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Circle: Design and Implementation of a Classifier Based
on Circuit Minimization

ABSTRACT
We present Circle, a classification algorithm based on the prici-
ples of boolean function minimization. This classification process
uses a recursive method to generate a set of implicants (or rules).
The novelty of this algorithm is in the fact that the rules generated
contain information about not only presence of features, but also
their absence in determining class values. Although function mini-
mization is inherently exponential on the number of attributes, we
introduce several optimization techniques to reduce the complex-
ity to the extent that we are able to scale the algorithm to 1000
columns, the limit in most commercial database systems. Circle is
levelwise algorithm that iteratively produces implicants. For por-
tions of the training set that are misclassified, Circle recurs pro-
ducing additional implicants that will be logically conjoined to the
previous implicants. Several optimization techniques were applied
to the base Circle algorithm, as well as numerous ways it can be
configured for specifc data mining tasks. Circle is completely im-
plemented in Java with a JDBC-compliant database backend. One
of the primary applications of Circle is mining bioinformatics data,
and particularly genomic data. We present results of our experi-
ments running circle on several well-known data sets for machine
learning, as well as special large genomic data sets.

1. INTRODUCTION
Both inexpensive storage and the ability to generate and collect

information has outpaced any reasonable expectation to interpret
this information without automatic or at least semi-automatic tech-
niques. In the area of bioinformatics,e.g.genomics, the accumula-
tion and kinds of information discovered from high-throughput se-
quencing of proteins1 far outpaces even Moore’s law. There are two
kinds of signficant challenges facing bioinformatics: operations
and computation. Operations defined loosely is the design and im-
plementation of information systems that allow general search; pro-
vide grid services via the web for deployment of software, data sets;

1A protein for purposes of this paper is a string over an alpha-
bet |Σ| = 20, where the symbols denote amino acids, organic
molecules that, when connected, form a chain that is biologically
active,e.g., as an enzyme.
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provide web portals for scientists focused on various aspects of
bioinformatics to submit and post new findings to public reposito-
ries of bioinformatic information that are shared throughout bioin-
formatics communities; provide a suitable structured environment
to do in silico science–computation.

The other challenge is computation, including the development
of models, algorithms, and data mining2. One of the primary tasks
of bioinformaticians is to make sense of the sequenced proteins,
i.e. function. A protein’s function, as has become to be widely
believed, is determined by its three-dimensional structure that is,
in turn, determined directly by the linear sequence of amino acids
making up the protein. Crystallization is currently the only means
of directly determining structure, but is labor intenstive and very
difficult. High-throughput techniques have matured to the point
that it is far easier to sequence many thousands of proteins rather
than crystallizing a few. In treating proteins as collections of strings,
bioinformaticians realized that by “aligning” strings, similar pro-
teins would likely share similar 3D structure, and therfore, func-
tion. As an example we present an alignment of about the last 30
residues of human alpha globulin to leghemoglobin from yellow
lupin [2]:

HBA_HUMAN NAVAHV---D--DMPNALSALSDLHAHKL
+A ++ +L+ L+++H+ K

LGB2_LUPLU EAAIQLQVTGVVVTDATLKNLGSVHVSKG

The ‘-’ is called a “gap”, reflecting a biological event that ei-
ther removed or inserted a residue (in this example, a character).
The + reflects biological similarity–enough that the pair is con-
sidered a match. The matches represent motifs, substrings that
are likely important and probably essential to the in function of
the proteins. Proteins are seldom short–containing sometimes sev-
eral thousand characters and virtually never of the same length.
One fundamental task is discovering motifs [3, 13, 14, 16]. An
excellent portal for testing algorithms for motif discovery is the
PROSITE database [6]. These families (proteins that possess like
functions) are human-curated and accepted as valid. The motifs in
PROSITE are given as regular expressions without Kleene closure.
A typical for family PS00434 is L-x(3)-[FY]- K-H-x-N-x-[STAN]-
S-F-[LIVM]- R-Q-L-[NH]-x-Y-x- [FYW]-[RKH]-K-[LIVM]. The
xs stand for “don’t care” and [] means disjuntion. Challenges in-
clude predicting which family a protein belongs to and more in-
terestingly, discovering the motif of family. Traditional data min-
ing techniques are, at best, difficult to apply to problems like these
in bioinformatics. Indeed, discerning what exactly are pertinent
features is an area of research [4, 8]. What we observed is that

