Standar dizing the Querying Process with SGML

TheSQL DTD
ArijitSengupta1

K eywor ds: Structured Query Language,Query processing,SGML Databases.
Abstract

One of themost exciting applications of SGML which has emerged in the recent years is its use in document databases. The structural
information embedded in SGML documents makesit possible to query SGML documents and extract information in an automatic manner;
however, this querying process has not been standardized. Asaresult, different SGML database implementations use their own query
language syntax, thus making the migration from one system to another adifficult process. In therelational database domains, however, the
query language SQL (Structured Query Language) has been astandard for over ten years and is universally used in most relational database
systems. Although originally designed for relational databases, SQL is quite powerful for specifying complex queriesin arelatively
easy-to-understand syntax. With asmall set of extensions to take advantage of the hierarchical structure of SGML, SQL can be easily
adapted for use with SGML document databases [TAG-496].

The powerful "generalized" nature of SGML makesit easy to implement SQL asan SGML DTD (Document Type Definition) , so that
queries can be expressed as document instances of the SQL DTD. Current SGML authors and users can write queries expressed inthisDTD
without learning adifferent language or using a separate editor. Moreover, because of the portable nature of SGML, these queries can be
used in any SGML database system and can be converted to regular SQL for usein arelational or Object-Relational/Object-Oriented
database system, if necessary. Databasesthat support the SQL DTD can also store the queries without any extra effort, and subsequently
query them for inferring optimization parameters.

This paper presents arepresentative DTD for the SQL query language, with extensions for use with hierarchically structured documents.
It also compares thislanguage with languages proposed and implemented, including SDQL (Standard Document Query Language) — the
query language in the DSSSL standard [DSSSL95]. This paper explains the advantages of using thislanguage as aquery languagein
document database systems and the necessity for standardizing the querying process in document databases. Finally, it discusses some
implementation i ssues and compl exity measures.

About the Authors
Arijit Sengupta
Arijit Sengupta

z isaPh.D. candidate in Computer Science at the Indiana University, Bloomington. He is also the Associate Instructor for the Information
Systems sequence course in Computer Science and the system administrator for various SGML systems as well as other commercial and
public-domain database systemsin the Database L aboratory. His research is directed towards finding new methods for accessing the data
from structured document databases, using query languages and interfaces.

@)
1. Preface

The SGML standard is very suitable as a platform for document databases. SGML describes only the structure of the
document, leaving the process of applying semantics to the document structure to the application that processes the
document. Following this approach, database applications can make their own access methods for retrieving information
from the document. Asthe popularity of document databases is expanding, an increasing number of database applications
are being developed - al of which use their own method for information retrieval. There are many different products that
require use of multipleinterfaces, different types of style sheets, different types of query languages, different types of
trandation pseudo-languages, etc. Thismakes it difficult for users of such systems to migrate from one system to the
other. A standard method of information retrieval isthus necessary. The SDQL languagein the DSSSL (Document Style
Semantics and Specification Language) [DSSSL95] standard provides an answer, but because of its low-level nature, it
is not very suitable as a simple query language for document databases. For this purpose, we need something that is easier
to use, that is less dependent on the document structure, and that involves less amount of learning from the users' point of
view. This makes SQL an obvious choice as a query language for SGML document databases. SQL [SQL86] is very
closeto English, yet it can pose a complete set of solvable queries with various degrees of complexity.

Itis not very difficult to apply SQL inthe SGML domain. The basic SQL can be augmented with a relatively small set of

extensions as we proposed in <TAG> [TAG-496]. The generalized nature of SGML, however, makes it very easy to
avoid learning another language just to search SGML documents. Thisis achieved through the use of an SGML-ization of
the SQL grammar, with an SQL DTD. Thisway, users can write their queries directly in SGML, using whatever
validating editor/parser they use, and send it to the database engine. For the database engine, presumably they aready
have a validating parser to start with, asthey are dealing with SGML documents, so the parsing of the query should
already be built-in. This paper introduces a query language for SGML database, using SGML itself! The DTD described
here primarily covers the query language, and does not involve the data definition and manipulation powers of SQL. The
goal of this paper is to show that a common method for information retrieval from document databases can be designed
without leaving the domain of SGML. The DTD presented hereis not complete, but deriving a complete SGML DTD
from the SQL language specification is not a very difficult task, and the DTD discussed here shows exactly how it can be
done. With the DDL (Data Definition Language) and DML (Data Manipulation Language) properties added, this
method has the possibility of leading to a standard way of accessing SGML document databases.

2 _
2. Introduction

SQL and SGML have alot in common. SQL [SQL86] and SGML [SGML86] were both standardized in 1986, and since
then both have undergone changes and extensions. The SGML standard have been quite stable, but other standards like
Hytime [HY T94], DSSSL [DSSSL 95] have been built on top of SGML in order to give more functionality to SGML.
SQL, however, has been revised twice as SQL-89 and SQL-92, and another revision leading towards an object-oriented
guery language SQL 3 isintheworks. SQL is primarily a query language, whose roots lie theformal relational algebra
and relational calculus traditionally used with therelational database model. SQL, however, also has constructs for data
definition and manipulation (creating data structures and adding or updating values in the data structures). SQL-92, also
known as SQL 2, has facilitiesfor embedding SQL in a host programming language, for using triggers and event handling
with active databases, and for making use of many other database-specific facilities. The forthcoming SQL3 will be a
compl ete object-oriented programming language containing facilities for decisions, loops and other programming
constructs. The core query language has not been modified much since the original SQL-86, and this core languageis our
primary area of interest in for accommodating with SGML.

