completely obscuring

itself. An example of this type of nesting in shown in Figure 24(a).

Recursive Regions This is the most general method of nesting regions. In this

method, a region with sub-regions can be subsequently expanded. During traversal,

the user may \zoom in" a parent region to display its sub-regions. The magni�ed

portion of the template can be an independent template which can be subsequently

magni�ed to achieve multiple levels of nesting. Although this method can capture

any general structure, the templates have to be cleverly designed so that users are not

Chapter 7. User Interface Design 160

disoriented by the nested templates. Figure 24(b) shows this method of displaying

internal structures for the same sample poem.

7.1.2.3 Structure Templates

Structures, particularly large ones, may get too complex to use nested templates. In

these cases, it is often necessary to display the internal structure simultaneously with

a template that displays the relative position of the current region. As mentioned

earlier, most documents can be conceived as having a hierarchical structure that is

conveniently visualized as a tree. The simultaneous display of a template with a

hierarchy of logical regions based on context greatly simpli�es the visualization of the

nested structure. An example of the structure template is shown in Figure 25(b),

which is a screen image from the prototype implementation of QBT, described in

Section 7.2.

Figure 25: Screen shot of the prototype implementation showing (a) a
at template
and (b) the structure template depicting the expanded structure.

7.1.2.4 Multiple Templates

Many queries require the use of more than one template. In relational databases,

queries that derive the results from the contents of multiple tables require the con-

stituent tables to be joined using a common attribute. QBE implements this by

Chapter 7. User Interface Design 161

displaying skeletons for all the constituent tables (see the examples in Chapter 2).

QBT incorporates a very similar strategy. Even though \joins" in text databases are

less common since the data is implicitly linked in the structure of the documents,

they are still necessary and give rise to many interesting queries when the results

involve multiple databases or related fragments of the same database. To express

these queries, two or more templates, connected with a joining region, are displayed.

We give examples of such queries in Section 7.1.3.3.

7.1.2.5 Non-visual Templates

Although the main idea in the QBT formalism is to use visual means for specifying

queries, templates can easily be used without any visual structure. In the SGML

domain, one might consider an incomplete SGML document to be a template for

specifying a query that retrieves the document fragments that satis�es the template.

In this case, the template is speci�ed as a pattern which is matched by the query

processing engine. However, we are not considering such non-visual templates in the

current implementation.

7.1.3 Query Formulation

Normal keyword searches within structural regions are simple and most natural with

the QBT interface. As illustrated earlier, users express their queries by indicating the

search keywords in the appropriate regions of the template. In this section, we show

all the di�erent types of possible searches that can be performed with QBT.

One can treat QBE [Zlo77] as a special case of QBT where the templates used are

table skeletons that instantiate tables in the database. In QBE, queries are speci�ed

by entering values in proper positions of the tables. These values may be either

constants (i.e., strings or numbers), variables (or examples, usually di�erentiated

from the constants by underlining), or expressions involving constants and variables

combined with arithmetic and comparison operators. The output of the query is

speci�ed by marking the regions that need to be presented in the output. QBT uses

the same basic principle, with the extension that the templates are not restricted to

Chapter 7. User Interface Design 162

table skeletons but can be any visual representation of the database instances.

The primary di�erence between the method of expressing queries in QBT and

in QBE lies in the fact that the templates in QBE are essentially one-dimensional.

Although QBE uses two-dimensional tables for querying, the meta-data (attributes

of the relations) only appear along the horizontal axis as column headings of the

tables. QBE uses the rows along the vertical axis to specify multiple search conditions

and logical operations between the search conditions (see examples in [Zlo77]). In

QBT, the regions (meta-data) are distributed along both dimensions of the template,

utilizing the whole template plane for visualizing the structure. Logical operations

between regions can be expressed by physically connecting two or more regions via

a logical operator. Logical operations within regions can be formed using logical

expressions within the scope of that region. In the rest of this section, we discuss how

di�erent types of queries are performed using QBT.

7.1.3.1 Simple Selection Queries

Simple selections include searching for constant strings or numbers within logical

regions of the document (the whole document itself being one region). In QBT, such

searches are performed by simply entering the search string in the corresponding

region of the template. As a result of such a search, database instances that are rooted

at a default region and that match all the speci�ed conditions are returned. In other

words, the given search criteria are combined using a logical conjunction operation.

The result of the query is by default rooted at a pre-selected region de�ned by the

template. However, users can mark the regions that they want returned by placing a

print-marker on them.

In the illustrations (see Figure 26), the small tick-mark (
p
) is used as a print

indicator. In the examples, Figure 26(a) denotes the simple query: \Find the poem

titles and poets of all the poems that have the word `hate' in the title and the word

`love' in the �rst line." Note that unlike QBE, searches in QBT are substring matches

instead of exact matches. So, entering the word `love' in the region \�rst line" matches

all poems with the �rst line containing the word `love' anywhere in the �rst line. In

QBE, this is done by indicating examples before and after the search string.

Chapter 7. User Interface Design 163

 Shone round him o’er the dead.
The flames that lit the battle’s wreck

The boy stood on the burning deck
 Whence all but he had fled,

by Felicia Hemans

Casabiancahate

love

 Shone round him o’er the dead.
The flames that lit the battle’s wreck

The boy stood on the burning deck
 Whence all but he had fled,

by Felicia Hemans

love

CasabiancaNOT "hate"

OR

(a) (b)

Figure 26: Query formulation with QBT: (a) Simple selections and (b)Logically com-
bined selections

7.1.3.2 Selections with Multiple Conditions

We have just seen that if multiple conditions are speci�ed in di�erent regions, they

are combined using logical conjunctions, so the results returned from the query sat-

isfy all the speci�ed search conditions. If this is not desired, search conditions can be

combined using logical operators AND, OR, NOT. An individual condition can be

negated by placing the keyword \NOT" in front of the string. Implementations of the

interface may use some visual mechanisms (such as a negation symbol or a negation

button) instead of this negation keyword. Users may combine multiple conditions

using binary logical operators \AND" and \OR" by connecting the strings involved

using a pointing device and selecting the proper logical operator. Figure 26(b) demon-

strates how this is accomplished using the query: \Find the poem titles and poets of

all poems that either do not have the word `hate' in the title or have the word `love'

in the �rst line." Notice the introduction of the negation and the \OR" connection.

Providing a two-dimensional visualization for a strictly ordered chain of query

components connected with logical operations can be somewhat tricky. In our ap-

proach, we tried to keep the interface as simple as possible by implying conjunctive

connectors when there are no arrows, and explicitly specifying disjunctive or con-

junctive connectors when necessary. The algorithm to derive the logical expression

from its graphical representation is very similar to a minimal spanning tree algorithm

Chapter 7. User Interface Design 164

[CLR89, Chapter 24]. The algorithm is initiated with one of the nodes which does

not have any incoming arrows, and a minimal spanning tree is built with all the nodes

reachable from the starting node that have not been included in the expression. This

process is continued until all nodes have been included. This process ensures that

each node is only entered once in the expression. However, it is only a heuristic

method, and may or may not correspond exactly to the query the user had in mind.

In order to ensure that the proper query is processed, the condition box needs to be

used. We discuss condition boxes shortly.

7.1.3.3 Joins and Variables

In this section, we look at a special class of query called \join." A join is an operation

which combines multiple fragments of a database (in form of document trees in this

case) based on the value of at least one node in each of the components. When a

join operation is performed based on the equality of the combining node, it is also

referred to as an \equi-join". Joins are indispensable in relational databases, since

the relational design involves \normalization" of a schema by breaking it into
at

tabular fragments. This fragmentation requires using a join operation to combine the

individual fragments together at the time of query processing. However, in document

databases, the structure is not normalized into planar fragments but allowed to grow

hierarchically, so joins are not required to combine fragments. However, joins are still

useful for solving queries that require comparison of di�erent parts of a database or

di�erent instances of the same database.

For example, one may try to \�nd the pairs of poets who have at least one poem

with a common title" (as in Figure 27). In this case, we need to generate two instances

of the poetry database and run the query comparing the titles of the two poems. This

is achieved in QBT by using multiple templates. In the case of the above query, the

same template is instantiated twice, and the join attributes are connected together.

The connection can be augmented with comparison operators to specify joins other

than \equi-joins". As before, in the case of asymmetric comparison operations, the

precedence of the operators is determined by the direction of the arrow. To keep the

conceptual similarity with QBE, examples are underlined to di�erentiate them from

Chapter 7. User Interface Design 165

The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Casabianca
by Felicia Hemans

The boy stood on the burning deck

Casabianca example1example1

by Felicia Hemans

 Whence all but he had fled, Whence all but he had fled,
The boy stood on the burning deck

The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Figure 27: Query formulation with QBT: Joins

constants.

Notice that visualizing the results of join queries may not be possible using the

same template as the query itself, but an implementation of QBT can work around

this problem by specifying layout characteristics (using stylesheets, for example) to

display the results. The closure of the interface is maintained by the fact that the

query outputs consist of SGML documents only, so they can be displayed using the

same methods used for displaying the template.

7.1.3.4 Complex Queries

Visualization of queries that combine conditions on more than two regions using logi-

cal operators is di�cult in QBT { a problem arising from its
atness. Connecting the

regions together is not always su�cient because the intended order of these operations

is important. In QBE, complex situations like this are expressed in a separate area

from the skeletons - commonly called the condition box. The condition box is simply

a small text window in which the complex conditions can be expressed using logical

expressions and the order or evaluation denoted using parentheses. The condition

box can also be used to override the precedence of operators.

QBT uses a similar mechanism to express complex logical combinations. As search

strings and examples are speci�ed, the condition box is automatically updated. The

user can then insert parentheses as necessary to change the default precedence. For

example, in Figure 28, if the default precedence (left to right) is used, the query

Chapter 7. User Interface Design 166

 Shone round him o’er the dead.
The flames that lit the battle’s wreck

The boy stood on the burning deck
 Whence all but he had fled,

by Felicia Hemans

Casabiancahate

love

shakespeare
OR

TITLE AND POET OR FLINE

TITLE AND (POET OR FLINE)

(b)

(a)

Figure 28: Changing precedence of operations with Condition boxes

evaluates to: \Find the poem titles and poets of the poems in which either the word

`hate' is in the title and the poet is Shakespeare, or the word `love' is in the �rst

line." The default condition box is shown in Figure 28(a). However, this default

can be changed to: \Find the poem titles and poets of the poems in which the word

`hate' is in the title, and either the poet is Shakespeare or the word `love' is in the

�rst line" (see Figure 28(b)). The condition box can also be used for specifying more

complex conditions involving more than two variables in an expression. In this case,

QBT's condition box has the same functionality as that of QBE. The main use of the

condition box is to provide the power necessary to generalize the querying method

to accommodate all types of queries supported by the formal query languages and,

hence, add to the expressive power of the language.

7.2 Prototype Implementation of QBT

We built a prototype1 of the QBT interface using the JavaTM programming language

[Jav95]. We chose Java over other similar user-interface development languages be-

cause of its object-oriented nature and its widespread availability and use on the

Web. One of our objectives in building the prototype was to be able to conduct

1The current version of the prototype implementation is available on-line at
http://blesmol.cs.indiana.edu:7890/projects/SGMLQuery. Note that only the interface is ac-
cessible from outside Indiana University. The results of the queries cannot be viewed from a remote
location because of copyright restrictions.

Chapter 7. User Interface Design 167

usability experiments in the users' familiar environment. Hence the ability to run

the system through the widely available WWW using Java-enabled browsers was a

bonus. The prototype implements most of the querying constructs described here in-

cluding the embedded template (without recursive magni�cation) and the structure

template. We have not yet incorporated the condition box in this prototype, but it

will be added in a future release. We also included an experimental version of an

SQL language translator from the QBT query. Figure 25(a) and Figure 25(b) show

two parts of the screen { the template screen showing the nested template and the

structure screen showing the structure template. There is a third component of the

interface that displays the SQL query equivalent to the template query. This SQL

query gets automatically updated as the user modi�es her query using the template.

As an experiment, we used the Chadwyck-Healey English Poetry database us-

ing the poetry templates similar to those described above. In the prototype system,

queries generated using the interface are sent to a query engine through HTTP (Hy-

perText Transfer Protocol), which is run from a web server as a CGI (Common

Gateway Interface) executable. The engine generates its output in HTML which is

displayed by the clients. We wrote this engine in C/C++, using the API (Application

Programming Interface) provided by the Pat [Ope94] software. More details on the

implementation of the query engine are presented in Chapter 6.

7.2.1 GUI Implementation with JavaTM

This section presents an overview of the implementation of a prototype of the QBT

interface. This prototype is built using the JavaTM programming language. In this

section, we describe the basic components of this prototype, the design considerations,

and implementation details of this prototype. The current prototype has three distinct

query interfaces, of which only one can be viewed at a time. The QBT interface that

we discussed earlier is included in the \template screen", the structure of the database

schema is displayed in the \structure screen", and the equivalent DSQL query is shown

in the \SQL screen". The subsection sections describe each of these three screens in

detail.