2Data mining and general search from operations are significantly
different. In general search, scientists might be interested in seek-
ing authors, citations, protein sequences.



the amount of and interaction of nominal data has made statisti-
cal approaches challenging, though statistical classifiers have had
the most success as demonstrated by their ubiquity in both the lit-
erature and industry (see [5]). Formally, the task is to establish a
functionf that when presented with a set of values correctly identi-
fies the class it belongs to. In classification, the task is made some-
what easier (problematically, though not computationally), because
in constructingf one has a collection of correctly classified val-
ues (features)a priori. “Supervised learning” is used to describe
this situation of having this information. Formally, the problem
is, given a set{(x1, y1), (x2, y2), . . . , (xn, yn)}, wherexi repre-
sent values to be classified andyi represent a class value discover
a “good” method (usually a function, rule-set, or decision tree) de-
noted byf such thatf(xi) = yi. Deciding upon what exactly is
good is decided by the context of the problem, though discovering
f that is right most of the time is what is generally sought [12, 15,
9].

What was discovered independently were two different deter-
ministic methods to that relied upon the principle that a boolean
variable could be ignored if it did not contribute to the output value.
In its simplest form,xy + xy = x(y + y) = x1 = x, wherex and
y are Boolean values. The graphical method is called Kaurnaugh
or Veitch-Kaurnaugh maps (K-maps, KV-maps) [7]. This method
creates a grid of cells that represent the sum-of-products (SOP), a
canonical form where the Boolean input values are represented as
full conjunctions. The method is to circle all the 1s, while drawing
circles as large as possible avoiding cells that do not explicitly con-
tain 1. As few circles as possible are used. In addition, circles can
only contain cells that differ on one Boolean attribute as described
above. Once the circling is complete, a disjunction of the Boolean
variables whose two values are not adjacent can be read straight
from the grid.

Because graphical methods become quite clumsy beyond a few
variables (virtually impossible), and they are problematic to to cre-
ate procedurally, the Quine-McCluskey method [11] is used to for
Boolean functions of many variables. Essentially the method in-
volves grouping the conjuncts as small material implications called
“implicants.” For example, the first row of Fig. 1 forms an implicant
1110 → 1 (an order is assumed on the variables). The implicants
are grouped based upon the number of 1s, since this helps mitigate
the amount work explained next. Then iterating over this group, a
new implicant is added if there are two other implicants that differ
by a single Boolean value. The new implicant is identical to the
other two, except a “don’t care” symbol * is placed at the point
where they differ. When this iterative is complete, the next phase
is to judiciously pick so-called “prime implicants”–implicants that
cannot be combined with other implicants–so that the original con-
juncts are covered.

From this, we were inspired to create a logic-theoretic classifer
called Circle (named for the task). Circle works on any kind of
relation, though we are focusing now on relations with predomi-
nantly nominal data. Circle works by creating a set of implicants
(or rules) via minimization. To investigate Circle fully, we have
created a full implementation, freely available, and are currently in
the process of adding optimizations. We have begun testing Circle
on both synthetic datasets and bioinformatic data that we are cur-
rently working with. Our contributions in this paper focus on two
aspects

• implementation of such a classifier–including some existing
optimizations and directions for improvement

• preliminary results on both synthetic data and bioinformatic
data we are currently working with

B1 B2 B3 B4 f

1 1 1 0 1
1 1 0 0 1
1 0 1 1 1
1 0 1 0 1
1 0 0 0 1
0 0 0 1 1
0 0 0 0 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1

Figure 1: A Boolean function (classifier)f .

The remaining paper is as follows. First, in Sec. 2 we present
our classifier graphically, what we call classifier maps (C-maps)
much in the spirit of K-maps. This provides an good, intuitive
foundation for the procedural algorithm. Next, we provide some
preliminary formal language definitions in Sec. 3. We next discuss
briefly the rule sets that Circle produces with respect to monotonic-
ity in Sec. 5, followed by a description of the implementation in
Sec. 6 and implementation in Sec 7. We then discuss experiments
we performed on several synthetic datasets as well as bioinformat-
ics data in Sec. 7.1. We conclude with a summary and future work
in Sec. summary.