This paper describesa DTD for writing SQL queries using SGML. The DTD is based on the SQL-86 standard [SQL86]
and is constructed from the SQL syntax grammar described in [DATES89]. The DTD described hereis not complete and
is by no means an exact representative of the complete SQL query language, and only includes the relevant section of the
query language for selecting documents or components of documents from a document database based on certain search
conditions. Queries using this DTD are compared to the same queries using other languages like the standard SQL, the
Pat Query language [OT94], the Metamorphosis query language [MM96], the SDQL (Standard Document Query
Language) languagein the DSSSL standard [DSSSL 95] and the Sgrep query language [SGREP96].

(2.2)
2.1. What isSQL?

SQL [SQL86] is nothing new for people acquainted with relational databases. It is the standard query language for al
relational database systems that have a language interface for manipulating the internal data. SQL is not a complete
programming language, so certain queries are not possible to formulate using SQL. The queries that can be solved in
SQL ,however, constitute a core set that can be performed by a relational database enginein PTIME (polynomial time
complexity) and LOGSPA CE (logarithmic space complexity) [ABIT95]. This means that all the queries that one can
formulatein SQL will never need an execution time greater than a polynomial of the input size and will never occupy
temporary storage more than a logarithm of theinput size. Thisis very important in relational databases, because (i) most
queries of interest in relational databases will always be bound to this seemingly small set of queries, and (ii) a relational
database implementing SQL will always be able to solve them in polynomial time.

Query languages that are complete programming languages (or, in formal terms, Turing-complete languages) can be used
to formulate queries which regquire beyond polynomial time (for example, exponential time) for computation. Although
this makes these languages more expressive than languages like SQL, there is never any guarantee that all queries written
in such alanguage will be solvable in a reasonable time. That is the reason why we like to avoid Turing-compl ete
languages. The SDQL languageinthe DSSSL standard [DSSSL95] falls in a complete language category. The core query
language subset of SDQL is close to the type of query language that we are looking for, but (i) its level istoo low and too

restricted requiring explicit navigation through the SGML parse tree, and (ii) it is not very intuitive for end-users, and is
also not very easy to implement using a simple user-interface. SQL, however, can be quite easily implemented using a
form-based interface, like those in most commercia database packages.

(2.2
2.2. SQL inthe SGML context

SQL was originally designed for relational databases, which is based on table-structured data. Because of the flat
structure of tables, therelational model is unsuitable for modeling document databases. The primary reason for thisis that
modeling hierarchical document structures into flat relational tables requirestoo much fragmentation of the original data
and loses most of the integrity of the original document. Since SQL is primarily alanguage designed for relational
databases, it is also not suitable for querying document databases. Fortunately, a relatively small set of extensionsto the
core SQL language results in a language that is powerful enough for use with hierarchical document databases. Some
recent research-oriented and commercia systems ([ABIT93]; [HOLST95]) have implemented SGML databases using a
host Object-Oriented and Object-Relational database, and they use some of the features from the host SQL language for
the purpose of query processing. Fortunately, for an SGML query processing system, it is not necessary to implement a
compl ete object-oriented query language.

We introduced a small set of extensionsto the core SQL in [TAG-496], [JASIS96]. In these papers, we show how the
core SQL with some relatively simple extensions can be used to perform rather complex queries for document databases.
In this paper, we take this work one step further - we incorporate this extended SQL languagein an SGML DTD, that
can be used directly by a common SGML processing system for implementing all the queries that are possible in direct
SQL. In this way the query language stays within the domain of SGML - users do not have to learn a new language for
writing their queries, and the implementers do not have to write a new parser for a new language.

©)
3. The"SQL DTD"

The entire SQL-92 BNF (Backus-Naur Form) takes up more than 45 pages [MELT92] - of course most of it consists of
interfaces for SQL with various programming languages, embedded SQL, triggers and other advanced features that are
primarily targeted towards a relational database language. We are only interested in the querying capabilities of SQL,
using a few extensions described in [TAG-496] and [JASIS96]. The three main extensions are:

1. Addition of complex column expressions to specify complex paths from the SGML root to the node of interest,

2. Addition of incomplete path expressions specifying only a source and a target node, leaving the path resolution to the
search engine,

3. Selection of complex document structures using a pre-specified document type definition. Thisinput DTD will likely
consist of a special rearranging of the output structure from the query and restructure it as specified inthe DTD.

(3.1)
3.1. Closure

We give a considerable importance to closure of thelanguage. The main idea of closure is that once an operation has
ended successfully, theresult is in thes same domain as the input of the operation. We are dealing with SGML documents,
so inour caseit makes sense to designate SGML asthis domain of closure. Thisimpliesthat the input to the queries
consists of one or more SGML documents, and the result of the queries must also consist of SGML documents,
conforming to either theinput DTDs or DTDs generated as a result of the query. In most cases, theresulting DTD can be
constructed from portions of theinput DTDs. In cases where more complex reorganization of the output is necessary, it is
achieved using an output DTD template which is used to construct a DTD for the structured output.