Chapter 7. User Interface Design 168

7.2.1.1 Interface components

As described above, there are three separate \screens" in the prototype that are closely

linked and are designed to work together. Any change made in one of the screens is

also re
ected in the other two screens. However, in the current implementation, the

three component screens of the interface are not displayed simultaneously because

of the overhead required. However, users may switch back and forth between the

screens using a \tabbed folder" selection method. The top of the interface consists

of three buttons that function like three tabs that can be selected to activate the

corresponding screen. When a particular screen is selected, the tab corresponding to

that screen gets dimmed, highlighting the current selection and also indicating that

the users may switch to only the other two screens. The bottom of the screen has two

buttons for submitting the query for evaluation and clearing the current query, much

like the buttons found in most HTML forms. In addition, the bottom of the screen

also includes options for selecting the number of matches that the system should

retrieve at a time and for selecting the region that should be displayed as the default

result.

The center of the displayed region contains the main query screen. This is the

part that the user may change back and forth using the buttons at the top of the

screen. By default, the system displays the template screen at start-up.

The Template Screen The template screen consists of a template image in the

background. As the user moves the mouse across the template, the position of the

mouse activates the underlying region. This highlights the region on the template

as well as displays the name of the region on the status bar. A mouse click on

the activated region brings up an expression builder for that region. The expression

builder consists of at least one entry area for inputting one or more search terms.

It also includes a check-box for indicating negation on that region. When checked,

the semantics of the search expression in the target region is negated. Currently, the

expression needs to be explicitly included in the entry area, but a future version of the

interface will have a graphical expression builder that can build boolean combinations

of keywords. A screen capture for the template screen is shown in Figure 29.

Chapter 7. User Interface Design 169

Figure 29: A screen image from the prototype showing the template screen

Chapter 7. User Interface Design 170

The Structure Screen The structure screen displays the hierarchical structure of

the database. This screen displays the same query as in the templates, by associating

a search condition with the corresponding region in the hierarchical display. The

structure can be expanded and collapsed by the user as a means for traversing the

document structure. Ideally, the structure should be displayed together with the

template, with the current region highlighted in both the template and the structure

to give the user an idea of the context. In the current implementation, navigation of

the structure needs to be manually performed by the user.

The structure screen has two parts: the left half of the screen displays the structure

of the database and the right half of the screen displays the query corresponding to

the current region highlighted in the structure. The user can change the query by

modifying the query text in this section. The condition box is a part of the screen

(although it is not implemented in the current prototype); if the user is formulating

a query solely using the structure screen, the condition box is the only way to specify

boolean combinations of the individual query fragments corresponding to each region.

A screen capture for the structure screen is shown in Figure 30.

The SQL Screen The SQL screen is simply an area where the user can specify

the query using the extended SQL described in Chapter 5. This screen is also tightly

integrated with the rest of the interface, and a query formulated in any of the other

two screens will automatically get re
ected in this screen. However, since the cur-

rent implementation of the template and structure screen does not support joins or

nested queries, such SQL queries cannot be automatically translated into the tem-

plate formulation. However, joins are supported by the internal query engine, so a

join formulated in this screen can be submitted for evaluation. A screen capture of

the SQL screen is shown in Figure 31.

Chapter 7. User Interface Design 171

Figure 30: A screen image from the prototype showing the structure screen

Chapter 7. User Interface Design 172

Figure 31: A screen image from the prototype showing the SQL screen

Chapter 7. User Interface Design 173

7.2.1.2 Implementation Issues

In this section, we brie
y describe some of the issues considered for the implementa-

tion of the Java query interface2. There are three main modules (Java packages) in

this project (see Figure 32 for the class hierarchy):

SQLPanel

QueryPanel PseudoApplet SGMLQuery

Hier ImageMap

Panel

RunnableApplet
AltDisplay HierCanvas

Canvas

NodeMem

Shape

LexAn
Line

QueryString

Editable

ImageMapArea

ChoiceArea

NameArea HighlightArea

Object

TreeVect

Vector

NameDialogQueryEntry

QueryCombine

AppletFrame

Classes from package

SGMLQuery

ImageMap

Hier

Java builtin

Frame

Figure 32: Class Hierarchy of the SGML Query Interface Implementation

2The reference manual for the project can be obtained from
http://blesmol.cs.indiana.edu:7890/projects/SGMLQuery/doc/packages.html, or by following
the SGML Query Interface link from http://www.cs.indiana.edu/hyplan/asengupt.html.

Chapter 7. User Interface Design 174

1. SGMLQuery. This package serves as the main package and the driver of the

basic user interface, query generator and catalog manager.

2. Hier. This is the hierarchical structure browser, originally developed by Brogden

[Bro95] and adapted for the prototype project.

3. ImageMap. This is the primary template screen module. This was originally

developed by Sun Microsystems as a demonstration module for Java. This

source was used as a starting point with added functionality for the template

module.

The SGMLQuery Package The SGMLQuery package includes the main driving

class SGMLQuery that runs as an applet in a web browser. This class initializes

the whole system, including setting up the panel and creating the user interface

components. The individual components of the interface generate events which are

processed by the method action in SGMLQuery. Based on the type of the event, this

method performs actions such as clearing the query, sending the query to the server,

and processing log messages.

Brief description of some of the other classes in this package are given below:

� AppletFrame. This class is an experimental class that allows an applet to run

as an application without a web browser. Currently, since the query interface

requires a web browser to display its results, this class can only display the user

interface and is used for quick debugging of the user-interface components.

� Editable. This is a Java Interface (classes that cannot be instantiated, but only

be inherited from) created to allow multiple query components to share similar

editing properties.

� PseudoApplet. The Java Applet class includes many useful methods such as

methods for �nding the document URL by accessing the status bar. The Pseu-

doApplet class allows non-applet subclasses to inherit these properties.

� QueryEntry/QueryCombine. These are subclasses of the builtin Java class

Frame. QueryEntry bring up the entry panel for entering text queries and

Chapter 7. User Interface Design 175

QueryCombine brings up the entry panel for specifying the operator combining

two query clauses.

� QueryPanel. This is primarily a container class that consists of the panel in

which the query is displayed. This class uses a CardLayout that allows it to

switch between the three di�erent views for querying.

� NameDialog. This is the class that displays the login dialog box at the start of

the application.

� SQLPanel. This is the panel that displays the SQL query. It has the capability

of automatically generating the SQL equivalent of the query speci�ed by the

template and structure screens.

� LexAn. A simple lexical analyzer to parse the con�guration �les.

� TreeVect. This is the internal representation of the tree that describes the

DTD. Originally, this class was in the Hier package, but was moved to the main

package so that all the di�erent query components can directly use the same

structure instead of having to call methods in the Hier package interface.

The Hier Package The Hier package is the primary package for displaying and

using the hierarchical structure browser in the query interface. The main class in this

display is Hier, which uses the con�guration from the TreeVect class to initialize the

display and allows a user to interactively expand and collapse the structure on the

screen as well as navigate to a particular structure component to specify a query. The

other classes in this package are:

� HierCanvas. This is the class that displays the structure of the database. It

draws the text and the skeleton of the structure and processes user events to

expand and collapse the structure.

� NodeMem. This is an individual element of the tree structure implemented by

the TreeVect class which contains the structure information.

Chapter 7. User Interface Design 176

The ImageMap Package The ImageMap package includes classes that display the

template interface. This interface is an extended form of the ImageMap demonstration

package from Sun Microsystems. An imagemap in a HTML interface consists of an

image with speci�c physical regions associated with di�erent URLs. As described

in the design of templates, this resembles the nested template method, and so an

imagemap class provided a good starting point for this package. The main class in this

package is ImageMap, which displays the background image as a template, initializes

the di�erent physical areas of the image by associating the classes corresponding

to these areas, and processes events generated from user interactions. The primary

classes in this package are the following:

� ImageMapArea. This class represents individual areas of the imagemap. In the

current implementation, each instance of ImageMapArea represents a logical

region of the document structure, and provides a correspondence between the

physical area of the template screen and the logical region of the database by

appropriately highlighting the region and displaying the region name in the

status area.

� HighlightArea. This is a simple class which highlights or un-highlights a partic-

ular area when focus is received.

� NameArea. This class represents an individual template region, which can han-

dle a query entered as a string.

� ChoiceArea. A subclass of NameArea, this class allows the query to be se-

lected from a list of choices (set of pre-de�ned values that can appear in the

corresponding region).

� QueryString. This is a class that can hold an individual query string and is

capable of parsing the embedded logical operators for connecting query compo-

nents in the same region.

� Line. This is a simple class which represents an inter-region connection for the

purpose of specifying logical operations between queries speci�ed in di�erent

regions.

Chapter 7. User Interface Design 177

7.3 Usability Testing

We performed an extensive usability analysis of the prototype interface. The main

goal of this analysis was to detect di�erences between this interface and a standard

forms-based interface with similar search capabilities. In particular, we were inter-

ested in di�erences with respect to (1) accuracy, (2) e�ciency and (3) satisfaction.

This section describes the method used during the experimental evaluation of the

prototype Java-based (QBT) interface described above (Section 7.2).

To compare the QBT interface with a normal form-based interface, we created a

prototype form interface for searching the database with similar querying capabilities.

A screen image of the form interface is shown in Figure 33. This form uses the

basic form building blocks provided by HTML, in a style commonly used in web

search engines. The output formats for both of these interfaces are the same and are

generated by the same query engine.

7.3.1 Experimental Design

The experiment consisted of two primary parts. In the �rst part, we gave the subjects

ten questions { among which we prepared nine and left the tenth question open to

the subject's imagination. All subjects were given the same set of questions (see

Appendix C). The questions varied in complexity and were designed so that all

except one returned some matches. The subjects were divided into two categories

based on their familiarity and expertise with the subject. Each subject used one of the

two interface types and answered the questions using the assigned search interface by

writing down the number of matches returned by the search. The subjects were asked

to ascertain that the question was interpreted properly by the searching program. At

the conclusion of the experiment, the performance of each subject was evaluated based

on their e�ciency, accuracy and satisfaction.

The independent and dependent variables for the experiment are outlined below:

Independent variables The independent variables (determining factors) for this

analysis were the following:

Chapter 7. User Interface Design 178

A. Interface Type. (1) the QBT-based interface and (2) the form-based inter-

face

B. Subject Type. (1) expert and (2) novice.

Dependent variables The dependent variables (evaluation factors) for the analysis

were the following:

1. E�ciency. The amount of time in seconds the subjects take to answer

each question.

2. Accuracy. The degree of accuracy of the queries (i.e., to what extent the

queries matched the textual query given to the users). See Appendix C for

the actual queries.

3. Satisfaction. How satis�ed the users were after using the interface (mea-

sured by self-reports in written debrie�ng).

Figure 33: The form implementation of the query interface used in the usability
analysis

Chapter 7. User Interface Design 179

7.3.2 Subjects

A usability analysis procedure with a pilot test was conducted as part of this re-

search. The �rst experiment was designed as a pilot test for the actual usability

process. In this experiment, four subjects, one in each category (novice-form, novice-

QBT, expert-form, expert-QBT) participated in this study. The main purpose of this

study was to determine the appropriateness of the analysis technique and ways the

experimental design could have been improved. The rest of this section refers to the

�nal usability analysis experiment.

Twenty subjects participated in the �nal usability analysis. We structured the

study using a \between-users" strategy [Rub94], where two distinct groups of users

use the two platforms. In our experiment, ten subjects were given the Java-based

interface (see Figure 25), while the other ten users were given the form-based interface

(see Figure 33). Each subject was placed in one of two distinct groups of �ve experts

and �ve novices.

We chose the subjects from students who volunteered to participate in the re-

search. The only restriction imposed on the subjects was that they all be Indiana

University a�liates because of the copyright restrictions on the database which we

used in the experiment. We divided the subjects into two groups based on their

experience with computers and databases. The subjects classi�ed as \novices" had

minimal computer expertise { generally limited to only e-mail and occasional World

Wide Web access. The subjects classi�ed as \experts" were people accustomed to

using databases and the web as well as designing and programming graphical user

interfaces. We made no distinctions between male and female subjects or young and

old subjects, since sex and age were not considered as independent variables in this

analysis. Eleven female and nine male subjects, all within the age group of 20{35,

participated in this study.

7.3.3 Equipment { Software and Hardware

We performed all the experiments using Netscape 2.0 for the Java-based interface and

either Netscape 2.0 or 1.1 for the form-based version. For the Java-based interface,

Chapter 7. User Interface Design 180

we restricted experiments to machines having 16MB or more system memory, since

Netscape's Java performance is sub-standard with less memory. No memory restric-

tion was enforced for the second interface as the HTML forms do not have additional

memory requirements.

As described earlier, all the sessions were held in the users' familiar environments.

Only one of the subjects (novice) did not have access to a speci�c computer environ-

ment. In this case, we performed the session at the usability laboratory at the School

of Library and Information Science at Indiana University. The rest of the sessions

were held at the subjects' homes or o�ces or the laboratories that they were primarily

accustomed to. Although this meant that the client machines varied in many ways,

this did not make much di�erence in terms of their e�ciency since most of the search

processing was done on the server side (which was the same for all cases).