2. CIRCLE VIA C-MAPS
We will first introduce the Circle classifier graphically. As men-

tioned in the introduction, having been inspired by work in Boolean
circuit minimization, we thought it natural and appealing to present
Circle similarly. We will be using the relationHistory in Fig. 3.
These values represent patient histories at a fictitious hospital. We
are interested in thePrognosis of the patient, given his or her
Treatment , Symptoms, Age, andSex. The PID is nothing
more than an identifier to make discussion easier. We create a grid
called a classifier-map or C-map. A C-map is shown in Fig. 2(a).
The C-map is rectangular collection of square cells. Each cell is
indexed by an expression that spans both the top and left side of the
figure. The expression is based uponone of the instances–in this
case, we are using tuplet13. Notice the leftmost cell is indexed by
X andCough at the top, andyoung andmale on the left. The
expressions are both positive and negative.

In Fig. 2(b) we have shown the progressive correct circling, be-
ginning with tuplet23 as a finely dotted line. A suitable next larger
circling includes the∅ to the right. Another suitable cell of size
two could have been directly above. In either case, the largest cir-
cle contains the four cells, shown as a solid line. Observe the circle
is constrained in all directions. We continue circling until no tuple
is left uncovered. The result of our circling is shown in Fig. 2(c).

Once we have completed circling, the next step is to describe
the circles via the essential indices. These are attribute values that
index the circle whose positive and negative values are adjacent.
In the case of the first circle described, observe thatX andmale
are essential. Conjoining these two negative values gives the rule
Treatment 6= X ∧ Sex 6= male ⇒ sick. The final set of rules,
hence, become:

Treatment = X ⇒ cured

Treatment 6= X ∧ Symptom 6= cough ⇒ sick

Treatment 6= X ∧ Sex 6= male ⇒ sick

Age 6= young ∧ Sex = male ⇒ cured



(a) (b)

(c)

(d) (e)

Figure 2: Illustration of the Circle algorithm



PID Treatment Symptoms Age Sex Prognosis

13 X cough young male cured
24 X fever young male cured
12 X cough adult female cured
26 Y cough old male cured
23 Y cough adult female sick
52 X sneeze adult male cured
2 W sneeze young female sick
5 Z sneeze young male sick
6 Z fever young male sick

Figure 3: A relation History of patient data from a hospital.

2.1 Ambiguity and Recursion
Suppose there is an additional tuplet99 = (Z, cough, adult,

male, sick). Using the original C-map, we can placed it and the
other nine tuples along with∅ as shown in Fig. 2(d). We have ad-
ditionally circled the cells. Observe that one cell shares two tuples
whose classifier values differ,i.e., t99 andt26. The circle contain-
ing these two values isambiguous, since two different class values
are present. What this means is that the conjunction of attribute val-
ues cannot distinguish between the two classes. Notice the circle
is as large as possible, being bounded by cells that contained either
class value separately, but not both. A simple solution is to recur-
sively create another C-map with only the ambiguous tuples from
the circle. This is shown in Fig. 2(e). Notice this new C-map is
indexed in this case by tuplet26’s feature values. Two maximal cir-
cles are shown in the figure. From these two maps we can observe
that the tuples are separated by the feature valueold . Conjoining
this information to the original circle gives the rules

Age 6= young ∧ Sex = male ∧ Age 6= old ⇒ sick

Age = old ∧ Sex = male ⇒ cured

3. PRELIMINARIES
We assume a relationr over a set of attributesR. FromR we

distinguish a single attributeC as the classifier and the remain-
ing attributes{A1, A2, . . . , An} as so-called features or feature
attributes. Thus,R = {A1, . . . , An} ∪ {C}. C contains the
class values (classes), and the remaining attributes are the means
of achieving the classification. For the initial portion of the pa-
per, we will use the relationHistory in Fig.3. The feature at-
tributes are{Treatment, Symptoms, Age, Sex}. The classifier is
Prognosis . The task is to arrive at some functionf : A1×A2×
· · ·An → C that correctly classifies any tuplet ∈ r; that is, we
want to findf that makes the following implicantion true:

∀t t ∈ r ⇒ f(t.A1, t.A2, . . . , t.An) = t.C (1)

4. DEFINITIONS

DEFINITION 1. A minterm is a non-empty word of fixed length
over the alphabet{0, 1, ∗}. We will assume the length to ben, the
number of feature attributes. Using the relationHistory in Fig.3,
for example,110∗ is a minterm. We provide a subscripti ≥ 1 of
the word to denote theith symbol in a minterm. For example, if
α = 110∗, thenα2 means 1. 2

In a minterm 0 stands forfalse, 1 for true, and * for don’t care.
What exactly is meant by each of these will be developed presently.
Continuing with minterms, a notion of logical distance is developed
next.