The concept of closure is maintained not only in the query language but also in the interface in which the queries are
executed. We proposed an interface that we termed QBT (Query By Templates) based on this closure ideain [JASIS96],
inwhich theinterface for specifying queries uses the same template that is used for displaying the outputs. Another use of
closure is to enable complex queries by feeding the outputs of certain queries back asinputs of other queries, thus
enabling the use of queries as subqueries. Thisis easy to achieve if the output of queriesisin the same format asthe
inputs. This also enables saving outputs of certain queries as temporary views that can be used as inputs to other queries.

The following two sections show the SQL DTD and a table that describes all the generic identifiers of this DTD.

(32
3.2. The DTD for the SQL Query Language

<!__ *kkkhkkkkkhkhkkkkhkhkkk*k Sq_ mcun-ent Type Ebflnltlon kkkkhkkkkhkhkkkkkkk*k -
<!-- Suggested public id: -ANSI X3H2//DTD SQ.//EN -->

<!-- Defined Paraneter Entities -->

<IENTITY % Negation "(ASIS | NOT) ASIS'>

<I ENTI TY % Conparison "(EQUAL | NEQ | LESS | GREATER | LEQ | GREATEQ EQUAL">
<IENTITY % Aggregate "AVG| MAX | MN | SUM| COUNT">

<l ELEMENT SQL O O (select, (union, all? ,select)*)>
<! ELEMENT (union|all) - O EMPTY>

<! ELEMENT sel ect O (out put, gry-body)>

<I ATTLI ST sel ect elcrit (ALL | DI STINCT) ALL>

w

<! ELEMENT out put OO (scalar+ | all | dtd-exp)>
<! ELEMENT dt d- exp - O (#PCDATA) -- will possibly need change -->
<! ELEMENT qry- body O O (from where?, group-by?, having?)>
<! ELEMENT from - O (db+)>
<! ELEMENT db - O (#PCDATA) >
<! ATTLI ST db alias |D #l MPLI ED>
<! ELEMENT where - O (cond)>
<! ELEMENT gr oup- by - O(col+)>
<! ELEMENT havi ng - O (cond)>
<! ELEMENT cond OO (predicat | (left, logic, right))>
<! ATTLI ST cond neg %\egation; -- (ASIS |NOT) ASIS-->
<! ELEMENT (left|right) O O (predicat | cond)>
<! ELEMENT | ogi ¢ - O EMPTY>
<! ATTLI ST | ogi ¢ oper (AND | OR| FOLLBY | NEAR) AND>
<! ELEMENT pr edi cat - O(conpare | between | like | testnull |
in | univgnt | exists)>
<! ELEMENT conpare - O(scalar, (scalar | select))>
<! ATTLI ST conpare oper %Conpari son; >
<! ELEMENT bet ween - O (scalar, scalar, scalar)>
<! ATTLI ST bet ween neg %\egati on; >
<! ELEMENT | i ke - O(col, colatom escaton®)>
<I ATTLI ST |i ke neg %\egati on; >
<! ELEMENT (colatom | escaton) - O (#PCDATA) >
<! ELEMENT testnul | - O(col)>
<! ATTLI ST testnul | neg %\egati on; >
<! ELEMENT in - O(scalar, (col | atomt))>
<I ATTLIST in neg %\egati on; >
<! ELEMENT uni vgnt - O(scalar, select)>
<! ATTLI ST uni vgnt neg %\egati on;
oper %Conpari son;
type (ALL | ANY | SOVE) ALL>
<! ELEMENT exi sts - O (select)>
<! ATTLI ST exi sts neg %\egati on; >
<l-- The content of scalar is inconplete conpared to SQ

Arithmetic operations are intentionally left out to
keep the DTD sinple, but could be added if necessary -->

<! ELEMENT scal ar OO (atom| col | function)>

<! ELEMENT at om - O (#PCDATA) >

<! ELEMENT functi on - O(countall | distfunc | allfunc | attfunc)>
<! ELEMENT count al | - O EMPTY>

<! ELEMENT di st func - O(col)>

<! ATTLI ST di stfunc oper (9%Aggregat e;) COUNT>

<l ELEMENT al | func - O(all?, scalar)>

<I ATTLI ST al | func oper (%Aggr egat e;) COUNT>

<l ELEMENT attfunc - O(col,attrib)>

<l ELEMENT attrib - O (#PCDATA) >

<I ATTLI ST attfunc oper (%Aggregate; | NONE) NONE>

<! ELEMENT col O O (source?, thru*, target)>
<I ELEMENT (source|thru|target) - O (#PCDATA) >
<! ATTLI ST source refdb | DREF #CONREF>

(3.3)
3.3. Description of theDTD

A preliminary version of the DTD for the query section only is given in thelast section. ThisDTD implements all the
extensions described in [JASIS96]. The complex selection using an external DTD could be implemented more
effectively, but currently the DTD specifies only a system file name, which the processing application needs to load and
process. The complex path expressions are implemented using the complex column element <coL>, (having an optional
source position whichis linked with a database) and a number of intermediate elements that can be used to denote a
particular path fromthetop level to the desired element. In case of multiple paths from a source to a target, they can be
explicitly stated or can be |€eft for the processing application to select. Ideally, the processing application will try to find
all paths from the source to a target. The examples in the following sectionswill show how thisis used. The following
table shows all the generic identifiers (Gls) used in the DTD, with descriptions for each of them.