7.3.4 Data Collection

We collected two types of written data: (1) the subjects' responses to the survey

questions and (2) the subjects' responses to the number of matches for each search

problem (See Appendix C for the actual questions). The subjects were timed auto-

matically by the server and the query engine that was actually executing the queries.

The server also kept a detailed log on the actions performed by the users during the

experiments, including the actual query that was executed.

7.3.4.1 Basic Procedure

The subjects were introduced to the experiment and the target interface. After an

initial introduction, the subjects were given the experimental search problems and

asked to obtain the search results by composing queries sequentially using their target

interface. Once the system responded with a result, they recorded the number of

matches returned. They were also asked to verify their results in order to check for

possible typographical errors by checking the response from the database and viewing

sample results from their search. After they �nished the searches, they were given

a set of survey questions. They were also asked to orally describe their feelings and

Chapter 7. User Interface Design 181

general reactions about the functionality and appropriateness of the systems.

7.3.4.2 Experimental Search Queries

A set of nine queries (see Appendix C) was given to each subject. For the tenth

query, they were asked to search for something of their own interest. The purpose of

this tenth query was primarily to decide the types of questions that are usually asked

by users, and use the response for determining the scope of the languages and future

usability studies. The �rst and the easiest query was primarily meant to acquaint the

subjects with the system, and the last query was mainly to see what types of questions

users were interested in. The other queries ranged from very simple searches involving

a single clause in a �eld to complex searches involving up to four clauses combined

together. Note that the QBT interface had no restrictions on the number of clauses

that could be speci�ed, but the form interface was limited to only four clauses, which

is why we did not involve any query with more than four clauses.

7.3.4.3 Timing Techniques

The subjects were timed by electronic means. Whenever a user submitted a query

using either interface, the server logged the access time. The query engine that we

designed also logged timing and other detailed information about the queries sent by

the users. The Java interface sent logging messages to the server in response to actions

performed by the user. This allowed the server to keep track of all the actions (such

as button press and query selection) that the user took over the course of submitting

the queries.

Examples of the log messages kept at the server side are shown in Figure 34. In

the session denoted by this log, the user authenticates himself as \Alan" and speci�es

two queries. These logs keep track of when particular query string is speci�ed for any

speci�c region, when the query is submitted to the query engine and when the user

switches between the di�erent screens of the interface. The date and times are used

to calculate the actual time taken by the user to formulate the queries. For example,

in this log, the user takes 42 seconds to formulate the �rst query and 33 seconds to

Chapter 7. User Interface Design 182

formulate the second query (in the �rst case, the time is calculated by the di�erence

between the authentication and submission, and in the second case, from the restart

and submission).

<none>~4/9/96 14:45:11~init~~
<none>~4/9/96 14:45:57~start~~
alan~4/9/96 14:47:50~auth~~
alan~4/9/96 14:48:20~query~Poem Title~casabiana
alan~4/9/96 14:48:30~query~Poem Title~casabianca
alan~4/9/96 14:48:32~submit~head=casabianca~
alan~4/9/96 14:48:37~stop~~
alan~4/9/96 14:50:23~start~~
alan~4/9/96 14:50:28~query~Poem Title~NOT casabianca
alan~4/9/96 14:50:29~submit~head=NOT+casabianca~
alan~4/9/96 14:50:37~stop~~
alan~4/9/96 14:50:44~start~~
alan~4/9/96 14:50:52~query~Poem Title~
alan~4/9/96 14:51:15~query~Poet Name~rilke
alan~4/9/96 14:51:17~submit~poet=rilke~
alan~4/9/96 14:51:19~stop~~
alan~4/9/96 14:51:23~start~~
alan~4/9/96 14:51:29~query~Poet Name~
alan~4/9/96 14:51:30~switch~0~1
alan~4/9/96 14:51:52~switch~1~0
alan~4/9/96 14:51:53~switch~0~1

Figure 34: Sample log messages stored at the server

7.3.4.4 Survey Questions

In addition to the queries, we gave the users a small set of questions to assess their

experience, preferences, and degree of satisfaction with the interface. They were also

asked to point out features that they liked or disliked in the interface they used. The

survey questions are also listed in Appendix C. The primary purpose of the survey

was to determine the degree of satisfaction reached by the users and the comparability

of the interface they used with other search interfaces that they have experienced on

the web prior to this experiment.

Chapter 7. User Interface Design 183

7.3.4.5 General Feedback

After the experiment was over, the subjects were asked to comment on their general

feelings about the project; their comments and suggestions were noted. This data

was primarily used for the purpose of designing improved features for the current

interface.

7.4 Usability Evaluation

This section describes in detail the results that we obtained from the usability anal-

ysis. We divide the results into three di�erent sections, one each for the dependent

variables { accuracy, e�ciency, and satisfaction. We used a statistical measure to

determine whether or not the data gathered had enough information to su�ciently

support any claim for signi�cance. A common statistical method used in determining

signi�cance results is ANOVA or Analysis of Variance (for an introduction to ANOVA,

see [WW90, Chapter 10]). The ANOVA technique analyzes variance within samples

and provides a method for determining whether two or more samples showing signi�-

cant di�erence based on one factor (simple ANOVA) or multiple factors (multivariate

ANOVA). The result of an ANOVA computation with a sample of observations of two

di�erent events provides a con�dence level for determining whether the two events

were di�erent. For an ANOVA analysis, based on the degrees of freedom (number of

factors a�ecting the event), a signi�cance level is decided (usually a small value such

as :05), and a sample is only considered to be exhibiting signi�cant di�erence if the

value is lower than this threshold.

For each of the measures, we performed a multivariate ANOVA test with a :05

signi�cance level. Here we show the mean and standard deviation values for the

e�ects of interface and expertise for each of the dependent variables, and comment

on the result of the analysis.

In the following analysis, for the independent variable \Interface type," the Java

interface (Figure 25) is given a value of 1 and the form interface (Figure 33) is given

a value of 2. For the independent variable \Subject type," the values of 1 and 2

Chapter 7. User Interface Design 184

are assigned to experienced and novice users, respectively. The tasks are denoted as

\Task 1" through \Task 10."

7.4.1 Accuracy

We measured accuracy by evaluating the answers to each question on a 0 � 5 scale.

Perfect answers were given 5 points and completely wrong answers (of course, there

were none in the experiment) were given 0 points. Partially incorrect answers were

given a value in the range of 1 to 4, inclusive, based on the type of mistake. Table 9(a)

shows the cumulative means and standard deviations for all tasks on the accuracy

value. Appendix C shows the actual accuracy measures for all the tasks.

Interface 1 Interface 2 Overall

Expert 4.64 (0.98) 4.76 (0.87) 4.7 (0.92)
Novice 4.78 (0.61) 4.62 (1.02) 4.7 (0.84)
Overall 4.71 (0.82) 4.69 (0.95)

Source of Variation SS DF MS F Sig. of F (p)

Within + residual 15.00 16 0.94
Interface 0.02 1 0.02 0.02 0.886
Expertise 0.00 1 0.00 0.00 1.000
Interaction: interface and expertise 0.98 1 0.98 1.05 0.322

Table 9: E�ect of Interface and expertise on accuracy: (a) Summary of mean(standard
deviation) over all tasks, (b) Results of the F tests and signi�cance values

The tasks 1, 2, 4 and 10 had 0 standard deviation since all users had correct

answers for these tasks. For the rest of the tasks, the cumulative e�ect of expertise or

interface was non-signi�cant at the P < 0:5 level as shown in Table 9(b). F (1; 16) =

0:02; p = 0:886 for interface e�ects, F (1; 16) = 0:00; p = 1:000 for expertise e�ects,

and F (1; 16) = 1:05; p = 0:322 for their interaction: none of which show signi�cance

at P < 0:5 level.

Chapter 7. User Interface Design 185

7.4.2 E�ciency

For the e�ciency measure, we used the time (in seconds) between two successive

submissions of queries. The absolute times at which (1) the system was �rst accessed

and (2) the queries were submitted, were logged by the query processing system. We

calculated the di�erence between these times to get the time taken for each task by

the subjects. For the �rst task, we used the time di�erence between the �rst access of

the search page and the submission of the �rst task. This turned out to be a problem

(as indicated by the results), since the Java interface page did not have any other text

besides the search interface itself. On the other hand, the form interface contained

some instructions; most of the subjects spent time reading these instructions before

composing the �rst query. Table 10(a) shows the cumulative means and standard

deviations for all tasks with respect to e�ciency. Appendix C shows the actual

e�ciency measures for all the tasks

Interface 1 Interface 2 Overall

Expert 69.64 (39.56) 85.71 (102.1) 77.59 (77.16)
Novice 123.96 (73.4) 170.58 (152.41) 147.27 (121.30)
Overall 96.8 (64.70) 128.57 (136.16)

Source of Variation SS DF MS F Sig. of F (p)

Within + residual 143935.39 15 9595.69
Interface 40268.65 1 40268.65 4.20 0.058
Expertise 241839.89 1 241839.89 25.20 0.000
Interaction: interface and expertise 14194.36 1 14194.36 1.48 0.243

Table 10: E�ect of Interface and expertise on e�ciency: (a) Summary of
mean(standard deviation) over all tasks, (b) Results of the F tests and signi�cance
values

Table 10 (b) displays the results we obtained from the multivariate tests of signi�-

cance. Here, the e�ect of the interaction of expertise and interface was non-signi�cant

at the P < 0:5 level (F (1; 15) = 1:48; p = 0:243). However, expertise had signi�cant

e�ect on e�ciency (F (1; 15) = 25:20; p = 0:000). The means clearly suggest that

Chapter 7. User Interface Design 186

the experts were signi�cantly more e�cient than the novices using both the inter-

faces, so the di�erent interfaces did not e�ect experts' performances. The e�ect of

interface on e�ciency, however, was marginally non-signi�cant at the P < 0:5 level

(F (1; 15) = 4:20; p = 0:058). Although this indicates that the interface does not

necessarily made users signi�cantly more e�cient, this also suggests that the easier

interface does not make them any slower either.

Univariate tests of signi�cance on individual tasks, however, show signi�cant ef-

fects of interface only for Task 1 (F (1; 15) = 85:626; p = 0:00) and Task 7 (F (1; 15) =

16:385; p = 0:001), while the rest of the tasks did not show any signi�cance. For

Task 1, the subjects using the Java interface performed signi�cantly better than the

subjects using the form interface, because of the time they spent looking at the help

information that was absent for the Java interface. For Task 7, the users of the form

interface performed signi�cantly better than the users of the Java interface. On a

subsequent analysis of the subjects' actions, we discovered that this task required the

users to switch to a di�erent screen for the Java interface. Unfortunately, most of

the users could not understand the necessity for this action. This situation will be

recti�ed when all three screens are displayed simultaneously; then, users will not have

to switch to a di�erent screen in order to perform this query.

7.4.3 Satisfaction

For the satisfaction measure, the users were asked to grade the interface that they

used in a scale of �ve qualitative values: Much better, Little better, About the same,

Worse, Absolutely worse. These �ve classes were assigned the ranks 5,4,3,2 and 1

respectively. This data was taken after all the actual tasks were performed and was

not calculated on a task-by-task basis. Table 11(a) shows the mean and standard

deviation of the satisfaction measure taken for this observation, and Table 11(b)

shows the results of the tests of signi�cance using unique sums of squares ANOVA

method. From this table, we observe signi�cant e�ect on satisfaction of the interface

at P < 0:05 level (F (1; 16) = 7:53; p = 0:014). However, the expertise and the

interaction of expertise and interface do not show any signi�cant results.

Chapter 7. User Interface Design 187

Interface 1 Interface 2 Overall

Expert 4.6 (0.54) 3.8 (0.83) 4.2 (0.78)
Novice 4.8 (0.44) 4.0 (0.70) 4.4 (0.69)
Overall 4.7 (0.48) 3.9 (0.73)

Source of Variation SS DF MS F Sig. of F (p)

Within + residual 6.80 16 0.42
Interface 3.20 1 3.20 7.53 0.014
Expertise 0.20 1 0.20 0.47 0.503
Interaction: interface and expertise 0.00 1 0.00 0.00 1.000

Table 11: E�ect of Interface and expertise on satisfaction: (a) Summary of
mean(standard deviation) over all tasks, (b) Results of the F tests and signi�cance
values

7.5 Summary

QBE and forms are both quite popular means for querying in the relational domain.

The main advantage of the form interface is that it is very simple to implement

and easy to use for small databases. However, forms do not adapt very well for

databases with a complex structure, and most text-based databases do tend to have

a complicated structure (e.g., the Chadwyck-Healey database used in the prototype

contains over �fty logical regions.) A form interface that can search on only a few of

these areas is easy to construct, but if the number of searchable regions is increased,

the interface tends to get too crowded too quickly. With QBT, the query interface

stays simple regardless of the complexity of the underlying structure, and the depth

of structure navigation can be controlled by the users using the nested template or

the structure template. For complex hierarchies, the focus can also be concentrated in

the regions of interest using advanced methods like di�erential magni�cation [KR96].

Another advantage of the template method is its direct relationship to the internal

structure of the database. Forms always look the same, whether the underlying

database is a poem, a dictionary, a quotation collection, or even a relational database.

