Demand more from your SGML database!
Bringing SQL under the SGML limelight

Arijit Sengupta
Computer Science, Indiana University
asengupt@indiana.edu

Abstract

Have you ever been frustrated by how inadequate SGML databases are in terms of searching or
querying your documents? With the current state of the art, you will easily be able to search for a word,
phrase, or keywords in the whole document. Some systems let you perform approximate searches or
regular expression searches. Even fewer systems let you search for keywords or phrases in certain SGML
regions. However, there is much more information already in SGML documents that one can utilize
cleverly to design a proper SGML database system. The current trend of modeling SGML documents
with object-oriented and object-relational databases has certainly brought SGML closer to a complex
object database model, but much research and development remains to be done in this area. This article
introduces the popular relational database query language SQL (Structured Query Language) and its
applicability in the SGML domain.The capability of this query language to express complex queries with
a not-so-complex syntax gives relational databases that support SQL an advantage over other similar
systems. The ability to use SQL or an SQL-like query language with SGML has the potential of giving
much more power to SGML repositories. This article shows how we can pose complex document-related
questions easily with SQL. SQL-capable systems will let you solve problems that would otherwise seem
impossible, or at least, tedious.

1 Introduction

SQL (Structured Query Language) [SQL86, SQL89, SQL92] is the most widely accepted language for rela-
tional databases. It is also gaining popularity as a query language for Object-Oriented (OO) and Object-
Relational (OR) databases, and currently most database systems implement some variant of SQL to formulate
queries. However, SQL’s capability is not limited only to queries. In addition to its use as a data query
language (DQL), it can be used as a data definition language (DDL), a data manipulation language (DML)
and a data query language (DQL). In this paper, we give a short introduction to SQL in its various flavors
and show how we can use the power of SQL to perform complex searches on SGML documents.

1.1 SQL - the standard

Although the original SQL standard dates back to 1986 [SQLS86], the language is still evolving with the
advances in database theory and practice. The original standard was superseded by an improved version
[SQL89]. Because of some programming 1limitations to this standard, a later standard [SQL92, MS92] also
known as SQL2 was published. With the advent of the object-oriented and object-relational technologies,
SQL users are about to see another major transformation in the form of SQL3 [SQL96], which is still in
the works. The main focus of this paper will be based on the most recent SQL standard (SQL2) and some
extensions to the standard that we introduce to “make it fit” in the SGML context.

1.2 Relational databases

SQL was designed to work with relational databases. In relational databases, data is stored in the form of
flat tables, in which the rows or tuples represent one record of the data, and columns represent a field or
property of the data, also called “meta-data” in technical terms. In simple terms, meta-data is a description
of the data. For example, if in a table, a field “bookname” has data “The SGML Handbook”, then “The
SGML Handbook” is the data, and “bookname” is the meta-data”. This principle has almost a direct
correspondence to SGML, where the generic identifiers (GIs) are meta-data, and the character content in
the GIs is the data. Of course, in relational databases, meta-data has more associated information such as
data type, data size, index types, etc.

One problem with a relational database is its flat structure. To represent a complex hierarchical structure
in a relational database, it needs to be mapped to an equivalent flat structure. The process of doing this
involves a data modeling approach, a mapping from the model into tables, and further normalization based on
other criteria like functional dependencies. The most commonly used data model to conceptually represent
relational databases is the Entity-Relationship (ER) model. In this model, conceptual objects in the data
(such as books, authors, publishers, etc.) are treated as “entities” and the relations between the entities (such
as “written by”, “published by”) are treated as “relationships”. Relationships involve at least two entities
(e.g., book is written by author), that could be the same (e.g., book is cited by book). These entities and
relationships are mapped into tables. In most cases, entities become tables, and many-to-many relationships
become tables. One-to-one and one-to-many relationships can be mapped into their participating entities.
Entities have attributes or properties, that get mapped to corresponding fields in the tables. Multivalued
attributes (e.g., a book can have multiple volumes) are separately mapped into tables. (See [EN89] for more
information on this modeling approach.)

Because of the way a conceptual database scenario is fragmented into multiple tables, these subdivided
tables need to be rejoined as necessary during query processing. In fact, this “join” operation is one of the
most important operations in relational databases, although it is not so important for SGML databases,
since documents do not need to be broken into flat structures. However, the join operation still gives a great
power to SGML database queries, as we will see in section 2.3.2.

