
- 3161 -

TRACS – TRACTABLE CONFERENCE SCHEDULING

Malvika Gulati, Department of Operations and Decision Technologies, mgulati@indiana.edu
Arijit Sengupta, Department of Information Systems, asengupt@indiana.edu
Kelley School of Business, Indiana University, Bloomington, Indiana, USA

ABSTRACT

Conference scheduling requires presentations scheduled to minimize the conflict between
sessions that participants are interested to attend. Sampson [1, 2] provides a solution wherein
attendee preference information is used to maximize session attendance and minimize conflicts.
We improve Sampson’s PBCS by developing a bi-criterion approach to set up two objective
functions. One augments Sampson’s objective function by incorporating session times as well as
reviewer evaluations. The second objective function incorporates only session time and
reviewer’s evaluations in the scheduling process to maximize session coverage and minimize
conflicts. This produces good schedules even in the absence of attendee preference data.

Keywords: Scheduling, Heuristics, Linear Programming, Conflict Resolution

INTRODUCTION

Academic conferences are the premier means for researchers to present and receive feedback on
their research from the community. In order for this process to be effective, however,
conferences need to be properly scheduled to ensure that attendees are able to attend sessions
that they are interested in, and also to ensure that merited papers get scheduled in time slots that
are convenient for participants. Creating schedules that suit attendees and presenters alike is a
difficult task, and often an unmanageable one. In this paper we provide a general method for
conference scheduling, which can be applied to the scheduling of most conferences and
workshops, and we show that for conferences with a good paper review process the process of
generating good schedules can be quite manageable. We call this process TRACS (Tractable
Conference Scheduling). The primary contribution of TRACS is the ability of generating quick,
simple schedules without conflicts that maximize attendee participation.

Let us take into consideration the specifics for scheduling a conference and discuss the factors
that come into play. Scheduling a conference depends on: (i) the number of days it will run, (ii)
the time-blocks that have been allocated, (iii) the number of rooms in which different sessions
are being held, and (iv) the presenters, co-presenters, and chairs for each session. Also, like any
other scheduling problem when a schedule is designed for a conference it should be catered for
the attendees, as the main aim is to maximize the number of attendees attending each session.

LITERATURE REVIEW

We come across some kind of scheduling in our lives on a daily basis; whether it is organizing
tasks that need to be completed, or classes that need to be attended for a particular day, chores
need to be done around the house, etc. Therefore, there has been a great deal of research done on
scheduling and developing algorithms and heuristics to solve such problems on both large and
small scales.

Scheduling and timetabling has been the topic of research in both Artificial Intelligence (AI) as
well as the Operations community [3]. While research using AI techniques have used simulated

- 3162 -

annealing [4], Tabu search [5] and Graph Coloring techniques [6, 7], the operations community
uses logic programming and its variations to find optimal time schedules [8-11]. Although not
much can be found in literature regarding the specific problem of conference scheduling, the
problem is quite similar to the problem of university course timetabling, which has been
extensively researched. Here we summarize some of the work in the literature on both of these
problems.

University timetabling has been a widely researched topic in scheduling literature. The typical
problem of university scheduling involves assigning course sections to specific meeting times
over the week. The problem of university course scheduling is a well-researched problem, and
several solutions have been proposed [10-12]. Conference scheduling involves the placement of
conference sessions in appropriate time blocks, ensuring that there are no conflicts for the
presenters, when sessions are offered concurrently. The primary restrictions are the same – all
sessions must be scheduled (completeness) and presenters cannot be scheduled in concurrent
sessions (conflict-free). The differences lie in the fewer number of hard restrictions and inter-
dependencies between time blocks. The absence of hard constraints and complex inter-
dependencies make conference scheduling more tractable, although in real life the problem is
complicated by other factors such as time preferences requested by presenters and the presence
of “special” sessions such as plenary sessions.