However, templates can be custom-designed for di�erent types of databases. This way,

templates can provide a direct re
ection of the users' mental models [Boo89, Chap. 6],

Chapter 7. User Interface Design 188

a signi�cant factor in the design of good user-interfaces. Moreover, templates use the

principle of familiarity [Nor90], which is demonstrated to work well for novice users.

The only disadvantage of templates is that good templates require expensive graphics

terminals, while forms work quite well with terminals without graphics capabilities.

However, with the advance in technology, non-graphics terminals are less common,

so the assumption of a graphics-capable terminal is not very demanding.

The implementation of QBT in this work is in an early developmental stage and

has substantial potential for improvement. The experiment we performed clearly in-

dicated some of the ways it could be improved. However, in spite of being a prototype

interface, this QBT implementation demonstrates that QBT is suitable for querying

textual databases using a simple graphical interface. Moreover, QBT is at least as

accurate and e�cient as the general form-based approach and is signi�cantly more

satisfying to the users. We believe that the idea behind QBT will give us a starting

point for query interfaces in future text database systems. A signi�cant portion of

the current research is aimed towards the theoretical stability and soundness of the

QBT concept, and once established, this method has the potential of becoming the

standard querying mechanism for text databases.

Chapter 8

Conclusion and Future Work

Current relational models as well as other advanced database models such as the

complex-object and object-oriented models lack the ability to properly model docu-

ments with complex hierarchical structure. It is usually possible to map a document

structure into a database schema, but such mappings are not always one-to-one, and

often result in loss of information contained in the original documents as a result

of the mapping operation. The SGML standard [ISO86] provides a uniform system-

independent and paltform-independent method of encoding documents with a com-

plex hierarchical structure. The process of modeling documents in SGML resembles

that of modeling databases, using a DTD as a schema and conforming documents as

instances. The research in this dissertation used this property of SGML to provide

SGML repositories with database-like properties, using the SGML data model and a

set of minimal yet powerful query languages. A proof-of-concept implementation of

the model and a considerable subset of each query language was implemented on top

of standard storage managers and indexing utilities.

This chapter describes the contributions made by this dissertation and presents

directions for future research in database systems for structured documents.

8.1 Contributions

The most signi�cant contributions in this thesis are the design ideas for building a

database system for structured documents. In achieving this result, this research also

makes the following contributions:

1. Proposal of a formal model for structured documents. In Chapter 4, we described

an elegant model for structured documents using SGML.

189

Chapter 8. Conclusion and Future Work 190

2. Design of low complexity query languages. In Chapter 5, we proposed a simple

query language with some minor extensions over the relational languages as

well as some new semantics. We also showed that this language has the desired

properties of a low-complexity, closed query language and forms a core language

on which more powerful languages can be built.

3. Proposal for a standard query language for SGML databases. In Chapter 5,

we proposed a practical language for SGML users, using SGML itself, and

demonstrated its special form of closure and other desirable properties.

4. Design and implementation of a query processing infrastructure for document

databases. In Chapter 6, we described an architecture of a query processing

system for document databases that does not require any transformation process

for converting documents into a di�erent database format.

5. Design and implementation of a prototype system with most of the desired fea-

tures. In Chapter 6, we described the implementation ofDocBase, a prototype

system for posing queries in a document database. DocBase accepts queries us-

ing either SQL or a simple visual interface to formulate queries.

6. Design of a generalized method for current SGML systems to support SQL-like

queries. The prototype system described in Chapter 6 uses Pat, a commercial

system popularly used for searches on SGML data, and builds an SQL query

processing infrastructure on top of this system. The same technique can be

used with most current SGML applications.

7. Design and implementation of a generalized visual query language. In Chap-

ter 7, we described a query formulation interface based on a simple template

metaphor, which proved to be an e�ective alternative to forms-based query

interfaces.

Chapter 8. Conclusion and Future Work 191

8.2 Future Work

� Full SQL implementation. As described in Chapter 6, the implemented lan-

guage is a subset of the complete SQL language described in Chapter 5. We

described earlier how some of the features that are yet to be implemented, can

be incorporated in this system. The similarity between the method of process-

ing of queries in the implementation here and in relational databases indicates

that many of the methods already used in relational databases would also ap-

ply in the domain of document databases. In particular, processing of nested

queries can be performed using a tuple-substitution method [SAC+79]. Fur-

ther research is necessary to evaluate application of advanced techniques such

as in [Day87] for nested query processing, grouping, ordering and aggregation

operations.

� Query optimization. As described in Chapter 6, query optimization issues were

considered during the processing and evaluation of queries, and some optimiza-

tion techniques were implicit in the evaluation algorithms presented earlier.

However, it was also stated that in order to e�ciently use the Pat indices, most

of the algorithms needed to resort to set operations even for purposes such as

selection on the same document component. More control over the Pat struc-

tures in addition to the operations provided by the Pat query language would

allow more e�cient means for performing queries. However, further research

needs to be performed in order to determine more e�cient query evaluation

and optimization techniques.

� Immediate parent and child traversal using Pat indices. During the analysis

in Chapter 6, we noticed that, because of the way sets are constructed for

the traversal operations in Pat, it is not possible to traverse to the immediate

child or immediate parent of a node (i.e., use of the \." operator in the path

expressions). One of the reasons this problem was not addressed in detail was

the lack of availability of the internal details for the Pat region indices, as

they are proprietary structures of Open Text. Collaboration with Open Text

Chapter 8. Conclusion and Future Work 192

towards a solution of this problem would de�nitely be an important step towards

building complete SQL support with a system such as Pat.

� Selectors in path expressions. In Chapter 5, we needed to introduce the concept

of distinguished queries in which all the free variables of formulas had to be

explicitly rooted to a unique name. This was necessary to ensure that indi-

vidual components of queries could be extracted from the query. General path

expressions (such as in [dBV93]), however, allow positional notations on labels

in the path expressions (e.g., book.chapter[1].section[2].title, denoting the titles

of the second sections of the �rst chapters of books). Typically, these positional

expressions can be variables, thus increasing the expressiveness of the language.

Constant selectors can be trivially introduced in the current language with-

out introducing many changes in its properties. Further research is, however,

necessary to determine whether general path expressions can be evaluated in

PTIME, and if not, whether reasonable restrictions can guarantee the desired

low complexity.

� Parallelization of DocBase. The implementation of the query language indi-

cated that information is always local to speci�c sections of the data. This

indicates that it should be possible to distribute the data across processors or

systems and to evaluate the �nal result by combining the resulting fragments.

� Full QBT implementation. The visual interface in the current prototype imple-

ments a major subset of the QBT technique, however it is still missing some key

components which might signi�cantly change the properties of this language.

Usability evaluation needs to be performed again after the implementation is

completed in order to assess and compare the degree of e�ectiveness of this

design.

8.3 Applicability

One signi�cant aspect of this research is its potential application in a number of areas.

With the increase in popularity of HTML and the Internet, we are experiencing an

Chapter 8. Conclusion and Future Work 193

explosion in the amount of information on the web. Most search engines on the

web su�er from their lack of the ability to perform complex searches. The main

types of searches are restricted to keyword searches which tend to result in too many

matches. The ability of users to write SQL-like queries on the web would enable them

to restrict searches to certain portions of the documents, and thus reduce the number

of unnecessary matches. Based on this and related considerations, this research can

be applied for various purposes as stated below:

� Complex Web Searches. The current structure of the web is based on HTML.

Although HTML uses a mixed markup model, most of the HTML tags are

generic and semantics are only associated to them by the browsers. Moreover,

HTML has already been incorporated as an SGML DTD [BLC95], so the current

research can be easily applied for building complex SQL-capable search engines

for the Internet.

� XML Search Engines. With the advent of XML [W3C97], custom user-de�ned

tags are becoming standard. This work has the advantage of using structured

documents in their native format and process queries based on tags in the docu-

ments. Moreover, XML has been proposed as a subset of SGML and backwards

compatible to HTML. So this research can be easily applied for searching XML

documents in their native format.

� Modular Design. The modular design adopted in the implementation allows

the replacement of either or both of the underlying external systems (Exodus

and Open Text in the current implementation) by other systems. This provides

a method for enabling SQL query support in many current SGML processing

systems.

� Advanced SGML Features. In addition to the SGML features used here, ad-

vanced SGML features such as CONCUR, SUBDOC can be used for more

complex document operations. CONCUR can be used to provide a concurrent

physical layout description for a document, which allows users to search on

physical characteristics of documents (such as position of particular objects in

Chapter 8. Conclusion and Future Work 194

a page). In addition, the SUBDOC feature of SGML can be used to embed

queries in SGML documents for dynamic content generation.

8.4 Finale

SGML and SQL were two languages designed for entirely di�erent purposes and stan-

dardized in the same year (1986). Although SQL has gained tremendous popularity

in the database context, SGML has only recently started to gain popularity as a pub-

lishing standard. Because of the highly general nature of SGML, it has the potential

for becoming a standard modeling tool for not only documents but any structured

data in general. Query languages and processing techniques such as those presented

in this dissertation would immensely in
uence the applicability of SGML as a uni-

versal data representation format. The Internet and the World Wide Web is very

de�nitely a sure step towards this future.

Bibliography

[AB95] Serge Abiteboul and Catriel Beeri. The power of languages for the ma-

nipulation of complex values. VLDB Journal, 4(4):727{794, October

1995.

[AC75] M. M. Astrahan and D. Chamberlin. Implementation of a structured

english query language. Communications of the ACM, 18(10), October

1975. Also published in/as: 19 ACM SIGMOD Conf. on the Management

of Data, King(ed), May.1975.

[ACM93] Serge Abiteboul, Sophie Cluet, and Tova Milo. Querying and updating

the �le. Proceedings, 19th Intl. Conference on Very Large Data Bases,

pages 73{84, 1993.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Reading, Mass. : Addison-Wesley, 1995.

[AV97] Serge Abiteboul and Victor Viannu. Regular path queries with con-

straints. In Proceedings: ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pages 122{133, Tucson, Arizona, May

1997.

[BBB+88] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman,

C. Lecluse, P. Pfe�er, P. Richard, and F. Velez. The design and imple-

mentation of O2, an object-oriented database system. In K. R. Dittrich,

editor, Advances in Object-Oriented Database Sys., volume 334 of Lecture

Notes in CS, page 1. Springer-Verlag, September 1988.

195

BIBLIOGRAPHY 196

[BCM96] Tim Bienz, Richard Cohn, and James R. Meehan. Portable Document

Format Reference Manual. Adobe Systems Incorporated, version 1.2

edition, November 27 1996.

[BGBG95] Ronald M. Baecker, Jonathan Grudin, William A. S. Buxton, and Saul

Greenberg. Readings in Human-Computer Interaction: Toward the Year

2000, chapter 2. Morgan Kaufmann Publishers, Inc., San Francisco,

California, 1995.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-

currency control and recovery in database systems. Reading, Mass.:

Addison-Wesley Publishing Co., 1987.

[BLC95] T. Berners-Lee and D. Connolly. Hypertext Markup Lan-

guage - 2.0. MIT/W3C: HTML Working Group, RFC:

1866 edition, November 22 1995. Available on-line from

http://www.w3.org/pub/WWW/MarkUp/html-spec.

[Boo89] Paul Booth. An Introduction to Human-computer Interaction. Laurence

ErlBaum Associates Publishers, 1989.

[Bro95] Bill Brogden. Hierarchical browser in java. available on the WWW at

http://www.bga.com/ wbrogden/javatest.html, 1995.

[Bur92] Forbes J. Burkowski. An algebra for hierarchically organized

text-dominated databases. Information Processing & Management,

28(3):333{348, 1992.

[BYG89] Ricardo A. Baeza-Yates and Gaston H. Gonnet. E�cient text searching

of regular expressions. Proceedings, 16th International Colloquium on

Automata, Languages, and Programming, pages 46{62, 1989.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured

documents to novel query facilities. SIGMOD RECORD, 23(2):313{324,

June 1994.

BIBLIOGRAPHY 197

[CCB95] Charles L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An algebra

for structured text search and a framework for its implementation. The

Computer Journal, 38(1):43{56, 1995.

[CCM96] Vassilis Christophides, Sophie Cluet, and Guido Moerkotte. Evaluat-

ing queries with generalized path expressions. In H.V. Jagadish and

Inderpal Singh Mumick, editors, Proceedings, ACM SIGMOD 1996, vol-

ume 25, pages 418{422. Association of Computing Machinery, June 1996.

[CDF+86] Michael J. Carey, David J. DeWitt, Daniel Frank, Goetz Graefe, M. Mu-

ralikrishna, Joel E. Richardson, and Eugene J. Shikita. The architecture

of the EXODUS extensible DBMS. In Klaus R. Dittrich and Umesh-

war Dayal, editors, Proceedings, 1996 International Workshop on Object-

Oriented Database Ssytems, pages 52{65, Paci�c Grove, California, USA,

September 23-26 1986. IEEE-CS.

[Cha94] Chadwyck-Healey. The English Poetry Full-Text Database, 1994. The

works of more than 1,250 poets from 600 to 1900.