2 SQL - a brief introduction

SQL was originally designed to specify queries in a language fairly close to the common English language. In
fact the original version of this language, which was developed in IBM’s San Jose Research Laboratory was
called SEQUEL (Structured English Query Language)[AC75]. The SQL language derives most of its syntax
and semantics from this language, and is also sometimes (erroneously) pronounced as “sequel” [MS92].
The original SQL consisted of a core set of operations which could all be performed in polynomial time.
This, although seemingly restrictive, was a great advantage for the language because of its tractable nature.
Complex queries that go beyond the polynomial complexity could be performed by embedding SQL queries
in a common programming language. The proposed SQL3 standard [SQL96], has essentially turned SQL
into a complete object-oriented programming language by.

Although SQL stands for “Structured Query Language”, its use is not restricted to only queries. In
fact, as stated earlier, SQL can be used (and is used in most SQL implementations) as a Data Definition
Language (DDL) to define the structure of the data in the database, as a Data Manipulation Language
(DML) to insert, update and change data in the database, as well as a Data Query Language (DQL) to
search for data in the database based on various conditions. The following sections describe briefly how this
language is used in these three forms in relational databases.

2.1 DDL properties

SQL can be used to define the data structure information (meta-data information) in relational databases.
The top-level structure in SQL is a database, which consists of tables, views, and indices. In addition, many

SQL databases may contain stored procedures, triggers, user-defined data type declarations, temporary
tables, etc. In this paper, we only consider the use of tables, views, and indices. Tables are the primary
building blocks of relational databases. Views are like virtual tables which normally hold the result of a
query that can be used in a different query. Indices are special data structures that are used to speed up the
execution of queries. All of these structures can be created or deleted using the DDL statements CREATE
and DROP. Some examples DDL statements follow:

CREATE TABLE books (ISBN character(20) NOT NULL, name character(30) NOT NULL,
pages integer NOT NULL, year integer NOT NULL,
price decimal NULL)

CREATE INDEX books.name

CREATE UNIQUE INDEX books.ISBN

CREATE VIEW cheapbooks as (SELECT * FROM books WHERE price < 20.0)

The first of the above statements create a table called “books” containing the ISBN, name, number of
pages, year of publication, and price. The second one creates a normal index on the book name, and the
third one creates an index with unique ISBN values, thus prohibiting multiple books with the same ISBN.
The last statement creates a virtual table called “cheapbooks” with only the books whose price is less than
$20.00. The resulting set of books is built using the select statement (see Section 2.3.1). The data definition
also includes deleting databases, tables, views and indices using the DROP DATABASE, DROP TABLE,
DROP VIEW and DROP INDEX statements respectively, and lets the user make minor modifications to
the table structure using the ALTER TABLE statement.

2.2 DML properties

Basic data manipulation includes inserting data in tables, deleting data from the tables, and making changes
to the existing data in tables. These operations are performed in SQL using the DML statements INSERT,
DELETE and UPDATE, respectively. Some examples using the same schema as above could be:

INSERT INTO books values (‘‘1-55860-245-3’’, ‘‘Understanding the new SQL’’,
536, 1993, NULL)

DELETE FROM books where price > 200.0

UPDATE books SET price = 75.0 where ISBN=‘‘1-55860-245-3’’

The above block of code inserts a row corresponding to a book into the table, deletes all the books priced
higher than $200.00, and updates the price of the book with the given ISBN to $75.00.

2.3 DQL properties

Although the DDL and DML components of SQL are useful, its primary focus is on querying existing data.
This section describes the basic query formulating statements using SQL.

2.3.1 Simple queries

All SQL queries are based on the SELECT-FROM-WHERE structure. Queries are expressed as “SELECT
<fields> FROM <tables> WHERE <conditions>". The SELECT clause describes what you want from the
query, the FROM clause tells you where you want the data from, and the WHERE clause contains a list of
conditions that need to be satisfied. If the FROM clause contains more than one table, the WHERE clause
should give a way to link the tables together. Let us suppose we have three tables, books (as above), authors
(containing author-id, name, and affiliation) and the joining relation book-auth (containing book-ISBN and
author-id). Some simple queries are shown below:

1. Find the name and price of the books that have more than 500 pages.

SELECT name, price
FROM books
WHERE pages > 500

The above query is quite simple to understand - it simply returns the list of name-price pairs of the
books that have more than 500 pages.