DEFINITION 2. Two mintermsα andβ are logically adjacent
when they differ by exactly one symbol at theith position and either
αi = 1 andβi = 0 or αi = 0 andβi = 1. For example,10 ∗ 1 is
logically adjacent to00 ∗ 1, but not adjanct to00 ∗ 0. 2

Minterms can be linearly ordered based on the number of 1s. This
observation proves useful when looking for adjacent minterms, since
they must be consecutive in the ordering.

DEFINITION 3. An implicant is a valuation of feature attributes
together with the set of tuples that are determined. The valuation
depends upon an arbitrary, but fixed tuplet ∈ r and a minterm
α. Each of then symbols in the minterm uniquely corresponds to
a feature attribute, e.g. the first symbolα1 corresponds toA1, the
secondα2 to A2, etc. A valuation of feature attributes is achieved
by associating a tuplet ∈ r and mintermα as a pair(t, α) in the
following way: Ifαi = 1, then the corresponding attribute value
is t.Ai; If αi = 0, then the corresponding value is any value from
the active domain exceptt.Ai; If αi = ∗, then the corresponding
value is any value from the active domain.

A tuple–minterm pair(t, α) can be used to determine a tuples ∈
r, denotedα `t s whens.Ai = t.Ai if αi = 1, or s.Ai 6= t.Ai if
αi = 0. For example, using the relationHistory , 110∗ `t13 t12.
An implicant is a triple(t, α, {s ∈ r|α `t s}). For example,
(t13, 110∗, {t12}) 2

PROPOSITION 4. Given a relationr and an arbitrary, but fixed
tuplet ∈ r, form the set

M = {(t, α, {s ∈ r|α `t s})}
where the mintermα is word in{0, 1}n. Any tuples ∈ r belongs
to one and only one implicant.
PROOF Assume the contrary, thats belongs to two different im-
plicants. The implicants’ minterms must disagree on at least one
symbol at positioni. Thens.Ai will either agree witht.Ai ands
will belong to the minterm withαi = 1, or the converse; but not
both. 2

There are a couple of important observations to be drawn from
Proposition 4. First, the setr , given any tuple, is partitioned amongst
one or more of the implicants. Second, many implicants will have
feature values that do not determine any tuples.

DEFINITION 5. Two implicants(t, α, s) and(t′, α′, s′) arecon-
sistentif they agree on the tuple and either they determine the same
set of classifier values or at least one of the sets, s′ is empty. For-
mally, t = t′ and either({s.C|(t, α, s)} = {s.C′|(t′, α′, s′)} or
s = ∅ or s′ = ∅. For example,(t12, 1000, ∅) and(t12, 1001, {t24})
are consistent, whereas,(t12, 0100, {t23}) and (t12, 0101, {t26})
are not. 2

By inconsistent it is either the case that the tuples do not agree or
the non-empty set of classifier values determined are not equal3.

DEFINITION 6. A cover is a collection of implicants that are
consistent. An unambiguous cover is a collection of implicants that
have exactly one classifier value. 2

DEFINITION 7. A prime implicant is an implicant that is not
logically adjacent to another implicant that has a weaker minterm.
An implicant that uniquely covers one or more tuples is essential,
otherwise it is redundant. 2

3It is clear the consistency might be weakened to be subset; we
have not yet investigated this, but imprudent use would require
more recursion which, as an expensive procedure, should on the
face be avoid.



The implicant(t12, 0 ∗ ∗0, {t2, t12, t13}) is prime.
We will now formally describe the implicant production. Given

two logically adjacent and consistent implicants(t, α, s) and(t′, α′, s′),
that differ in their respective minterms at positioni, we can produce
a weaker, consistent implicant(t, α1α2 · · ·αi−1 ∗αi+1 · · ·αn, s∪
s′).