[Che76] Peter Pin-Shan Chen. The Entity-Relationship model { toward a uni�ed

view of data. ACM Transactions on Database Systems (TODS), 1(1):9{

36, March 1976.

[CLR89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

duction to Algorithms. MIT Press, Cambridge, MA, 1989.

[Cod70] E.F. Codd. A relational model for large shared data banks. Communi-

cations of the ACM, 6(13):377{387, June 1970.

[D'A95] Al D'Andrea. Improved database technology for document manage-

ment. In Yuri Rubinsky, editor, Proceedings, SGML '95, pages 113{122.

Graphic Communications Association, December 1995.

[Dat89] C.J. Date. A guide to the SQL Standard: A user's guide to the standard

relational language SQL. Addison-Wesley Publishing Co., 1989.

BIBLIOGRAPHY 198

[Day87] Umeshwar Dayal. Of nests and trees: A uni�ed approach to processing

queries that contain nested subqueries, aggregates, and quanti�ers. In

Peter M Stocker and William Kent, editors, Proceedings: International

Conference on Very Large Data Bases (VLDB), pages 197{208, Brighton,

England, September 1-4 1987. Morgan Kaufmann.

[dBV93] Jan Van den Bussche and Gottfried Vossen. An extension of path ex-

pressions to simplify navigation in object-oriented queries. In Stefano

Ceri, Katsumi Tanaka, and Shalom Tsur, editors, Proceedings of the third

international conference on Deductive and Object-Oriented Databases

(DOOD), number 760 in Lecture Notes in Computer Science, pages 267{

282, Phoenix, Arizona, December 1993. Springer-Verlag.

[DGS86] B.C. Desai, P. Goyal, and F. Sadri. A data model for use with formatted

and textual data. JASIS, 1986.

[DR93] Joseph S. Dumas and Janice C. Redish. A practical guide to usability

testing. Ablex publishing corporation, 1993.

[Ebe94] Ray E. Eberts. User Interface Design. Prentice Hall, 1994.

[Emb89] D.W. Embley. NFQL: The natural forms query language. ACM Trans-

action on Database Systems, 14(2):168{211, June 1989.

[GBY91] Gaston H. Gonnet and R. Baeza-Yates. Lexicographical indices for text:

Inverted �les vs pat trees. Technical Report TR-OED-91-01, University

of Waterloo, 1991.

[GNU92] GNU Project. Unix Commands Refernece Manual, Sep 1992.

[Gol90] Charles F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford,

1990.

[Gou95] John D. Gould. How to design usable systems. In Ronald M. Baecker,

Jonathan Grudin, William A. S. Buxton, and Saul Greenberg, editors,

BIBLIOGRAPHY 199

Readings in Human-Computer Interaction: Toward the Year 2000, chap-

ter 2, pages 93{121. Morgan Kaufmann Publishers, San Francisco, Cali-

fornia, 1995.

[GPG89] M. Gyssens, J. Paredaens, and D. Van Gucht. A grammar based ap-

proach toward unifying hierarchical data models. SIGMOD, pages 263{

272, 1989.

[GT87] Gaston H. Gonnet and Frank W. Tompa. Mind your grammar: a new

approach to modeling text. In Peter M. Stocker, William Kent, and

Peter Hammersley, editors, Proceedings: 13th International Conference

on Very Large Data Bases, pages 339{346, Brighton, England, September

1-4 1987. Morgan Kaufmann.

[GZC89] Guting, Zicari, and Choy. An algebra for structured o�ce documents.

ACM TOIS, 1989.

[Hel88] Martin Helander. Handbook of Human-Computer Interaction. North

Holland, 1988.

[Hol95] Sebastian Holst. Database evolution: the view from over here (a

document-centric perspective). In Yuri Rubinsky, editor, Proceedings,

SGML '95, pages 217{223. Graphic Communications Association, De-

cember 4-7 1995.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, 1979.

[Inf95] Inc. Inforium. LivepageTM : A system for open information exchange,

1995. Software Information Brochure.

[ISO86] International Organization for Standardization, Geneva, Switzerland.

ISO 8879: Information Processing { Text and O�ce Systems { Stan-

dard Generalized Markup Language (SGML), 1986.

BIBLIOGRAPHY 200

[ISO94] International Organization for Standardization and International Elec-

trotechnical Commission, Geneva, Switzerland. ISO/IEC DIS 10179:

Document Style Semantics and Speci�cation Language: DSSSL, 1994.

[Jav95] Sun Microsystems. The JavaTM Language Speci�cation: Version 1.0

Beta, 1995.

[JK96] Jani Jaakkola and Pekka Kilpel�ainen. The sgrep online manual. Available

online at http://www.cs.helsinki.�/ jaakkol/sgrepman.html, 1996.

[JMG95] Manoj Jain, Anurag Mendhekar, and Dirk Van Gucht. A uniform data

model for relational data and meta-data query processing. In Proceed-

ings of the Seventh International Conference on Management of Data

(COMAD), pages 146{165. Tata McGraw-Hill Press, December 1995.

[JW83] Barry E. Jacobs and Cynthia A. Wasczak. A generalized query-by-

example data manipulation language based on database logic. IEEE

Transactions on Software Engineering, SE-9(1):40{56, January 1983.

[KKS92] Michael Kifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented

databases. In Michael Stonebraker, editor, Proceedings of the 1992 ACM

SIGMOD International Conference on Management of Data, pages 393{

402, June 1992.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical

Systems Theory, 2(2):127{145, 1968.

[Knu86] Donald E. Knuth. The TEXbook. Addison Wesley, 1986.

[KR96] T. Alan Keahey and Edward L. Robertson. Techniques for non-linear

magni�cation transformations. In Proceedings, Visualisation '96 Infor-

mation Visualization Symposium. IEEE, October 1996.

[Lam94] Leslie Lamport. LATEX A Document Preparation System. AddisonWesley,

2nd edition, November 1994.

BIBLIOGRAPHY 201

[LMB92] John R. Levine, Tony Mason, and Doug Brown. Lex & yacc. O'Reilly &

Associates, 2nd ed. edition, 1992.

[McG77] W. McGee. The information management system IMS/VS, part I: Gen-

eral structure and operation. IBM Systems Journal, 16(2), June 1977.

[MK76] O. L. Madsen and B. B. Kristensen. LR-parsing of extended context free

grammars. Acta Informatica, 7(1):61{73, 1976.

[MW93] Udi Manber and San Wu. Glimpse: A tool to search through entire �le

systems. Technical Report TR 93-34, University of Arizona, October

1993.

[MW95] A.O. Mendelzon and P.T. Wood. Finding regular simple paths in graph

databases. SIAM Journal on Computing, 24(6):1235{1258, December

1995.

[Nor90] Donald Norman. The Design of Everyday things. Doubleday Currency,

1990.

[NP93] J. Nielsen and V. Phillips. Estimating the relative usability of two inter-

faces: Heuristic, formal, and empirical methods compared. In Proceed-

ings: INTERCHI'93, pages 214{221. ACM, 1993.

[Ope94] Open Text Corporation, Waterloo, Ontario, Canada. Open Text 5.0,

1994.

[Oss76] J.F. Ossanna. Nro�/tro� user's manual. Technical Report Comp. Sci.

Tech. Rep. 54, Bell Laboratories, Murray Hill, NJ, October 1976.

[OW93] Gultekin Ozsoyoglu and Huaqing Wang. Example-based graphical

database query languages. Computer, 26(5):25{38, May 1993.

[Paw82] Z. Pawlak. Rough sets. International Journal of Computer and Infor-

mation Sciences, 11:341{356, 1982.

BIBLIOGRAPHY 202

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange

across heterogeneous information sources. In Proceedings of the Interna-

tional Conference on Data Engineering, pages 251{260, Taipei, Taiwan,

March 1995.

[PT86] P. Pistor and R. Traunmueller. A database language for sets, lists, and

tables. Information Systems, 11(4):323{336, 1986.

[Rub94] Je�rey Rubin. Handbook of Usability Testing: How to plan, design and

conduct e�ective tests. John Wiley & Sons, Inc., 1994.

[SAC+79] Patricia G. Selinger, Moton M. Astrahan, Donald D. Chamberlin, Ray-

mond A. Lorie, and Thomas G. Price. Access path selection in a re-

lational database management system. In Philip A. Bernstein, editor,

Proceedings: Special Interest Group on Management of Data (SIGMOD),

pages 23{34, Boston, MA, May 30-June 1 1979. ACM.

[Sal91] Gerard Salton. Developments in automatic text retrieval. Science,

253:974{980, 1991.

[SB88] Gerard Salton and Christopher Buckley. Term-weighting approaches

in automatic text retrieval. Information Processing and Management,

24:513{523, 1988.

[Sch97] Bruce R. Schatz. Information retrieval in digital libraries: Bringing

search to the net. Science, 275:327{334, January 1997.

[Sen96] Arijit Sengupta. Demand more from your SGML database! bringing

SQL under the SGML limelight. <TAG>, 9(4):1{7, April 1996.

[Sha84] B. Shackel. The concept of usability. In J. Bennett, D. Case, J. Sandelin,

and M. Smith, editors, Visual Display Terminals: Usability Issues and

Health Concerns, pages 45{87. Prentice Hall, Englewood Cli�s, N.J.,

1984.

BIBLIOGRAPHY 203

[Shn87] Ben Shneiderman. Designing the user interface : strategies for e�ective

human-computer interaction. Reading, Mass. : Addison-Wesley, 1987.

[SQL86a] American National Standards Institute, New York. ANSI X3.135-1986,

Database Language SQL, 1986.

[SQL86b] ANSI X3.135-1986, Database Language SQL, 1986.

[SR90] Tengku M.T. Sembok and C.J. Van Rusbergen. SILOL: A simple logical-

linguistic document retrieval system. Information Processing and Man-

agement, 26(1):111{134, 1990.

[Sri89] P. Srinivasan. Intelligent information retrieval using rough set approxi-

matioins. Information Processing and Management, 25(4):347{361, 1989.

[Sri90a] P. Srinivasan. A comparison of two-poisson, inverse document frequency

and discrimination value models of document representation. Informa-

tion Processing and Management, 26(2):269{278, 1990.

[Sri90b] P. Srinivasan. On generalizing the two-poisson model. Journal of the

American Society for Information Science, 41(1):61{66, 1990.

[Suc97] D. Suciu, editor. Proceedings on the Workshop on Semistructured Data,

Tucson, Arizona, USA, May 1997.

[Syb94] Sybase, Inc., Emeryville, CA. SYBASE SQL ServerTM Reference Man-

ual: Volume 1. Commands, Functions and Topics, 1994.

[Sys85] Adobe Systems. Postscript language reference manual. Reading, Mass. :

Addison-Wesley, 1985.

[SYY75] G. Salton, C.S. Yang, and C.T. Yu. A theory of term importance in

automatic text analysis. Journal of the American Society of Information

Science, 26(1):33{44, 1975.

BIBLIOGRAPHY 204

[TF86] S.J. Thomas and P.C. Fischer. Nested relational structures. In P.C.

Kanellakis, editor, Advances in Computing Research III, The Theory of

databases, pages 269{307. JAI Press, 1986.

[Tic85] Walter F. Tichy. Rcs { a system for version control. Software { Practice

& Experience, 15(7):637{654, July 1985.

[Ull88] Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems,

volume Vol 1. Computer Science Press, Rockvill, MD, 1988.

[Uni93] University of Wisconsin, Madison. Using the Exodus Storage Manager

V3.1, November 1993.

[W3C97] W3C. Extensible Markup Language (XML) W3C Working Draft 07-Aug-

97, August 7 1997. Available on-line from http://www.w3.org/TR/WD-

xml-lang.

[WW90] Thomas H. Wonnacott and Ronald J. Wonnacott. Introductory Statistics.

John Wiley & Sons, 1990.

[Zha95] Jian Zhang. Oodb and sgml techniques in text database: An electronic

dictionary system. SIGMOD RECORD, 24(1):3{8, March 1995.

[Zlo77] M. M. Zloof. Query by example: A database language. IBM Systems

Journal, 16(4), 1977.

Appendix A

DSQL Language Details

This appendix gives the details of the practical query languages described in Chapter

5. The BNF representation of the complete DSQL language is �rst presented, and

then the DTD for the DSQL language is presented along with descriptions of all the

generic identi�ers.