2. Find all the books written by Charles Goldfarb that cost less than $50.

SELECT books. *

FROM books, authors, book-auth

WHERE books.ISBN = book-auth.book-ISBN
and authors.id = book-auth.author-id
and books.price < 50.0
and authors.name = ‘‘Charles Goldfarb’’

For the above query, the conditions we need are not contained in one single table, so we need to join the
three tables together. Note that in order to join, we need to equate the ISBN fields in the books and
book-auth tables, and also the author-id fields in the book-auth and author tables. The two remaining
conditions come from the query: cost less than $50 and written by Charles Goldfarb.

2.3.2 Complex queries

The power of SQL becomes more apparent when we include advanced operations like quantification (EX-
ISTS), subqueries (embedding one query inside another), grouping and ordering capability (with GROUP
BY - HAVING and ORDER BY), and aggregate functions (such as SUM, COUNT, MIN, MAX, etc.). One
moderately complex query follows:

1. Find the name and affiliation of authors all of whose books are more expensive than “The SGML
Handbook”.

SELECT A.name, A.affiliation
FROM authors A, books B, book-auth U
WHERE A.author-id = U.author-id
AND B.ISBN = U.book-ISBN
AND NOT EXISTS (
SELECT * FROM books B1, book-auth Ul
WHERE B1.ISBN = Ul.book-ISBN
AND Ul.author-id = U.author-id
AND Bl.price <= (
SELECT price FROM books B2
WHERE B2.name = ‘‘The SGML Handbook’’))

In the above query, the main thing to notice is the slight modification of the English query specification.
The above query is the same as saying “find the authors such that there does not exist any book written
by them that is less expensive than ‘The SGML Handbook’ ”. This is necessary, since SQL has only one
quantifier - the existential quantifier. Once this translation is done, the above query is easy to understand;
most of the conditions above are mainly to implement the “joins”.

3 Querying in the SGML context

Now that we have seen how we use SQL with relational databases, we can try to apply it in SGML. The
most interesting feature of SGML that distinguishes it from relational databases is the schema representation

of SGML documents. In SGML, complex structure can be represented quite easily, since there is no need
to break documents into pieces in order to represent them. However, basic SQL does not handle complex
structures easily. In spite of that, with the core SQL and with a few extensions to handle the hierarchy of
the associated data and the complex input/output formulation, we can solve a wide range of queries. If we
consider a complete object-oriented language based on SQL, it can express any feasible query. However, it
is a good idea to stay within the bounds of a simple and restricted language which is complete with respect
to the types of queries that it can handle efficiently. If necessary, we can embed it in another programming
language for harder tasks. The core SQL provides this for relational databases.

3.1 Suggested extensions to SQL for use with SGML

The main extensions needed to use SQL with SGML documents involve the navigation of the tree structure,
and that of building complex objects from other objects. The three primary extensions that we proposed in
an earlier work [SD96] are cascading of the dot (“.” or membership) operator, use of the double-dot (“..” or
descendant) operator, and the ability to specify a form of a DTD in the SELECT clause to build or break
complex types. These extensions are not theoretically complete, but still they show how the core SQL with
a few simple extensions can give great power to the query language. The main ideas behind these extensions
are quite similar to the path expressions proposed by Christophides et. al. [CACS94]. Note that SQL
has been adapted and used for object-oriented languages like the Reloop language for the object-oriented
database Oy [BDK92] and the new proposed SQL3 standard [SQL96]

One problem with SQL used in the relational domain is that it is not a good “fulltext” query language.
This means it can not solve queries involving just strings - possibly encoded in a regular expression (e.g, “what
is known about John in the books database?”). In fact, SQL lacks a way to perform schema-independent
queries. The proposed extension SQL remove this drawback to a great extent. However, this SQL still needs
meta-data along with data in order to be most efficient.

3.2 General properties of this extended SQL

In standard SQL, it is not necessary to navigate a hierarchy because of the flat structure of relational
databases. However, in SGML, navigation is important. It is possible that the same generic identifier could
be reached from the same node by two different paths. Using the cascaded “.” operator or the “..” operator,
one can specify the exact or approximate path that needs to be taken. For example, in the DTD given
in Section 5, the expression book.body.chapter.chtitle and book..chtitle represent the same path. However,
there are two paths from book to name: book.header.bibl.author.name denotes the name of the author while
book.bibl.name denotes the name of the book itself. So book..name in this case is ambiguous, and will
represent both the paths. In case the source node is omitted, the nodes given in the FROM clause are used

as source nodes. So, a query like the following is valid:
SELECT * FROM books WHERE chtitle=‘‘Introduction’’

The above query finds all the books in the database which have a chapter titled “Introduction”. In the case
where a target node with source node omitted can be reached from multiple nodes in the FROM clause, the
query language parser should generate an error, similar to the errors generated by an SQL parser if a field
common to more than one table in the FROM clause is not properly referenced.