The bodies of the rules can, and often will, contain information
about what feature values arenot present. This is signficant not
only in the generation of implicants, but also when Circle recurs.
A rule body can have a feature involving negation, for example in
Fig. 3Age 6= old, or both an equality and inequalty for a particular
attribute and using different values. To simplify discussion, we
will call Age 6= old a negative feature andAge = young a positive
feature. Notice that we can be safely ignore the negative feature
(though maybe keeping it around), and instead focus onAge =
young. One can imagine the∧ in this case functioning as a kind
of intersection andAge 6= old as the relative complement to value
old .

One of several important details is how Circle works bears scrutiny.
First, we examine how a tuple is selected. For our initial research
here, we have implemented a random pick. Clearly, not all tuples
will provide equally good rules. We have found in practice though
that this simple strategy performs well. as well as ordering tuples
based on the number of implicants that have conflicts. The former
technique seems to work well in practice, though we are interested
in discoverying good heuristics. We next consider how new impli-
cants are produced. Earlier, from Sec.4, we saw that covers can be
successively formed bycircling the largest adjacent, consistent re-
gions of the C-map; futhermore, the size of these regions must be a
power of two. These regions correspond to “weaker” implicants–in
the sense that theith minterm has fewer specific valuations with re-
spect to the tuple-minterm pairing. Regions of the C-map that are
empty, are treated like class “don’t cares”. These empty regions
help determine which input values are unnecessary.

Another important detail is how the redundant prime implicants
are selected. One can imagine a number of different approaches,
but for this paper, we have implemented a simple, but effective
greedy algorithm detailed in section 6 where we discuss Circle’s
implementation and application to various synthetic datasets, as
well as datasets drawn from our current work in bioinformatics. We
will conclude here by discussing one more computational detail,
then examine some of the more appealing logic-theoretic aspects
of Circle.

5. MODELS
From our previous discuss, we have seen that Circle initially pro-

duces a collection of rules that potentially contain positive as well
as negative features. This rule set is actually non-monotonic with
respect to adding tuples to the relation. Non-monotonicity pro-
vides a powerful means of reasoning, in Circle’s case as a classifier.
While an in depth discussion is not appropriate here, we would like
to point a significant problem that monotonic classifiers face. The
feature values must be knownapriori; encountering a heretofore
unknown value might result in the classifier either having nothing
important to say or, worse yet, simply breaking. Circle, by virtue
of Proposition 4 will find a rule class that holds true.

PROPOSITION 8. Suppose Circle produces a rule setR = {X1 ⇒
Y1, . . . , Xk ⇒ Yk} over some relationr with features{A1, A2, . . . , An}
and classiferC. A new instances is presented that has at least one
new feature value not present in the active domain of at least one
attribute. Then only one class of the rules will hold true.
PROOFThe rules were created using a sequence of tuplest1, . . . , t`.

The sequence of minterms that uniquely determines is found by
comparing the individual attribute values ofti to s. For example,
the first minterm for tuplet1 is found by iterating over then dif-
ferent attributes, concatenating 1 ift.Ai = s.Ai and 0 otherwise.
By Proposition 4,s can belong in only one implicant. Because of
logically adjacency and consistency,s will remain in a single class
as weaker implicants are produced. 2

Another interesting problem is adding a new training instance.
One can imagine several approaches to incorporating the instance
into the classifier as discussed in [9], though we will briefly sketch
one of our own–a lazy, top-down approach that allows the new tu-
ple to be distinguished from the implicants to which it belongs. For
sake of illustration, assume a new tuples = (W, sleepy, young, f, cured).

Notice thats triggers rulesR2, R3 for the the classsick . Jux-
taposings and these two rules we see that by simply using the first
two attribute values we can distinguish between the two classes,
easily modifyingR3 and R4 without much work and adding an
additional rule to capture the exception,i.e.