Table 1. Description of the Glsin SQL DTD

Gl inthe | Description

DTD

SQL Top level Gl inthe DTD. Optional. Contains one SQL query statement.

union Signifiesthe union operation involving the results of two or more select statements.

all Used as amodifier of the union operation and as a replacement for the "select *" construct of SQL

select Theroot of asingle select statement. A select statement can be used as a sub-query in various places: asa
component in the union of multiple queries, asascalar output in acomparison, and for quantification, either
universal or existential (for all/there exists). The attribute selcrit (selection criterion) can be distinct or all
depending on whether duplicate removal is to be performed or not.

output The output from the query - specified asalist of complex columns, all, or arestructuring DTD

dtd-exp | TheDTD expression - currently just the name of the DTD. Some constraints and mappings may be added in future
revisions

gry-body | Theactual body of the query. Optional

from The"from" specifier - specifies the input to the query. consists of one or more databases.

db A database to provide the input to the query. The attribute aliasis a short name used for future reference by the
complex columns.

where The condition clause.

group-by | Thegroup-by clause - specifies which columns to group the results by. Must be a subset of the columnsin the
output clause.

having Specifies further restrictions in group-by columns.

cond The conditions for querying. Can be either a predicate or alogical binary expression combined using alogical
operator. Can be either true or false. The attribute Neg specifies if the condition is to be negated.

left Theleft side of alogical operator. can be either a predicate or another conditional expression.

right Theright side of alogical operator.

logic Thelogical operation. Allowed operationsare: AND, OR, FOLLBY (followed by) and NEAR. Thelast two
operations are added on top of normal SQL to support proximity queries.

predicat | A relational predicate - can be one of seven operationsas given inthe DTD. Theresult is aways true or false. All
operations can be negated.

compare | Thecomparison operation. Compares a scalar value with another scalar value or the result of a subquery that
returnsascalar value.

between | The between operation performs range queries - decidesif the value of ascalar expression is between two
different scalar expression

like Thelike operation is basically aregular expression match. A complex column is compared with aregular
expression formed with a column atom and an escape atom.

colatom | Theregular expression. In SQL, the regular expressions use the characters % and _ for zero or more characters
and exactly one character respectively.

escatom | Specifies an escape character, in case one of the characters % and _ needs to be used as a data character.

testnull A null test - to check if acomplex column contains anull value

in An IN expression: testsif the value of ascalar expression isin aset of atoms or a set returned by a select subquery

univgnt | A universal quantifier - can be one of ALL, ANY or SOME, and the comparison can be one of the several
comparison operations.

exists An existential quantifier - determinesif the result of a subguery exists.

scalar A scalar expression - can be asingle value or a set of values. Can be a constant (atomic) value, a complex
column, or afunction of them.

atom A constant value - normally a character or numeric value.

function | Various aggregate functions allowed in SQL.

countall | Theaggregate function count(*) counts the number of tuples (or instances of complex columns) returned by the
query, without duplicate elimination

distfunc | Distinct functions - computes aggregate functions on specific complex columns with duplicate elimination

allfunc All functions - computes aggregate functions on scalar expressions without duplicate elimination

attfunc Attribute functions - computes functions on attribute values of columns

col A complex column - targets one or a set of Gls of the underlying database.

source Source for the complex column - has to be one of the databases in the repository

thru Path from the source to the target - needsto be a Gl of the database

target The end target of the column for the operation.

(4)

4. The SQL DTD by Example

This section describes a sample scenario demonstrating how queries are formulated using the SQL DTD. Thissample
DTD istaken directly from [TAG-496], with the addition of one "pages" attribute for the books, which is probably
uselessin normal circumstances but is included to demonstrate attribute access features of the SQL DTD. Pleaserefer to
the above article for the queries using the extended SQL in its native language form. In this paper, although we will
examine some examples in theregular SQL, most will use the SQL DTD that we are proposing. The following is the
"books" DTD:

<! ELEMENT books O O (book*)>

<! ELEMENT book - - (header, body)>

<! ATTLI ST book pages NUMBER #i nplied -- possibly redundant -->
<! ELEMENT header - - (bibl,other)>

<! ELEMENT bi bl - O (nane, (author)+, (editor)*,

year, publ i sher) >

<! ELEMENT ot her O (I SBN, price)>

<I ELEMENT (I SBN pri ce) - (#PCDATA) >
<! ELEMENT (nane|year) - (#PCDATA) >
<! ELEMENT (edi tor| publisher) - (#PCDATA) >
<! ELEMENT aut hor O (name, affil)>
<! ELEMENT affil - (#PCDATA) >

<! ELEMENT body

<! ELEMENT chapt er

<! ELEMENT section

<! ELEMENT (P|chtitle|sectitle)

O (chapter+)>

O (chtitle, (section)*) +(P)>
O (sectitle, P+)>

O (#PCDATA) >

Queries using SQL have five main sections, shown in the following two lines taken fromthe SQL DTD. Thefirst line
shows the syntax of the select statement in SQL, which has an output specification and a query body. The output
specification can be alist of columns, an "all" specifier, that specifiesal theitemsin the database, or a DTD specifier
that gives the name of the DTD which should restructure the output.