One important property of SQL is closure. This means that the language is “closed” in its domain. The
input to the query is a set of tables, and the output is also a table. SQL adapted for SGML should also have
the same property. In other words, every query should generate an SGML document. If discrete fields are
specified in the SELECT clause, like Query 1 in Section 2.3.1, they are put under one content model with
sequence separators. The closure property is necessary for various reasons, the primary reason being the
possibility of cascading SQL statements by using the result of one query as the input to another. Specifying
a DTD in the SELECT clause can give the user more control over this process.

It has been mentioned earlier (Section 3.1) that SQL has limited support for fulltext or regular expression
queries. The SQL operator LIKE can perform limited regular expression comparisons. A new operator called
“containing” can be introduced which can search for strings or regular expressions contained in a particular
region. A match is obtained if the search string or expression matches anywhere in the subtree rooted at
that region. For example, the expression book.chapter containing “query language” will return all chapters
that have the string “query language” anywhere in its content.

4 Types of possible queries

This section can easily take up all of this paper — so we only discuss the major types of queries one can
perform with SQL — especially those that are difficult to do in current SGML database systems. Note
that some of the high-end systems based on object-oriented and object-relational databases (such as Texcel
Information Manager [Hol95]) do claim to have SQL capabilities, and chances are, in the future most of the
SGML systems will implement SQL. The following are the broad categories of queries that we consider here:

1. Simple selections using selection conditions combined with boolean operators (e.g., find the books
which have more than 200 pages and cost more than $20).

2. Selections involving multiple databases or multiple subtrees of the same database having a common
region (e.g., find the books written by an author who has edited another book).

3. Selections involving aggregate functions such as count, minimum, maximum, etc. (e.g., find the
total number of chapters in “The SGML Handbook”).

4. Selections involving existential and universal quantifiers, such as for all, there exists (e.g., find the
authors all of whose books cost more than $20).

5. Selections involving subqueries (e.g., find all the books written by the author of “Practical SGML”).

6. Selections involving negations, resulting in non-monotonic queries (e.g., find the authors who have not
edited any book).

Detailed SQL formulation of these queries are given in Section 5.1.

5 Example scenario and sample queries

We can demonstrate how queries like the above can be posed in SQL using a sample schema - an extended
form of the relational schema described above. In the following DTD, we have added a few additional
information to embed the body of the book. Note that to do the same in a relational database, we will
have multiple tables (ten tables with a clever design). We will show that we can perform many complex and
interesting queries even with a simple design like the following DTD for a generic “books” database.

<!DOCTYPE books [

<!'ELEMENT books 0 0 (bookx*)>

<!'ELEMENT book - - (header, body)>

<!ELEMENT header - - (bibl,other)>

<!ELEMENT bibl - 0 (name, (author)+, (editor) *,year ,publisher)>
<!ELEMENT other - 0 (ISBN,price)>

<!ELEMENT (ISBN|price) - - (#PCDATA)>

<!ELEMENT (name|year) - - (#PCDATA)>

<!ELEMENT (editor|publisher) - - (#PCDATA)>

<!ELEMENT author - 0 (name,affil)>

<!'ELEMENT affil -
<!ELEMENT body -
<!ELEMENT chapter -
<!ELEMENT section -
<!ELEMENT (P|chtitle|sectitle) -
1>

(#PCDATA) >

(chapter+)>

(chtitle, (section)*) +(P)>
(sectitle,P+)>

(#PCDATA) >

oOo0ooo

5.1 Query formulation

All relational database-like queries still work in this new formulation. In fact, most of the queries described
before will run without changes (other than the changes brought in by the new naming conventions and the
removal of unnecessary join conditions). For example, the first query, find the name and price of the books
that have more than 500 pages, will still be the same as Query 1 in Section 2.3.1. However, Query 2 becomes
much simpler, since no joins are necessary:

SELECT *

FROM books

WHERE author.name = ‘‘Charles Goldfarb’’
AND price < 50

In the above query, the WHERE clauses are internally expanded to (i) book.header.bibl.author.name =
“Charles Goldfarb” and (ii) book.header.other.price < 50. Note that in the first clause, the path is partially
specified to avoid ambiguity with book.header.bibl.name.

5.2 More advanced query formulation

Let us now look at the queries mentioned in Section 4 and see how to solve them easily using SQL.