R2a Treatment 6= X ∧ Symptoms 6= sleepy

∧ Symptom 6= cough⇒ sick

R2b Treatment 6= X ∧ Symptoms 6= sleepy

∧ Sex 6= male⇒ sick

R3a Treatment = W ∧ Symptom = sleepy⇒ cured

We can move toward a monotonic rule set by treating the nega-
tive features as relative complement. We call this rule set “mid-
monotonic” for lack of a better term. For the original rule set above
we have

R′1 Treatment = X ⇒ cured

R′2 Treatment ∈ {Y, W, Z}
∧ Symptom ∈ {fever, sneeze} ⇒ sick

R′3 Treatment ∈ {Y, W, Z} ∧ Sex = f⇒ sick

R′4 Age ∈ {old, adult} ∧ Sex = male⇒ cured

What is interesting to observe is that though these rules capture all
the instances, they are over-specified and actually try to speak to
instances that are not present. To complete our monotonic rule set,
we simply verify which of the rules are supported by the instances.

Continuing with our example,

R′′1 Treatment = X ⇒ cured

R′′2 Treatment = Z ∧ Symptom ∈ {fever, sneeze}
⇒ sick

R′′3 Treatment = {W, Y} ∧ Sex = f⇒ sick

R′′4 Age ∈ {old, adult} ∧ Sex = male⇒ cured

Although space limitations does not permit us to discuss this here,
we believe each of these different kinds of rule sets have something
potentially interesting and important to say about the instances. An
interesting experiment is to witness what rules would be generated
if a functionally dependency were present. Formally, given a set of
attributesR and two non-empty subsetsX, Y ⊆ R, a functional
dependency, denotedX → Y , means theX values functionally
determine theY values. Slightly abusing our notation we have

∀t ∀s (t.X = s.X) ⇒ (t.Y = s.Y ) (2)

This looks remarkably like Eq. 1 Among the nicer properties is an
axiomization that allows reasoning about FDs. In a machine learn-
ing sense, FDs represent a kind of classifier where theX represents



CoreCircle(r)
//r=relation to run Circle

if size(classes(r)) < 2
return;

else
t = pick(r);
I[0] = MakeInitialImplicants(t, r);
i = 0;
while(I[i] != emptyset and i < |r|)

I[i+1] = MakeNextImplicants(I[i]);
i++;

end while
PI = MakePrimeImplicants(I);
P = MakeEssentialImplicants(PI, r);
for each (t, b1b2...bk, r’) in P

if size(r’) < 2 or size(classes(r’)) < 2
MakeFullRule(t, b1b2...bk, r’)

else
MakePartialRule((t, b1b2...bk, r’),

CoreCircle(r’))
end if

end for
end if

end Circle

Figure 4: The Core Circle algorithm

the features, andY the classifier. Suppose in a relation the FD
X → Y holds, and there arek differentX values. If Circle were
to encounter an FD, and fortuitouslyX was chosen as the feature
set andY as the class labels, Circle would produce this rule set:
X = x1 ⇒ y1, X = x2 ⇒ y2, . . . X = xk−1 ⇒ yk−1, X 6= xk−1 ⇒
yk. Our observation is not a blind exercise, since this rule set rep-
resents the original dataset virtually unchanged. So, one aspect of
making sure Circle does not waste time by reproducing the dataset
is to include, for example, information dependency (IDs) measures
that can give an indication of how close the data selected is to an
FD. See [1]. IDs that are close to 0, represent FDs. Armed with
this knowledge, Circle can have some chance to avoid discovering
trivial classifiers.

6. THE CIRCLE ALGORITHM
The Core of Circle is based on a similar setting of the Quine-

Mcclusky method for minimizing boolean functions. The algo-
rithm takes a relationr as the parameter, and generates a set of
rules set of rules that coverr. As before,r has the structure
R < id, A1, A2, . . . , Ak, Ac >, where each row has an identify-
ing attribute,k attributes on which clustering is to be performed,
and the classifier attributeAc. Figure 4 shows the Core Circle algo-
rithm. For the algorithm, and implicant is of the form(t, b1b2 . . . bk, r′),
wheret ∈ r, b1b2 . . . bk is a minterm wherebi ∈ {0, 1, ∗}, and
r′ ⊆ r.

A crucial part of Circle is the tuple on which the minterms are
created. The result of Circle can vary based on this starting tuple.
Although the rulesets can be different, the set of rules will always
produce a full cover of the relation. Different methods of generat-
ing the first tuple have been tested with Circle:

1. Random tuple: A random tuple is picked from the relation as
the minterm-generating tuple. This can be the first tuple in
the relation.