<! ELEMENT sel ect - O(output, gry-body)>

<! ELEMENT qry- body O O(from where?, group-by?, having?)>

The query body contains four sections: (i) a"from" section in which the source for the data is specified, (ii) a"where"
section, in which the conditions of the selection are specified, (iii) a"group-by" section, in which the ordering information
is specified, and (iv) a"having" section that further constrains the ordering of the output. A sample SQL query, using this
SQL DTD, will be similar to the one shown in thefollowing table. This query is equivalent to the search: "Find all the
books that are written by Charles Goldfarb".

The query in the following table shows how a simple query in SQL will be coded in SGML using the SQL DTD. Of
course thereis some of overhead of the SGML tags, some of which can be minimized using the SHORTTAG and
DATATAG features of SGML. The above query uses OMITTAG and contains three important sections: select, from,
and where. The <sel ect >" section contains a scalar valuewhich, in this case, is just a complex column with the target
book. The <f r o> section contains the source for the query data which is simply the database "Books" (which is given
thealias B1 for use with subseguent column references). The <wher e> section contains a comparison predicate, which
compares a scalar value containing the column "name" with a scalar value containing the atom (or constant value)
"Charles Goldfarb".

Table 2. A sample query in SQL and the equivalent using SQL DTD

Regular SQL SQL DTD
SELECT book
FROM Books B1 <sql ><sel ect >
WHERE BL1.. aut hor. nane = <scal ar ><col ><t ar get >book
"Charl es Gol df arb" <fronp<db al i as="B1">Books
<wher e>

<cond><pr edi cat ><conpar e>
<scal ar ><col ><sour ce refdb="B1"” ><t hr u>aut hor
<t ar get >nane
<scal ar ><at on>“ Charl es ol df arb”
</ sel ect ></ sql >

The complex de-referencing of the column "name” is implemented in the above query. In the SQL syntax, it can simply

be stated as "B1..author.name" (i.e., start from the database B1, take any path to "author", and go to "name" in the content
of "author"). Using the SQL DTD, this leads to a source node referring to the database aliased by "B1", a path that goes
through the element "author", and a target "name”.

(4.7
4.1. Comparison of SQL DTD with other query languages

In this section, we will take the same six example queries stated in [TAG-496] and show the queries for these six
examples using the query languages from the following systems. Note that some of the queries have not been verified;
they have been either contributed by one of the responders to our appeal for contributions on the comp.text.sgml
newsgroup, or we have constructed them from documentation for the specific system, without actually testing them in the
respective system, since the system was not availablefor our use. The systems considered in this paper are the following:

1. Open Text 5.0 and the Pat query language from Open Text corporation, Waterloo, Canada [OT94]
2. Sgrep 0.99 from Computer Science, Univ. of Helsinki [SGREP96]

3. Metamorphosis 2.13 from Ovidius corporation, Berlin, Germany[MM 96]

4. SDQL inthe DSSSL Standard [DSSSL95]

5. TheSQL DTD

The actual SQL queries are not reproduced here. Interested readers should see [TAG-496] for the queriesin SQL or the
SQL DTD query for an alternative.

(4.1.2)

4.1.1. Find the books that have more than 200 pages and cost more than $20.
Table 3. Table showing the queries corresponding to Query 4.1.1.

System Query
Pat (region book including

(region page including (range "0200".."9999"))
(region book including

(region price including (range "0020".."9999"))
Sgrep Not possible as such, since requires giving an interpretation to some portions of the text. However, it is
possible to find the books having exactly 200 pages and costing exactly $20:
NAMED_ELEMS(book) cont ai ni ng

(NAMED_ATTRVAL(pages) equal "200" in NAMED STAG book))
cont ai ni ng (NAMED_CONTENTS(price) equal "$20")

M etamor phosis| sour ce. chi l d[chi | d[?header]
.chi I d[?ot her]
.child[?price].data > 20 &
chi | d[?header]
.chi I d[?ot her]
.chi I d[?pages] . data > 200

]
SDQL (setq all-books) ;; Create a node-list containing all the books
(define (equal 200pages snl)
(if (= (attribute-string 'pages snl) 200) #t #f))
(define (greater20 snl)
(if (= (data (child "price snl)) 20) #t #f))
(nodel i st-intersect
(get-ancestors 'book (node-list-filter equal 200pages all-books))
(get-ancestors 'book (node-list-filter greater20 all-books)))
SQL DTD <sgl ><sel ect ><al | >
<fronp<db al i as="B1">Books
<wher e><cond><| ef t ><pr edi cat ><conpar e GREATER>
<scal ar ><f uncti on><at t f unc><col ><t ar get >book<at t ri b>pages
<scal ar><at on200 <l ogi ¢ AND>
<ri ght ><pr edi cat ><conpar e GREATER>
<scal ar ><col ><t ar get >pri ce
<scal ar ><at on»20
</ sel ect ></ sql >

(4.1.2)

4.1.2. Find the books written by an author who has edited another book.

Table 4. Table showing the queries corresponding to Query 4.1.2.

System Query
Pat Join operation is not supported.
Sgrep Not possible, requiresjoins.