1. Find the books which have more than 200 pages and cost more than $20.

SELECT * FROM books
WHERE pages > 200
AND price > 20

2. Find the books written by an author who has edited another book.

SELECT bl FROM books.book bl, books.book b2
WHERE b1l..bibl.name <> b2..bibl.name
AND bl..author.name = b2..editor

Note that in the above query, we are joining the database with itself, making sure that the author of
one of the books is the editor of the other. The clause b1 <> b2 is necessary to avoid books where
the editor is also an author.

3. Find the total number of chapters in “The SGML Handbook”

SELECT COUNT(chapter)
FROM books
WHERE bibl.name = ¢‘The SGML Handbook’’

There is nothing complex about this query other than the use of an aggregate function COUNT.

4. Find the authors all of whose books cost more than $20.

SELECT b1l..author
FROM books b1l
WHERE NOT EXISTS (
SELECT * FROM books b2
WHERE b2..author.name = bl.author.name
AND b2..price < 20)

This query is similar to the one described in Section 2.3.2. The query here has been restated as: “find
the authors so that there does not exist any book written by him which costs less than $20”. Note
that not requiring the join conditions has made this query much more readable than the earlier one.

5. Find all books written by the author of “Practical SGML”

SELECT * FROM books
WHERE author.name = (
SELECT author.name
FROM books
WHERE bibl.name = ‘‘Practical SGML’’)

The above query uses a subquery to first find out the name of the author who wrote “Practical SGML”,
and then uses the result in the condition for the author’s name. Note that it may be necessary to change
the “=" operator to “IN” if there are multiple books with the name “Practical SGML” in the database
- the latter might be safer to use if the user is not aware of the number of “Practical SGML”s in the
database.

6. Find the authors who have not edited any book

SELECT author.name
FROM books bl
WHERE NOT EXISTS (
SELECT * from books b2
WHERE b2..editor = bl..author.name)

This one is a simple use of NOT EXISTS.

5.3 Additional query features

The queries, which we discussed above, only use selections based on conditions involving the character content
of GIs. Of course, it is also possible to query only on the content model, with queries like “find the books
that do not have any appendices” (either using a NOT EXISTS or by doing a COUNT(appendix) = 0). It
is also possible to query based on attribute values, using an operator that can retrieve attribute values of a
GI. This will be among the minor enhancements to SQL. Using this approach, the query “find all the pages
a particular HTML page refers to” can be solved using a query like SELECT A.attval (HREF) FROM HTML.

Intermixing all the above techniques can greatly enhance the capacity of the language, while at the same
time keeping the general readability of the language quite simple.

6 Conclusion

SQL is the standard language in relational databases, but it is yet to make a major influence in the SGML
world. With the advances in SGML database technology, it is easily conceivable that in the future SQL will
be a standard language in the SGML domain. SQL already exists in object-oriented and object-relational
databases, and in SGML systems built on top of these databases. The queries we saw here are quite generic
- but still difficult to solve in the current SGML systems. We would like to see SQL implemented in SGML
systems - and that day is not too far away.

References

[ACT5]

[BDK92]

[CACS94]

[EN8Y]

[Hol95]

[MS92]

[SD96]

[SQLS6]
[SQL8Y)
[SQL92]
[SQLYS6]

M. M. Astrahan and D. Chamberlin. Implementation of a structured english query language.
Communications of the ACM, 18(10), October 1975. Also published in/as: 19 ACM SIGMOD
Conf. on the Management of Data, King(ed), May.1975.

Francois Bancilhon, Calude Delobel, and Paris Kaneliakis. Building an object-oriented Database
Dystem: The story of O,. Morgan Kaufmann Publishers, 1992.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents to novel
query facilities. SIGMOD RECORD, 23(2):313-324, June 1994.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummins, 1989.

Sebastian Holst. Database evolution: the view from over here (a document-centric perspective). In
Yuri Rubinsky, editor, Proceedings, SGML ’95. Graphic Communications Association, December
1995.

Jim Melton and Alan R. Simon. Understanding the New SQL: A Complete Guide. Morgan
Kaufmann Publishers, 1992.

Arijit Sengupta and Andrew Dillon. Extending sgml to accommodate database functions: A
methodological overview. Communicated for publication at the JASIS special Issue on structured
content, January 1996.

ANSIT X3.135-1986, Database Language SQL, 1986.
ANSIT X3.135-1989, Database Language SQL, 1989.
ANST X3.135-1992, Database Language SQL. Also ISO/IEC 9075:1992, 1992.

ANSI X3H2 standards group. Proposed standard for Object Oriented Database Language SQL3,
1996.