2. Logic-theoretic heuristic: This heuristic is based on the fact
that the most inefficient step of Circle is the recursion, and
the recursion in Circle is caused by conflicts in the classifier

MakeInitialImplicants(t, r)
// t=picked initial row
// r=input relation to Circle

M = generate all minterms of size |r|
I[0] = InitializeImplicants(M)
for every tuple t1 in r do

add class(t1) to Implicant(minterm(t1,t)) in I[0]
end for

end MakeInitialImplicants

MakeNextImplicants(I)
//I = set of implicants
Set Iout to empty
Sort I in ascending order of 1s
i1 = 0; i2=0;
while i1 <=size(I) and i2 <= size(I) do

set i2 s.t. num1(I(i2))= num1(I(i1))+1
while (num1(I(i2))<num1(I(i1))+2)

if (hammingdistance(I(i1),I(i2))==1
and (classes(I(i1))==classes(I(i2))))

Add combine(I(i1),I(i2)) to Iout
end if
i2++

end while
i1++

end while
return Iout

end MakeNextImplicants

Figure 5: MakeInitialImplicants and MakeNextImplicants

values for the same equivalence class of the minterms. This
heuristic generates implicants for every pair of tuples, and
picks the tuple which has the least number of equivalence
classes with conflicts. In the case of the same number of
conflicting equivalence classes, we pick the tuple with the
least total number of tuples in the conflicting classes.

Note that since Circle was designed as a classifier and hence
needs at least two classes to create its rules, one interesting ap-
plication of Circle is to use it as a logic minimizer, in which case it
can generate a minimal set of implicants even for a single class. In
this case, the initial check for at least two distinct classes is omit-
ted, and the result is a minimal set of rules to generate the single
class, based on all of the tuples inr.

TheMakeEssentialImplicantsalgorithm (shown in Figure 6) se-
lects a minimal set of essential implicants from the Prime impli-
cants generated. A greedy algorithm is used to generate the essen-
tial prime implicants. For each of the essential prime implicants
created, a full rule can be created for every implicant for which the
set of classifiers is 1. For all the implicants with a set of classi-
fiers more than 1, CoreCircle is recursively called with the tuples
covered by such implicants.

The last step is translating implicants to rules, the algorithm for
which is shown in Figure 7.

6.1 Analysis of Circle
The Circle algorithm is centered around the recursive Core Circle

algorithm. The most computationally expensive part of CoreCircle
is theMakeInitialImplicantsprocedure, which is exponential ink,
the number of attributes inr. This causes the execution time for
Circle to explosively increase with the increase in the number of at-
tributes. In our experiments, we found that Circle completes within
10-15 minutes in a workstation-quality machine (2x 1.6Ghz Zeon
processors with 1GB RAM) for up to 15 attributes, after which



MakeEssentialImplicants(P,r)
//P=set of prime implicants
//r= input relation to Circle
EP = emptyset;
Sort the implicants in P in descending order

of the number of rows covered
while not Covers(EP, r) and not empty(P)

i = RemoveFirst(P);
EP = EP U {i};
for each rule in P do

remove rows already covered by EP
end for
Re-sort EP as above

end while
return EP;

end MakeEssentialImplicants

Figure 6: The Heuristic Pick, and The Greedy Essential Prime
Implicant Generation Algorithm

MakeFullRule(t, m, r)
//t = picked tuple
//m = a minterm
//r = subrelation containing 1 class
// See text for details

end MakeFullRule

MakePartialRule(t, m, r, C)
//t = picked tuple
//m = a minterm
//r = subrelation with >1 classes
//C = recursively generated rules
C1 = Generate conjunctive clause for t
for each rule c in C

for each conjunct ci in c
if ci is of the form att_i=val_i

of att_i != val_i
and there is a conjuct in C1

of the form att_i=val
drop ci from c

end if
concatenate C1, c

end for
end MakePartialRule

Figure 7: MakeFullRule and MakePartialRule

the execution time slows down rapidly. In order to cope with this
problem, we incorporated a number of improvements in Circle, in-
cluding (i) the use of threading to take advantage of multiple CPUs
in an SMP architecture; (ii) the reduction of attributes in the recur-
sion step by dropping attributes from the recursive call for which
a positive value has already been generated, and (iii) generation of
Random Attribute sets when Circle is run on high dimensional data.