. ancest or [?book]
. chi I d[?bi bl]
]
.(fn)
). (*p:=this)
&

sour ce. chi | d[descendant [?aut hor]

Metamor phosis| di stinct (source. descendant [?aut hor & *n: =chi [d[?name] . dat a]
.(left|right)[child[?header]

.child[?editor].data==*n

. chi | d[?nane] . dat a==*p)] ;

/1 left| right

SDQL Join operation is not possible without writing a complete join algorithm using lisp.

<wher e><cond><| ef t ><pr edi cat ><conpar e NEQ>

<l ogi ¢ AND>
<ri ght ><pr edi cat ><conpar e>

</ sel ect ></ sqgl >

SQL DTD <sgl ><sel ect ><scal ar ><col ><sour ce ref db="B1" ><t ar get >book
<fronp<db alias="B1">Books<db al i as="B2">Books

<scal ar ><col ><sour ce refdb="B1"><t hr u>bi bl <t ar get >name
<scal ar ><col ><source refdb="B2"><t hr u>bi bl <t ar get >name

<scal ar ><col ><sour ce refdb="B1"><t hr u>aut hor <t ar get >namne
<scal ar ><col ><sour ce refdb="B2"><t arget >edi t or

(4.1.3)
4.1.3. Find the total number of chaptersin"The SGML Handbook"

Table 5. Table showing the queries corresponding to Query 4.1.3.

System Query

Pat regi on chapter within (region book including (
regi on bibl including (

regi on nanme including "The SGW Handbook")))

Sgrep sgrep -c¢ ' NAMED ELEMS(chapter) in \
(NAMED_ELEMS(book) containing \

(NAMED_CONTENTS(nane) equal "The SGWL Handbook"))'

M etamor phosis| count (sour ce. chi [d[chi | d[?header]
. chi I d[?bi b]

. chi | d[?nane] . dat a=="The SGWL Handbook"
].child[?body] . child[?chapter])

(define (child-withgi gi snl)

(define (handbook? snl) (if (streq? (data snl)
#t #))
(node-list-count (child-withgi 'chapter
(get-ancestors 'book
(node-list-filter handbook? (chil d-withgi

SDQL (define (ginane? nane snl) (if (streq? (gi snl) nane) #t #f))

(node-list-filter (lanbda nane (ginane? nane)) snl))
(define (dataval? ...)) ;; simlar as above for data

"The SGW. Handbook")

"title all-books)))))

SQL DTD <sgl ><sel ect ><scal ar >
<function><al | func COUNT><col ><t ar get >chapt er
<f r onr<db>Books
<wher e><pr edi cat ><conpar e>
<scal ar ><col ><t hr u>bi bl <t ar get >name
<scal ar ><at on®" The SGW. Handbook"
</ sel ect ></ sql >

(4.1.4)
4.1.4. Find the authors all of whose books cost more than $20.

Table 6. Table showing the queries corresponding to Query 4.1.4.

System Query
Pat Quantification operation not supported.
Sgrep Not Possible, requires and numeric interpretation of text content.

M etamor phosis| sour ce. child
.chil d[?header & child[?ot her]

.child[?price].data>20]
.chi 1 d[?bi bl]. chil d[?aut hor]
SDQL (setq all-authors ...) ;; Find the Ilist of all authors
(define (allgt20? snl)
(node-list every?
((lanbda (sn) (if (> (child-withgi 'price sn)
20) #t #f)) (get-ancestor 'book snl))))
(node-list-filter allgt20? all-authors)
SQL DTD <sql ><sel ect ><scal ar ><col ><sour ce ref db=B1><t ar get >aut hor
<fronp<db alias="Bl">Books
<wher e><pr edi cat ><exi sts NOT>
<sel ect ><al | >
<fronp<db al i as="B2">Books
<wher e><cond><| ef t ><pr edi cat ><conpar e>
<scal ar ><col ><sour ce refdb=Bl><t hr u>aut hor <t ar get >namnme
<scal ar ><col ><sour ce refdb=B2><t hr u>aut hor <t ar get >namnme
<l ogi ¢ AND>
<ri ght ><pr edi cat ><conpar e LESS>
<scal ar ><col ><sour ce refdb="B2"><t ar get >pri ce
<scal ar ><at on»20
</ sel ect ></ sql >

(4.1.5)

4.1.5. Find all books written by the author of "Practical SGML"
Table 7. Table showing the queries corresponding to Query 4.1.5.

System Query

Pat Join Operation not supported.

Sgrep Not possible, requiresjoins.

M etamor phosis| sour ce. chi I d[?header]
.child[?bi bl]

.child[?nane & data=="Practical SGW"]
.child[?aut hor]. (*p: =(chil d[?nane] . dat a))
&
sour ce. chi | d[?book &
. chi | d[?header]
.chi I d[?bi bl]
. chi | d[?aut hor]
.child[?nane & dat a==*p]

]

SDQL Join Operation not possible without writing a complete join algorithm using lisp.