A.1 The DSQL Language BNF

This section gives a complete BNF (Backus-Naur Form) representation of the DSQL

language that we are proposing. The BNF is a modi�ed version of the one from

[Dat89, pages 144-146].

query-exp ::= query-term j query-exp UNION [ALL] query-term

query-term ::= query-spec j (query-exp)

query-spec ::= SELECT [ALL j DISTINCT] output qry-body

output ::= target j outputname(target) j dtd-exp (1)

target ::= scalar-exp-list j � (2)

scalar-exp-list ::= scalar-exp [; scalar-exp]�

dtd-exp ::= DTD filename (3)

qry-body ::= from-clause [where-clause] [group-by-clause [having-clause]]

from-clause ::= FROM db-list

db-list ::= db [; db]�

db ::= rooted-path [alias] (4)

where-clause ::= WHERE search-cond

group-by-clause ::= GROUP BY col-list

col-list ::= col [; col]�

205

Appendix A. DSQL Language Details 206

col ::= complete-path (5)

having-clause ::= HAVING search-cond

search-cond ::= bool-term j search-cond OR bool-term

bool-term ::= bool-factor j bool-term AND bool-factor

bool-factor ::= [NOT] bool-primary

bool-primary ::= predicate j (search-cond)

predicate ::= comp-pred j between-pred j like-pred j testnull

j in-pred j univqnt j existqnt

comp-pred ::= scalar-exp ops fsalar-exp j subqueryg

ops ::= = j 6= j > j < j > j 6

between-pred ::= scalar-exp [NOT] BETWEEN scalar-exp AND scalar-exp

like-pred ::= col [NOT] LIKE [atom j prox-exp] (6)

prox-exp ::= atom [NOT] prox-ops atom (7)

prox-ops ::= NEAR j FBY (8)

testnull ::= col IS [NOT] NULL

in-pred ::= scalar-exp [NOT] IN fsubquery j atom [; atom]�g

univqnt ::= scalar-exp ops [ALL j ANY j SOME] subquery

existqnt ::= [NOT] EXISTS subquery

subquery ::= (query-spec)

scalar-exp ::= atom j col j function (9)

function ::= COUNT(*) j distfunc j allfunc j attfunc (10)

distfunc ::= fAVG j MAX j MIN j SUM j COUNTg (DISTINCT col)

allfunc ::= fAVG j MAX j MIN j SUM j COUNTg ([ALL] scalar-exp)

attfunc ::= ATTVAL(col; attrib) j fAVG j MAX j MIN j SUM j COUNTg

(ATTVAL(col; attrib)) (11)

path-exp ::= path-list [::path-list]� (12)

path-list ::= gi [:gi]� (13)

rooted-path ::= root f: j ::g path-exp (14)

complete-path ::= root f: j ::g path-exp f: j ::g leaf (15)

Appendix A. DSQL Language Details 207

In the above BNF, the numbered lines are the lines that are modi�ed from or added

to the original SQL grammar. The non-terminals (outputname, �lename, alias, gi,

root, leaf, attrib) are all atomic and have not been explicitly shown. The non-terminal

outputname is the name which will be given to the output DTD as the result of the

query. The symbol filename is the name of the explicitly described DTD. The symbol

alias is a variable name associated with a complex column. The symbols gi, root,

leaf are all generic identi�ers in the input database DTD. The symbol rootrefers to

the root of one of the input DTDs, and leaf must be a data group. The attrib is the

SGML attribute name for the GI at the leaf of the complete path with which it is

associated. In addition, for comparison of path expressions, the terminating \.leaf"

is omitted, as all comparisons are performed at the leaf level.

A.2 The DSQL DTD

This section presents the DTD for the extended DSQL language described above, the

primary di�erence is the implicit handling of operator precedence using SGML tags

instead of in the grammar itself.

<!-- **************** SQL Document Type Definition *************** -->
<!-- Suggested public id: -//ANSI X3H2//DTD SQL//EN -->

<!-- Defined Parameter Entities -->
<!ENTITY % Negation "(ASIS | NOT) ASIS"

-- As is or negate - defaulted to as is -->
<!ENTITY % Compare "(EQUAL | NEQ | LT | GT | LEQ | GEQ) EQUAL"

-- All the comparison operators -->
<!ENTITY % Aggr "AVG | MAX | MIN | SUM | COUNT"

-- Aggregate operators for arithmetic ops on numbers -->

<!-- The top level SQL element - containing one or more
select statements connected by union operations -->

<!ELEMENT SQL O O (select, (union, all? ,select)*)>

<!ELEMENT (union|all) - O EMPTY -- union operation -->

<!-- The components of the select clause - the output to be generated,
and the main body of the query containing the conditions. -->
<!ELEMENT select - O (output, qry-body)>
<!ATTLIST select selcrit (ALL |DISTINCT) ALL

-- Selection criteria - can be all or only distinct results -->

Appendix A. DSQL Language Details 208

<!-- The output of the query - can be in form of a scalar expression,
the default (all) - that combines everything that the from
expression builds, and a dtd expression which is for now, a
filename containing the DTD. Can also specify an optional name
for the output(which becomes the name for the output DTD. -->

<!ELEMENT output O O (scalar+ | all | dtd-exp)>
<!ATTLIST output name CDATA #IMPLIED>
<!ELEMENT dtd-exp - O EMPTY -- will possibly need change -->
<!ATTLIST dtd-exp dtdfile CDATA #REQUIRED>

<!-- The body of the query - as in SQL, contains a from clause
(required), and optional where, group-by and having clauses -->

<!ELEMENT qry-body O O (from, where?, group-exp?)>

<!-- The from clause - needs to be a rooted path. Details on building
path expressions can be found at the end. Each rooted path can be
given an alias for linking later from the conditions -->

<!ELEMENT from - O (db+)>
<!ELEMENT db - O (pathexp)>
<!ATTLIST db alias ID #IMPLIED>

<!-- The where clause - contains the search condition expression -->
<!ELEMENT where - O (cond)>

<!-- The group-by clause - contains the complex columns that form the
scalar part of the output. Group by cannot be specified if the output
is a dtd expression. The having clause specifies further conditions
in the groups -->

<!ELEMENT group-exp - O (group-by, having?)>
<!ELEMENT group-by - O (col+)>
<!ELEMENT having - O (cond)>

<!-- The search condition. The main difference between the SQL BNF and
this method of specification is that the precedence is incorporated
in the way the tags are structured, not possible with tagless SQL
-->

<!ELEMENT cond O O (predicat | (cond, logic, cond))>
<!ATTLIST cond neg %Negation;>
<!ELEMENT logic - O EMPTY>
<!ATTLIST logic oper (AND | OR) AND>
<!ELEMENT predicat - O (compare | between | like | testnull |

in | univqnt | exists)>
<!ELEMENT compare - O (scalar, (scalar | select))>
<!ATTLIST compare oper %Compare;>

Appendix A. DSQL Language Details 209

<!ELEMENT between - O (scalar, scalar, scalar)>
<!ATTLIST between neg %Negation;>
<!ELEMENT like - O (col, (atom | prox))>
<!ATTLIST like neg %Negation;>
<!ELEMENT prox - O (atom, atom)>
<!ATTLIST prox neg %Negation;

proxop (NEAR | FBY) FBY>
<!ELEMENT testnull - O (col)>
<!ATTLIST testnull neg %Negation;>
<!ELEMENT in - O (scalar, (select | atom+))>
<!ATTLIST in neg %Negation;>
<!ELEMENT univqnt - O (scalar, select)>
<!ATTLIST univqnt oper %Compare;

type (ALL | ANY | SOME) ALL>
<!ELEMENT exists - O (select)>
<!ATTLIST exists neg %Negation;>

<!-- The content of scalar is incomplete compared to SQL --
-- Arithmetic operations are intentionally left out to --
-- keep the DTD simple, but could be added if necessary -->

<!ELEMENT scalar O O (atom | col | function)>
<!ELEMENT atom - O (#PCDATA)>
<!ELEMENT function O O (countall | distfunc | allfunc | attval)>
<!ELEMENT countall - O EMPTY>
<!ELEMENT distfunc - O (col)>
<!ATTLIST distfunc oper (%Aggr;) COUNT>
<!ELEMENT allfunc - O (all?, scalar)>
<!ATTLIST allfunc oper (%Aggr;) COUNT>
<!ELEMENT attval - O (col,attrib)>
<!ATTLIST attval oper (%Aggr; | NONE) NONE>
<!ELEMENT attrib - O (#PCDATA)>

<!ELEMENT col - O (pathexp)>
<!ELEMENT pathexp O O (pathlist)+>
<!ATTLIST pathexp refdb IDREF #CONREF>
<!ELEMENT pathlist - O (gi)+>
<!ELEMENT GI - O (#PCDATA)>

A.2.1 Description of the DTD Elements

Tables 12 and 13 give short descriptions of the elements in the above DTD. The essen-

tial query constructs are equivalent to the DSQL constructs. The primary di�erence

lies in the handling of operator precedence as described above.

Appendix A. DSQL Language Details 210

GI in the DTD Description

SQL Top level GI in the DTD. Optional. Contains one SQL query statement.

union Signi�es the union operation involving the results of two or more select
statements.

all
Used as a modi�er of the union operation and as a replacement for the "select
*" construct of SQL

select

The root of a single select statement. A select statement can be used as a
sub-query in various places: as a component in the union of multiple queries,
as a scalar output in a comparison, and for quanti�cation, either universal or
existential (for all/there exists). The attribute selcrit (selection criterion) can
be distinct or all depending on whether duplicate removal is to be performed
or not.

output
The output from the query - speci�ed as a list of complex columns, all, or a
restructuring DTD

dtd-exp
The DTD expression - currently just the name of the DTD. Some constraints
and mappings may be added in future revisions

qry-body The actual body of the query. Optional

from
The "from" speci�er - speci�es the input to the query. consists of one or more
databases.

db
A database to provide the input to the query. The attribute alias is a short
name used for future reference by the complex columns.

where The condition clause.

group-by
The group-by clause - speci�es which columns to group the results by. Must
be a subset of the columns in the output clause.

having Speci�es further restrictions in group-by columns.

cond
The conditions for querying. Can be either a predicate or a logical binary
expression combined using a logical operator. Can be either true or false. The
attribute Neg speci�es if the condition is to be negated.

left
The left side of a logical operator. can be either a predicate or another
conditional expression.

right The right side of a logical operator.

logic
The logical operation. Allowed operations are: AND, OR, FOLLBY (followed
by) and NEAR. The last two operations are added on top of normal SQL to
support proximity queries.

predicat
A relational predicate - can be one of seven operations as given in the DTD.
The result is always true or false. All operations can be negated.

Table 12: Description of the GIs in the SQL DTD

Appendix A. DSQL Language Details 211

GI in the DTD Description

compare
The comparison operation. Compares a scalar value with another scalar value
or the result of a subquery that returns a scalar value.

between
The between operation performs range queries - decides if the value of a scalar
expression is between two di�erent scalar expression

like
The like operation is basically a regular expression match. A complex column
is compared with a regular expression formed with a column atom and an
escape atom.

colatom
The regular expression. In SQL, the regular expressions use the characters %
and for zero or more characters and exactly one character respectively.

escatom Speci�es an escape character, in case one of the characters % and needs to
be used as a data character.

testnull A null test - to check if a complex column contains a null value

in
An IN expression: tests if the value of a scalar expression is in a set of atoms
or a set returned by a select subquery

univqnt
A universal quanti�er - can be one of ALL, ANY or SOME, and the
comparison can be one of the several comparison operations.

exists An existential quanti�er - determines if the result of a subquery exists.

scalar
A scalar expression - can be a single value or a set of values. Can be a
constant (atomic) value, a complex column, or a function of them.

atom A constant value - normally a character or numeric value.

function Various aggregate functions allowed in SQL.

countall
The aggregate function count(*) counts the number of tuples (or instances of
complex columns) returned by the query, without duplicate elimination

distfunc
Distinct functions - computes aggregate functions on speci�c complex columns
with duplicate elimination

allfunc
All functions - computes aggregate functions on scalar expressions without
duplicate elimination

attfunc Attribute functions - computes functions on attribute values of columns

col A complex column - targets one or a set of GIs of the underlying database.

source
Source for the complex column - has to be one of the databases in the
repository

thru Path from the source to the target - needs to be a GI of the database

target The end target of the column for the operation.

Table 13: Description of the GIs in the SQL DTD (continued)

Appendix B

Guide to the DocBase Source Code

This appendix brie
y describes the source structure for the implementation of the

query engine (see Chapter 6) as well as the visual query interface (see Chapter 7).

In addition, it includes the skeleton for a parser for the SQL language described in

Chapter 5.

B.1 Guide to DocBase Source Code

The source code of DocBase has two primary components: (i) a query language

processing component and (ii) a visual query interface component. The full DocBase

distribution also includes some sample data for testing the application. When the

DocBase package is extracted, the following directories are created. Each of these

directories contains a README �le that describes the �les and their use. The root

level directory also contains a �le named INSTALL that explains all the con�guration

options and installation instructions.

� src. This directory contains the source of the query engine. The top-level

directory includes a top-level make�le and the virtual classes, and the directories

under src includes the sub-classes.

� scripts. This directory contains a few useful scripts for helping with some of

the con�guration options. Since there are no graphical con�guration setting

mechanism, currently only these scripts can be used to set up con�guration

�les (or the �les could be manually edited if necessary).

� data. This directory contains some sample data used for testing the system,

including an SGML-converted version of the \pubs2" database from the Sybase

212

Appendix B. Guide to the DocBase Source Code 213

distribution [Syb94], and the complete normalized source of this thesis.

� SGMLQuery. This directory contains the Java source and compiled class �les for

the visual interface, as well as the reference manual and other documentation.