7. CIRCLE IMPLEMENTATION
Circle is implemented in Java, configurable to use any JDBC-

compliant database in the backend (or ODBC compliant databases
using Sun’s JDBC-ODBC bridge)4. The system was tested with
Microsoft Access, Microsoft SQL server, and Oracle. The current
implementation is configurable through a configuration file which
could be specified from the command line, or set up using a sim-
ple web interface. Development of a fully configurable web-based
application is part of the future enhancements.

4A binary version of the implementation is freely available
http://www.kelley.iu.edu/sengupt/circle.

Figure 8: Performance of Circle showing dependence of time
on both rows and columns of input

7.1 Experiments with Circle
Circle was tested in several experiments on real as well as syn-

thetic data sets. All experiments were performed on a Workstation-
class system with 2 x 1.6 Ghz CPU and 1.0G system RAM, run-
ning Windows Server 2003 Enterprise Edition. The experimentally
evaluated performance, usingn-fold cross validation, in our case
four, matched the expected theoretical complexity of Circle. De-
terministic Circle with no randomization demonstrated exponential
behavior, but the randomized Circle with 8, 9 as well as 10 at-
tributes improved the performance of Circle significantly. Here we
summarize some of the performance factors of Circle.

1. Quality of Rules: Circle generates rules that are succinct,
mimimal, and contains information which not only reflect
positive and monotonic characteristics, but also negative and
non-monotonic characteristics.

2. Running time: Core Circle is exponential on the number of
attributesk, because of the need for generating all possible
minterms of sizek. We have shown that iteratively building
a small random subset of attributes can produce rules that
are similar in quality and yet can be determined in a fraction
of the time. Figure 8 shows the running time of Circle on
the “Internet” data set from UCI, containing information on
pop-up ads in different websites.

3. Cross-testing errors: Because of the presence of the nega-
tive conjuncts, the rules produced by Circle are highly ro-
bust. In our experiments, we have found that the accuracy
of the rules produced by Circle does not depend very heavily
on the sample size. We ran Circle on the Wisconsin breast
cancer dataset from the UCI repository [10], and ran Circle
by only varying the sample percentage. Figure 9 shows the
variation of running time and accuracy with the variation of
training percentage.

7.2 Preliminary results on bioinformatics data
For several protein family sets in PROSITE[6] we included all

subsequences of length three that occurred at least twice. We used
this protocol because of the enormity of the features generated. Our
preliminary results are very positive, having a success rate of more
than 75%. As for the more interesting problem of automatically
identifying the regular expressions, Circle terminated in a little un-
der one hour, finding 201 rules which covered at least 50% of the
human-generated curation sequences with some patterns being as
high as 65%.



Figure 9: Graphs showing relative independence of accuracy with folding

8. CONCLUSION AND FUTURE WORK
We have begun work on creating a classifier whose inspiration

is drawn from Boolean function minimization. The classifer called
Circle possesses a number of attractive properties,e.g., non-monotonicity.
On the initial synthetic datasets we examined, Circle performed
quite well. We are also encouraged by preliminary success on the
bioinformatics data that drove all of this in the first place. A num-
ber of serious limitations in terms of complexity still need to be
addressed. We have opted for an easy first-solution, probabilisti-
cally employing Circle. There are, no doubt, other techniques that
can be adopted, by smartly guiding Circle’s classification through
the use of information theory. There is a lot work to do on the rule
sets themselves, perhaps mining them or adding support and con-
fidence as is done with association rules. We are also interested in
applying Circle to streams, where work has begun in developing
classifiers and clustering.

One interesting future direction is providing simple logspace arith-
metic functions that are Church-Rosser, for instance addition. We
can easily imagine implicants extended with counts–a kind of sup-
port. As implicants are weakened, their respective counts can be
combined through adding. Consistency can then be modified to
take into account large differences in the support. Another pursuit
is clustering. We cana priori decide the number of clusters and
build rules agglomeratively. Of course, we will begin looking at
how to handle numerical attributes in the future. We are also inter-
ested in dealing with unknown values–a nagging problem present
in all real data.
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