SQL DTD <sgl ><sel ect ><al | >
<f r onp<db>Books
<wher e><pr edi cat ><conpar e EQUAL>
<scal ar ><col ><t hr u>aut hor <t ar get >nane
<sel ect ><scal ar ><col ><t hr u>aut hor <t ar get >nane
<f r onp<db>Books
<wher e><pr edi cat ><conpar e>
<scal ar ><col ><t hr u>bi bl <t ar get >nane
<scal ar ><at on®" Practi cal SGW"
</ sel ect ></ sel ect ></ sql >

(4.1.6)

4.1.6. Find the authors who have not edited any book.
Table 8. Table showing the queries corresponding to Query 4.1.6.

10

System Query

Pat Join operation not supported.

Sgrep Not possible, requires Joins.

M etamor phosis (*p: =di stinct(source.child[?header].child[?bibl].child[?editor].
data))
&

sour ce. chi | d[?book]
. chi I d[?header]
. chi | d[?bi bl]
.child[?aut hor & *p~==chi | d[?nane] . dat a]

SDQL Join Operation not possible without writing a complete join algorithm using lisp.
SQL DTD <sql ><sel ect ><scal ar ><col ><t hr u>aut hor <t ar get >nane
<frone<db al i as="Bl">Books
<wher e><pr edi cat ><exi sts NOT>

<sel ect ><al | >

<fronp<db al i as="B2">Books

<wher e><pr edi cat ><conpar e>

<scal ar ><col ><sour ce refdb=B2><t ar get >edi t or

<scal ar ><col ><sour ce refdb=Bl><t hr u>aut hor <t ar get >name
</ sel ect ></ sel ect ></ sql >

(5
5. Mativationsfor a standard query language

Although SGML has been a standard for a decade now, there has been little attempt at devel oping standards for using
SGML as alanguage for describing database schema and for querying the data in the database. The SDQL languagein
DSSSL [DSSSL95] does provide an answer. Although SDQL is well suited for manipulating formatting styles of the
document, its level is too low to be of use as a query language. SQL has been the query language of choice in relational
databases, and there are many justifications for its use as the query languagein SGML databases. The selection becomes
obvious when we use the DTD version of SQL. The DTD presented hereis just a quick implementation to show what can
be done and is by no means an end initself. Designing a DTD with appropriate SGML declaration enabling DATATAG
and SHORTTAG minimization will make the language almost as simple as its non-SGML counterpart, and at the same
time, keep it completely portable. Some of the motivations behind having this SQL DTD as a standard query languagein
SGML areasfollows:

» It is powerful enough to specify areasonably complete set of queries that can be evaluated within practical time limits.

» It is easy to understand and visualize, especially when using it in tandem with an SGML-aware authoring system.

» It conforms to theidea of closure. The query languageis itself in SGML while using SGML documents as input and
produces SGML documents as output.

» Sincethe queries are themselvesin SGML format, they can be stored in the database. These SGML queries can be
subsequently queried for determining optimization and other tuning parameters for the database system. Also, in
database systems, optimization is normally performed by constructing the query tree and applying optimization rules to
the tree to reduce the depth and span of the query tree. Thisis achieved by moving the expensive operations higher upin
thetree, so that they are computed with input that is much smaller in size compared to the original input. Using the
SGML version, the parse tree of the query can be easily used as a starting point for applying transformation rules to
construct more optimized queries.

» Prabably the biggest advantage of using such queries is portability. Since the queries arein a generalized format, they
can be easily converted to regular SQL for usein relational databases or into QBE for usein a visual query formulation.
The queries are also general enough to be converted into other proprietary query languages and into the SDQL language
for the purposes of style specification and transformation. In fact, a system implementing SQL needsto first convert the
guery into a procedural format, and the procedures described in SDQL can be used for such purposes.

(6)
6. Implementation | ssues

A problem with very general languages is implementation difficulty. In contrast, we can formally prove that all queries

11

written in SQL can be solved in PTIME (polynomial complexity for time) and LOGSPA CE (logarithmic complexity for
temporary space) [ABIT95]. Our current work [SENG96]

3 isaimed at showi ng that PTIME implementations of SQL queries for structured documents are possible using
index-based approaches.

(6.2)
6.1. Language | mplementation

I mplementations of document databases can be roughly grouped in two categories - (i) mapping approaches which map
the SGML schemainto an Object-Oriented or Object-Relational schema and convert the document accordingly (such as
in[ABIT93], [HOLST95]) and (ii) index-based approaches in which indices are built on top of the original documents to
expedite searches (such asin[OT94]). Index-based approaches have the advantage of keeping the authoring separate
from the database counterpart, since the original documents are kept intact and the indices can be rebuilt when the
documents are updated. Although these updates are expensive, in most cases, the indices can be incrementally updated.
On the other hand, the mapping approach of converting documents into totally different database systems often require
that the authoring is also built into such systems. Users do not have access to the original raw SGML document, but can
only export theinternal database contentin SGML formif necessary.

SQL-like queries are already built into systems that map documents into an Object-Relational or Object-Oriented
database, since the host database systems usually support SQL queries. Our approach is to show that such queries can
also be supported in index-based systems, using some specialized indices for certain functions and operations. The "join"
operation, which requiresthe use of a variable (which is usually missing in the index-based approaches) is thefirst
operation that we implement, and in [SENG96] we show that joins can be efficiently implemented using indices on the
Gl(s) used in the"join" operation. |mplementations strategies for other first-order operations in SQL will be investigated
subsequently.