B.2 Running DocBase

Since DocBase is primarily a research-oriented system, not much attention has been

given towards portability issues. A future version will hopefully include easy compila-

tion capabilities using GNU autoconf or imake. Currently, DocBase can be compiled

by manually editing the make�les and a few header �les to specify the default param-

eters and positions of the directories and other similar con�guration options. The �le

named `INSTALL' in the top-level source directory includes details on the changes

that need to be made for speci�c platforms. Currently, the DocBase query engine

source has only been compiled on Solaris 2.5.

Once DocBase is compiled, the following steps need to be performed in order to

set up one of the sample databases:

1. Start the storage manager server. The source code comes with the capability

of using the Exodus Storage Manager or Sybase as the basic storage manager,

depending on how the con�guration options were selected. The appropriate

server needs to be started and needs to be running to use any of the DocBase

clients (other than the parsing utilities).

2. Create the structure con�guration �le for the data. If one of the sample databases

is used, this step can be omitted, since the some sample con�guration �les are

included in the sample databases. The main con�guration �le is the catalog

con�guration �le, using which the indexable regions and their descriptions are

speci�ed. DocBase comes with a script called parse dtd.pl that can read

an SGML DTD and a simple text �le containing the names of the searchable

regions and their descriptions. The format of this �le is as follows:

Lines starting with the number sign are ignored

Appendix B. Guide to the DocBase Source Code 214

Each line contains regionname/description

book/Book

chap/Chapter

l/Line

P/Paragraph

The above example shows a simple con�guration �le for a book database in

which four regions are to be indexed. The parse dtd.pl script will create a

full structure con�guration �le from the DTD and the above �le. If no sample

con�guration �le like the above is provided, parse dtd.pl will create a default �le

indexing all the GIs in the DTD, and using the GI names as their descriptions.

3. Create the template. The template using which the graphical query processing

will be performed needs to be created next. This is usually an image represent-

ing the database. At this point, only the image needs to be created, and the

coordinates for each of the regions need to be noted.

4. Create the GUI applet con�guration �le. The GUI applet con�guration �le is an

HTML document containing a reference to the GUI applet and the parameters.

An interactive applet con�guration script, called sgmconfig.pl is available in

the scripts directory that asks for the template image �lename, and all the

regions, and generates the HTML �le.

5. Test the con�guration. Once all the above con�guration �les are created, the

con�guration can be tested by running src/parser/psql and giving it an SQL

query.

6. Test the system. The �nal DocBase system can be tested by bring up the HTML

�le containing the applet con�guration information, and trying out some simple

queries.

Appendix B. Guide to the DocBase Source Code 215

B.3 SQL Parser Implementation

In this section, we present the yacc implementation of the skeleton parser for DSQL.

The source code distribution includes all the parsers described in Chapter 6. The

source code for the skeleton parser given below is only included here to show the

implementation of the basic parsing method.

%{

/* $Id: sql.y,v 1.6 1997/11/27 02:56:07 asengupt Exp $ */

#include <stdio.h>
#include <string.h>

#define YYDEBUG 1

extern char* yytext;
extern FILE* yyin;
void yyerror(char *s);
int yylex(void);
int yyparse();

%}

%union {
int intval;
double floatval;
char *strval;

}

/* symbolic tokens */

%token <strval> NAME VARREF
%token <strval> STRING
%token <intval> INTNUM
%token <floatval> APPROXNUM

/* types associate with non-terminals */
%type <strval> query_exp query_term query_spec output query_body target
%type <strval> explist exp from_clause where_clause group_clause
%type <strval> dblist db pathexp pathlist search_cond collist col predicate
%type <strval> comp_pred between_pred like_pred testnull in_pred
%type <strval> univquant existquant ops atom atomlist subquery prox_exp
%type <strval> function countfunc distfunc allfunc attfunc aggops

/* operators */

%left AND OR NOT

Appendix B. Guide to the DocBase Source Code 216

%left EQ_OP NEQ_OP LT_OP GT_OP LEQ_OP GEQ_OP
%left PLUS MINUS
%left STAR DIV

/* literal keyword tokens */

%token UNION ALL ANY SOME DISTINCT
%token SELECT FROM WHERE GROUPBY HAVING NOTEXISTS EXISTS
%token DTD
%token IS NULL_T
%token AVG MAX MIN SUM COUNT ATTVAL
%token DOT DOTDOT
%token BETWEEN LIKE IN_PRED NOTLIKE NOTIN
%token NEAR FBY NOTNEAR NOTFBY

%%

query_exp: query_term {}
| query_exp UNION query_term {}
| query_exp UNION ALL query_term {}
;

query_term: query_spec {}
| '(' query_exp ')' {}
;

query_spec: SELECT output query_body {}
| SELECT ALL output query_body {}
| SELECT DISTINCT output query_body {}
;

output: target {}
| NAME '(' target ')' {}
| DTD NAME {}
;

target: STAR {}
| explist {}
;
explist: exp {}
| explist ',' exp {}
;

query_body: from_clause {}
| from_clause where_clause {}
| from_clause where_clause group_clause {}
| from_clause group_clause {}
;

from_clause: FROM dblist {}

Appendix B. Guide to the DocBase Source Code 217

;

dblist: db {}
| dblist ',' db {}
;

db: pathexp {}
| pathexp NAME {}
| VARREF {}
| VARREF NAME {}
;

where_clause: WHERE search_cond {}
;

group_clause: GROUPBY collist {}
| GROUPBY collist HAVING search_cond {}
;

collist: col {}
| collist ',' col {}
;

col: pathexp {}
;

search_cond: search_cond AND search_cond {}
| search_cond OR search_cond {}
| NOT search_cond {}
| '(' search_cond ')' {}
| predicate {}
;

predicate: comp_pred {}
| between_pred {}
| like_pred {}
| testnull {}
| in_pred {}
| univquant {}
| existquant {}
;

comp_pred: exp ops exp {}
| exp ops subquery {}
;

ops: EQ_OP {}
| NEQ_OP {}
| LT_OP {}
| GT_OP {}

Appendix B. Guide to the DocBase Source Code 218

| GEQ_OP {}
| LEQ_OP {}
;

between_pred: exp BETWEEN exp AND exp {}
| exp NOT BETWEEN exp AND exp {}
;

like_pred: col LIKE atom {}
| col NOTLIKE atom {}
| col LIKE prox_exp {}
| col NOTLIKE prox_exp {}
;

prox_exp: atom NEAR atom {}
| atom NOTNEAR atom {}
| atom FBY atom {}
| atom NOTFBY atom {}
;

testnull: col IS NULL_T {}
| col IS NOT NULL_T {}
;

in_pred: exp IN_PRED subquery {}
| exp NOTIN subquery {}
| exp IN_PRED atomlist {}
| exp NOTIN atomlist {}
;

atomlist: atom {}
| atomlist ',' atom {}
;

univquant: exp ops ALL subquery {}
| exp ops ANY subquery {}
| exp ops SOME subquery {}
;

existquant: EXISTS subquery {}
| NOTEXISTS subquery {}
;

subquery: '(' query_spec ')' {}
;

exp: atom {}
| col {}
| function {}
;

Appendix B. Guide to the DocBase Source Code 219

function: countfunc {}
| distfunc {}
| allfunc {}
| attfunc {}
;

countfunc: COUNT '(' STAR ')' {}
| COUNT '(' col ')' {}
| COUNT '(' DISTINCT col ')' {}
;

distfunc: aggops '(' DISTINCT col ')' {}
;

allfunc: aggops '(' ALL exp ')' {}
| aggops '(' exp ')' {}
;

attfunc: COUNT '(' ATTVAL '(' col ',' NAME ')' ')' {}
| aggops '(' ATTVAL '(' col ',' NAME ')' ')' {}
| ATTVAL '(' col ',' NAME ')' {}
;

aggops: AVG {}
| MIN {}
| MAX {}
| SUM {}
;

pathexp: pathlist {}
| pathexp DOTDOT pathlist {}
;

pathlist: NAME {}
| pathlist DOT NAME {}
;

atom: STRING {}
| INTNUM {}
;

%%

void yyerror(char *s)
{

printf("%s at %s\n", s, yytext);
}

main (int argc, char **argv)

Appendix B. Guide to the DocBase Source Code 220

{
char *filename;
if (argc > 1) {

if (strncmp(argv[1], "-v", 2) ==0) {
yydebug = 1;
if (argc > 2) filename = argv[2];

}
else filename = argv[1];

}
yyin = (FILE *)fopen(filename,"r");
if (yyparse ()) {

fprintf(stderr,"Sorry, your SQL did not parse properly\n");
}
else {

fprintf(stderr,"Parse successful!\n");
}

}

Appendix C

Usability analysis questions and tables

This appendix lists the questionnaire used in our usability analysis, as well as the

detailed results from the analysis which is summarized in Chapter 7.

C.1 Queries Performed by the Subjects

As described in Chapter 7, the subjects were asked to pose a set of ten queries using

the target interface. Among these ten queries, the �rst query was primarily for the

purpose of getting accustomed to the particular interface, and the next eight were

the experimental queries. The last question was left to the subject to formulate. The

following were the set of questions asked:

1. Find the poems written by Shakespeare.

2. How many poems were written in the Middle English Period age (MEP)?

3. Find all the poems written in the Early 19th Century period (C19A) that have

the word \burning" in the �rst line.

4. Find the poems that have the word \hate" in the title and the word \love" in

the �rst line.

5. Find the poems not written by \Hemans" that have the word \wreck" some-

where in a stanza.

6. Find the poems written during the Early 18th Century (C18A) which have the

word \love" in the collection title, as well as in the poem title, but not in the

�rst line.

221

Appendix C. Usability analysis questions and tables 222

7. Find the poems that have the phrase \expostulation and reply" anywhere in

the body of the poem.

8. Find the poems written by Keats that do not have the word \mortal" in any of

the stanzas.

9. Find the poems written by Shakespeare that has the phrase \to be or not to

be" somewhere in the poem body.

10. Write a query of your own from your interest in poems, and indicate the number

of matches you found for that query.

C.2 Detailed Usability Analysis Results

In Chapter 7, we presented a summary of the results obtained from the usability

analysis on the QBT prototype. Here we show the actual data on which the ANOVA

measures where performed and some visual representations of the data.

In the following, Table 14 gives the details of the times taken by every user for

every task. Here we denote the Java interface by \I1" and the form interface by \I2";

and the experts by \Exp" and the novices by \Nov." Table 15 shows the detailed

accuracy measures in the scale 1{5 for every user for every task, and Table 16 shows

the detailed satisfaction measure in the scale 1{5 for every user.

Appendix C. Usability analysis questions and tables 223

Int.
type

Subj.
Type

Time in Seconds for Task no.

1 2 3 4 5 6 7 8 9 10

I1 Exp 80 47 51 51 45 119 51 37 48 98
I1 Exp 60 232 52 41 50 173 158 49 64 44
I1 Exp 14 43 50 62 64 121 78 96 89 31
I1 Exp 55 50 62 43 67 103 125 32 62 44
I1 Exp 45 35 50 55 66 113 85 72 68 52

I1 Nov 71 162 81 70 179 172 180 65 79 82
I1 Nov 91 170 158 382 197 219 265 178 174 165
I1 Nov 76 91 52 54 114 156 173 70 84 151
I1 Nov 50 62 91 57 82 138 248 97 103 300
I1 Nov 27 43 70 38 107 138 181 85 47 68

I2 Exp 378 77 68 33 51 71 76 50 61 55
I2 Exp 549 51 50 - 47 49 64 35 50 44
I2 Exp 86 42 31 56 30 65 49 28 58 35
I2 Exp 342 52 66 53 64 82 72 55 68 45
I2 Exp 379 98 65 66 55 82 53 42 67 55

I2 Nov 489 102 63 82 142 116 7 105 81 121
I2 Nov 614 114 52 67 138 206 44 124 82 141
I2 Nov 737 157 70 65 81 433 110 161 102 304
I2 Nov 452 152 109 85 132 285 162 145 117 119
I2 Nov 542 166 89 63 114 176 106 134 107 84

Table 14: Detailed values of the e�ciency measures

Appendix C. Usability analysis questions and tables 224

Int.
type

Subj.
Type

Scores (out of 5) for Task no.