(6.2)
6.2. Visual Implementation

We mentioned earlier that the simplest visual implementation of this query language will be the familiar authoring
interface for SGML authors. We need to keep in mind, however, that all users searching for information in SGML
documents are not authors, so it is necessary to consider other visual alternatives. A significant portion of our current
effortsis towards the development of a simple yet powerful visual approach to interfacing query languages. Thisvisual
approach is based on the Query By Example (QBE) languagefor relational databases. An implementation of this method
for structured documents, which we call Query By Templates (QBT) [JASIS96], is available on-line [QBT96].

(7)
7. Conclusion and Discussion

In this paper, we have presented an elegant way for querying SGML databases. We have demonstrated here that not only
is this method useful, but also reasonably simple to implement. Most current commercia systemswill simply require a
front-end to the current language to accommodate SQL . Making a consistent query language for structured documents

will also make the process more uniform for many people, including both the users and the devel opers. For this purpose, a
complete programming language with a number of predefined procedures is not necessary. It would make much more
sense to use the currently available technology and know-how on query languages and to apply these lessons for querying
SGML documents. The common standard does not have to be SQL, but it definitely is a very appropriate solution. This
will be afirst step toward a universal method for searching digital libraries across platforms - maybe a step towards
Nelson’s Xanadul!

Acknowledgments

This paper would be incomplete unless | acknowledge the persons who helped me compile the solutions to the sample
gueries in the various query languages. | would like to thank Bernhard Weichel and Hans K erkman of the Ovidius Corpn.
for their solutions to the queries using Metamorphosis, and Klaus Fenchel for his help and support in communicating the
solutions to me. | would also like to thank Pekka Kilpelainen, Computer Science, University of Helsinki for his solutions
using Sgrep. Thanks also goes to Ryan Sweet of the Open Text Corporation, for verifying the queries using Open Text
5.0. | would aso like to thank Bob Ducharme from ACM, Gordon V. Cormack from the Multitext corporation, and Art

12

Pollard for their support in getting answersto my questions. Last but not least, | would like to thank my colleague
Mehmet Dalkilic for his help with the lisp codes used for the SDQL language.

References

[ABIT93] Serge Abiteboul, Sophie Cluet, Tova Milo. "Querying and Updating the File". Proceedings, 19th Intl.
Conference on Very Large Databases, 73-84, 1993

[ABIT95] SergeAbiteboul, Richard Hull, Victor Vianu. "Foundations of Databases'. Reading, Mass.
Addison-Wesley, c1995

[DATES89] C.J. Date."A Guide to the SQL Standard" - second edition. Addison Wesley Publishing Company, 1989

[DSSSL95] ISO/IEC DIS 10179.2. "Document Style Semantics and Specification Language (DSSSL)". Working Draft,
1995.

[HOL ST95] Sebastian Holst. "Database Evolution: the View From Over Here (A Document-centric perspective)”.
Proceedings of the SGML '95 Conference, December 1995.

[HYT94] ISO/IEC 10744, in DeRose(1994): Steven J. Derose, David G. Durand. "Making Hypermedia Work: A
User's Guide to HyTime". Kluwer Academic. 1994.

[JASIS96] Arijit Senguptaand Andrew Dillon. "Extending SGML with database functions: A methodol ogical
overview." To appear in the Journal of the American Society for Information Science (JASIS) special issue
on Structured Information/Standards for Document Architectures; August, 1996.

[MELT92] JimMeéelton and Alan R. Simon. "Understanding the New SQL: A Complete Guide". Morgan Kaufmann
Publishers, 1992.

[MM9g] Ovidius Corporation. "The Metamorphosis Manual”. Available online at
http://www.ovidius.com/mmmanual/toc.html. 1996

[OT94] Open Text Corporation. Open Text 5.0 Software and Reference Manuals. 1994.

[QBT96] Arijit Sengupta, Andrew Dillon and Shawn P. Morgan. An Implementation of QBT asthe SGML Query
Language. Demonstration available at http://blesmol.cs.indiana.edu:8080/projects SGML Query.

[SENG96] Arijit Senguptaand Dirk Van Gucht. A PTIME Query Language for Structured Document Databases. Work
In Progress, August 1996

[SGML86] 1SO 8879. "Information Processing - Text and Office Systems - Standard Generalized Markup Language
(SGML)", 1986.

[SGREP96] Jani Jaakkola and Pekka Kilpel&inen. "The Sgrep online manual”. Available at
http://www.cs.helsinki.fi/~jjaakkol/sgrepman.html. 1996.

[SQL86] ANSI X3.135-1986. "Information Technology - Database Languages - Structured Query Language (SQL)".
American National Standards Institute. New Y ork, 1986.

[TAG-496] Arijit Sengupta. "Demand more from your SGML database! Bringing SQL under the SGML limelight.” in
<TAG> The SGML Newsletter; 9(4); pages 1-7; April, 1996.

Lndiana University, Computer Science Dept.

Lindley Hall 215
Bloomington, IN 47405
USA

Phone: 812 855 4318

Fax: 812 855 4829

E-mail: asengupt@indiana.edu

WWW: http://www.cs.indiana.edu/hyplan/asengupt.html

2Partially supported by US Dept. of Education award number P200A502367 and NSF Research and Infrastructure grant, award number NSF

13

CDA-9303189.

Swork in progress - a copy of a preliminary version of this work can be obtained by contacting the author.

14