1 2 3 4 5 6 7 8 9 10

I1 Exp 5 5 5 5 5 5 2 5 4 5
I1 Exp 5 5 5 5 5 5 1 5 3 5
I1 Exp 5 5 5 5 1 5 5 5 5 5
I1 Exp 5 5 5 5 5 5 3 5 3 5
I1 Exp 5 5 5 5 5 5 5 5 5 5

I1 Nov 5 5 5 5 5 3 3 5 5 5
I1 Nov 5 5 5 5 5 5 5 5 4 5
I1 Nov 5 5 5 5 5 5 3 5 3 5
I1 Nov 5 5 5 5 5 5 5 5 5 5
I1 Nov 5 5 5 5 5 5 5 3 5 5

I2 Exp 5 5 5 5 5 5 5 5 5 5
I2 Exp 5 5 5 5 5 5 5 5 5 5
I2 Exp 5 5 5 5 1 5 3 5 5 5
I2 Exp 5 5 5 5 1 5 5 5 3 5
I2 Exp 5 5 5 5 5 5 5 5 5 5

I2 Nov 5 5 5 5 5 5 3 5 4 5
I2 Nov 5 5 5 5 5 5 5 5 5 5
I2 Nov 5 5 2 5 1 5 5 5 5 5
I2 Nov 5 5 5 5 1 5 2 5 3 5
I2 Nov 5 5 5 5 5 5 5 5 5 5

Table 15: Detailed values of the accuracy measures

Appendix C. Usability analysis questions and tables 225

Interface Type Subject Type Satisfaction measure (out of 5)

I1 Exp 4
I1 Exp 3
I1 Exp 5
I1 Exp 4
I1 Exp 5
I1 Nov 5
I1 Nov 5
I1 Nov 5
I1 Nov 4
I1 Nov 5
I2 Exp 5
I2 Exp 4
I2 Exp 3
I2 Exp 4
I2 Exp 4
I2 Nov 5
I2 Nov 4
I2 Nov 4
I2 Nov 3
I2 Nov 4

Table 16: Details on the Satisfaction measures

Appendix D

About this dissertation

This dissertation itself is created using SGML to demonstrate the applicability and

usefulness of this document model. A modi�ed version of the DTD used in the Elec-

tronic Thesis and Dissertation (ETD) project at Virginia Tech (http://etd.vt.edu)

was used for modeling the thesis. The primary di�erences from the original ETD

document type de�nition were the following:

1. Use of the standard ISO 8879:1886 special symbols and entity references.

2. Use of the standard CALS table model instead of the simple row/column model

used in ETD

3. Slight modi�cation of footnote and other referencing methods

4. Additional parameters in preformatted regions.

5. Additional tags to embed LATEX commands and mathematical symbols.

The printed version of the dissertation was created using a perl stylesheet based on the

SGMLS.pm package written by David Megginson (http://home.sprynet.com/sprynet/dmeggins/).

The on-line SGML version used Panorama Pro (http://www.sq.com) stylesheets.

The thesis was prepared using the \AdeptTM" family of products from ArborText

(http://www.arbortext.com). It was also indexed and incorporated into DocBase for

posing SQL queries.

226

Index

Abbreviated path, 75

accumulator, 148

accuracy, 68, 177, 178, 183, 184

action method, 174

Add Root, 91

aggregate functions, 33

aggregate operations, 34, 134

alphabet, 72

Analysis of Variance, see ANOVA

ANOVA, 42, 183

multivariate, 183

API, 131, 167

applet, 174

AppletFrame, 174

arithmetic operations, 33

atomic formula, 31, 80

attributes, 27, 62

audio alerts, 38

Automatic indexing, 47

auxiliary index, 126

average, 34

Basic path, 75

Basic type, 63

Between-users tests, 41, 179

bidirectional edges, 126

binary operators, 79

BNF, 76, 105, 106

boolean expressions, 45

boolean logic, 46

boolean model, 45

boolean values, 80

bottom-up approach, 66

Bounded pre�x search, 118

Bu�er Management, 116

cache, 13

cannonical form, 94

CardLayout, 175

cartesian product, 32

catalog, 119, 121, 126, 128

CD-ROM, 2, 61

CGI, 167

ChoiceArea, 176

client-server architecture, 113, 114, 131

closure, 12, 13, 35, 65, 109, 157

cognitive artifact, see cognitive tool

cognitive tool, 10

collaborative authoring, 68

command-line interface, 122

Comparison operators, 79

Complete SPE, 76

227

INDEX 228

completeness, 35, 157

complex relational predicates, 79

complex types, 32, 63

complex-object constructs, 49

Complexity, 101

of PE computation, 147

of query evaluation, 152

of simple queries, 144

conceptual model, 37, 58

concordance list, 53

CONCUR, 74

Concurrency control, 68

concurrency control, 13, 131

condition box, 34, 165

con�guration �le, 129

con
icting operations, 68

conjunctive clause, 45

Constant, 78

Context Free Grammars, 51

Contributions, 189

core DSQL, 105, 106, 155

Correctness

of PE computation, 147

of query evaluation, 152

of simple queries, 144

count, 34

cross product, 88, 89

DA, 70, 87{89, 92, 93, 99

Data Collection, 180

data content, 76, 79

data group, 80

data independence, 5

data model, 60, 62

Data Representation

ideal, 125

data representation

physical, 125

database systems

Object-oriented, 6

Object-Relational, 6

DC, 70, 71, 78, 84

DC and DA

Equivalence Of, 92

DeMorgan's law, 87

dependent variables, 41

designing for usability, 67

deterministic �nite automaton, see DFA

DFA, 139

digital libraries, 9

digital trees, 52

Direct manipulation, 11

disjunctive clause, 45

distinguished query, 94, 95

division, 32

DocBase, 14, 70, 113, 190

architecture, 119

Document, 89

Document Algebra, see DA

Document Calculus, see DC

document databases, 78

document expression, 88

Document predicates, 79

INDEX 229

Document SQL, see DSQL

document types, 62

documents

database system for, 12

interchangeable, 2, 6

plain text, 6

structured or tagged, 7

DSQL, 104, 122

DSQL DTD, 109

DTD, 62, 63, 74

Editable, 174

e�ciency, 67, 177, 178, 183, 185

Embedded Regions, 159

equi-join, 164

Equipment, 179

equivalence, 35, 157

equivalence of RC and RA, 32

Equivalence theorem, 93

ER Model, 5

Evaluate later, 122

Evaluate now, 122

Exodus, 114, 132

Experimental Search Queries, 181

experts, 179

extended context-free grammar, 62

Extensible Markup Language, see XML

feedback, 11, 38

�lesystem, 60

�nite sets, 83

form-based interface, 35, 177

formal model, 189

Formulas, 80

free variables, 81

functional requirements, 57

functions, 80

GC-list, see concordance list

General Feedback, 183

general path queries, 71, 72

generalized product, 88, 91

generic identi�ers, 62, 74

GQBE, 35

grammar-based models, 51

granularity, 45

graph query language, 71

graphical user interface, 122

grep, 45

grouping, 134

hard copy, 1

HCI, 5, 10, 37

Hier, 174, 175

Hier engine, 129, 132

hierarchical data format, 70

hierarchical document structure, 70, 114

HierCanvas, 175

HighlightArea, 176

HTML, 1, 7

HTML forms, 168

HTTP, 167

Human-Computer Interaction, see HCI

HyperText Markup Language, see HTML

INDEX 230

IDREF, 74

ImageMap, 174, 176

ImageMapArea, 176

independent variables, 41

index management, 114, 117

index structures, 13, 45

indexing process, 45

indexing techniques, 45

Indices, 120

Individual di�erences, 11

Induction hypothesis, 95

information hiding, 58, 59

information retrieval, 2, 8, 43, 65

inheritance, 113

Input Size, 101

INRIA, 66

Interface components, 168

Interface Type, 178

Internet, 194

interpretation, 76

intersection, 88, 89

iterative design, 39

Java, 113, 166

Java virtual machines, 114

join, 28, 32, 91, 135, 164

join conditions

evaluation of, 150

Join Indices, 121, 128

keyword-based retrieval, 44

Kleene closure, 53, 72, 78

lex, 133

LexAn, 175

Line, 176

Listed path, 75

logical operator, 162

LOGSPACE, 50, 67

main index, 117

Manual indexing, 47

mental model, 10, 155

meta-data, 2, 43, 117, 119, 126

meta-language, 109

metaphors, 11

in interface, 11

minimal path, 73

multi-level abstraction, 59

Multiple Conditions, 163

NameArea, 176

NameDialog, 175

nest, 33

nested queries, 123

nested relational algebra, 33

nesting, 158

New Oxford English Dictionary, 51

NFQL, 36

NodeMem, 175

non-distinguished query, 98

non-functional requirements, 57

normalization, 28, 164

novices, 179

Null path, 75

INDEX 231

object-oriented database, 50, 66

object-oriented query language, 66, 71

OEM, 56

o�set, 117, 126

operating system, 59

operator precedence, 165

Operators, 79

ordering, 134

overloading, 113

p-strings, 51

parse tree, 126

Parser, 133

Pat, 117

Pat Indices, 120

Pat query language, 117

Pat engine, 132

pat engine, 129

path expressions, 71, 83, 104, 135, 145

partial, 73

Path selection, 89

Path term, 79

Path term predicates, 80

Patricia tree, 51, 66, 117, 129

PDF, 60

PE, see Path Expression

perlSGML, 131

physical data representation, 58

pilot test, 39

plain text, 60

point-and-click, 155

pointer/link chasing, 74

Poisson Distribution, 48

polynomial time, 14

portable document format, see PDF

postscript, 60

predicates, 31, 79

pre�x search, 53, 118

Principle of Feedback, 38

Principle of Mapping, 38

Principle of Visibility, 37

Probabilistic methods, 46

prodjoin, 148

project, 32

Projection, 91

projection, 88

pruning, 128

PseudoApplet, 174

PTIME, 50, 67, 101

QBE, 5, 14, 109, 154, 160{162

QBT, 154, 157, 160{162

quanti�cation, 31, 85

quanti�er

existential, 81, 87

universal, 81

Queries, 84

Query By Example, see QBE, 33

Query By Templates, 37, see QBT

query engine, 34, 122

Query Engine Architecture, 133

Query Evaluation, 135

Query Formulation, 161

query interface, 113

INDEX 232

query language, 14, 65, 190

�rst order, 14

for documents, 190

procedural, 87

visual, 14, 190

Query Optimization, 153

Query optimization, 191

query optimizer, 122

query processing, 134, 190

query engine, 131

QueryCombine, 174

QueryEntry, 174

QueryPanel, 175

QueryString, 176

range restricted, 83

RCS, 68

recovery, 68, 116, 131

Recursive Regions, 159

re
ection, 65, 110

region index, 117, 120

regular expression, 71, 72, 138

Regular path queries, 72

regular path queries, 71

relational algebra, 30

relational calculus, 30

relational databases, 34

relational formula, 30

relational model, 27, 32, 109

relational query languages, 70

relational schema, 27

relations, 27

root addition, 88

Rooted SPE, 76

rough sets, 46

Safe atomic formulas, 82

Safe DC, see SDC

Safe DC Formulas, 82

safe formulas, 82

Safety, 99

satisfaction, 68, 177, 178, 183, 186

SDC, 82, 95, 99

select, 32

selection, 88, 90

selectpath, 136

Semantics, 84

semi-in�nite string, see sistring

semistructured data, 56

SEQUEL, 33

sequential scan, 45

set di�erence, 32, 88, 89

Set intersection

in Pat, 119

Set union

In Pat, 119

set union, 32

SGML, 2, 7, 62, 74, 109, 114

SGML attributes, 74

SGMLQuery, 174

Sgrep, 54

Simple Path Expression, see SPE

Simple Select Queries, 140

simple select query, 135

INDEX 233

Simple Selection Queries

using QBT, 162

simplicity, 35, 157

SINSI, 117

sistring, 51, 53

sort-merge join, 152

spanning tree, 163

SPE, 73{76, 78{80

SQL, 14, 30, 33, 50, 104

SQL screen, 167

SQLPanel, 175

Standard Generalized Markup Language,

see SGML

stop words, 9, 45, 47

storage management, 113, 114, 116

Storage manager, 132

Store now, 122

strictness indicators, 46

structural information, 65

structural navigation, 74

structure screen, 167, 170

structured document database, 119

structures

non-recursive, 74

recursive, 74

SUBDOC, 110

Subject Type, 178

Subjects, 179

su�xes, 47

sum, 34

Survey Questions, 182

surveys, 40

tabbed folder, 168

tagging, 44

generic, 7

speci�c, 7

tags, 2, 7

template image, 157

template screen, 167, 168

Templates

at, 158

multiple, 160

nested, 158

non-visual, 161

structure, 160

term frequency, 47

term weights, 46

Terminal SPE, 76

Termination

of PE computation, 147

of query evaluation, 152

of simple queries, 144

terms, 31, 45, 78

text database approaches

bottom-up, 49

top-down, 49

text editor, 6

Thinking aloud, 40

three levels of abstraction, 58

Timing Techniques, 181

top-down approach, 66

top-down design, 58

INDEX 234

Transaction Management, 116

Translator, 133

Traversal, 118

traversedown, 136, 138

traverseup, 136

TreeVect, 175

tuple construction, 83

tuple substitution, 134

Two{Poisson model, 48

union, 88, 89

Unix, 113

unnest, 33

unstructured text, 49

usability, 154

designing for, 11

usability analysis, 179

usability engineering, 39

Usability Evaluation, 183

usability testing, 39, 177

user attitudes, 40

user testing, 39

validation, 122

variables, 78

dependent, 178

independent, 177

vector space method, 46

vector spaces, 46

Version control, 68

Videotaping, 40

views, 58, 65

virtual documents, 123, 148

visual cues, 40

visual template, 122

well-formed formulas, 31

w�, see well-formed formulas

Within-users tests, 41

word index, 117, 120

word processing applications, 1

word-processor, 7, 38

World Wide Web, see WWW, 54

WWW, 1, 9

XML, 62

yacc, 133