Thompson differentiates between scheduling conferences from a “Presenter-based Perspective
(PBP)” to an “Attendee-based Perspective (ABP)”, and posits that ABP scheduling can increase
participants’ ability to attend their favorite sessions [13]. Sampson [1, 2] provides a novel way of
using the preferences indicated by users to minimize conflicts and maximize session coverage. In
this research, he uses a preference matrix (PREF) for every presentation, aggregated to a
preference matrix (SPREF) for every session, and provides a mathematical optimization theory
for minimizing conflicts and at the same time maximizing session attendance. However,
Sampson points out that a truly optimal solution would have an exponential complexity, and uses
simulated annealing techniques to heuristically provide an optimal solution. Sampson shows that
post-conference surveys indicate higher user satisfaction, although these could be biased by the
fact that the users’ preferences were actually used in the process.

Although conference scheduling techniques in the literature have used the shift towards the APB
approach in order to increase participants’ satisfaction, the process of collecting participants’
preferences is a time consuming task. Moreover, the process requires knowing the potential
group of attendees in advance. Typically the request for preferences is sent to members of the
academic society that organizes the conference, many of whom actually do not end up attending
the conference. This results in data that is often inadequate and potentially inaccurate.

FORMULATION

The preference-based conference scheduling (PBCS) [1] problem revolves around scheduling
sessions for a conference based on the preferences sent in by the attendees as well as the
presenters. We present a solution for this formulation using a bi-criterion approach with two
separate but related objective functions, with slightly different goals. The first objective function
is based on the one provided by Sampson, and augmented by adding a few new additional
constraints to incorporate session times as well as reviewer’s evaluation. The second objective
function deals with only the session times and the reviewer’s evaluation (without attendee
preferences), with the assumption that attendee preference data cannot be obtained. For any

- 3163 -

conference, there are typically some very well-attended sessions, whereas some sessions are
highly under-attended. For instance, the 2003 DSI annual meeting attendance record shows an
average of 11.38, although the actual attendance of individual non-plenary sessions varied
between as low as 4 to as high as 30, clearly showing attendance anomalies based on meeting
times. The other aspect which has been incorporated into the first approach is the reviewer’s
evaluation. In this approach, we propose asking the reviewer one additional question as part of
the review, in which he evaluates his view of the “popularity” of the paper on a 5 point Likhert
scale.

Bi-Criterion Approach

In the first approach of the formulation we build on Sampson’s PBCS model. We add to the
reviewer’s evaluation a question on the potential “popularity” of the paper, which will then be
incorporated in the objective function as a popularity matrix (SPOPp,s), which builds on the
SPREF matrix by Sampson and incorporates the “popularity” score by the reviewer. Here, we
define SPOPp,s to be a summation over all the discussion over all the sessions covered with
respect to presenters as well as discussions. To compute SPOPp,s we first compute DPOPp,d
which is a weighted sum of all available evaluations for a discussion d. The available evaluations
include any acceptance or evaluation scale and award nominations. In addition to the standard
reviewer comments, we propose that reviewers be asked to evaluate the perceived “popularity”
of the presentation on a Likhert 5 point scale (1=lowest, 5=highest). Further, if attendee
preferences are available, they are also included. So, we have,

dpdbdedp DPREFBPwEVALwDPOP ,, . ++= ,

where EVAL is the available reviewer evaluations, }1,0{∈BP indicates whether the
discussion d was nominated for a best paper award, and DPREF is the cumulative discussion
preference as in [1]. The weights we and wb are constant weights given to these evaluations,
based on perceived importance of reviewer evaluations over attendee data.

Given the above set up, we can now come up with the primary measure of “popularity” of a
session (SPOPp,s) defined as follows:

� ∈
=

SDISd dpsp DPOPSPOP ,,

We now define our objective functions and the constraints to satisfy this CLP formulation:

 Max. � tsp tspspt ESPOPW
,, ,,,)([Eq. 1]

 Subject to
 tpE

s tsp ,1,, ∀≤� [Eq. 2]

 tcCAPSE rrtss tsp ,,,,, ∀≤� [Eq. 3]

 sS
rt rts ∀=� 1

, ,, [Eq. 4]

 tpS
pSx rts ,1

)(,, ∀≤� ∈
 [Eq. 5]

 tspE tsp ,,}1,0{,, ∀∈ [Eq. 6]

 rtsS rts ,,}1,0{,, ∀∈ [Eq. 7]

- 3164 -

The main objective function aims at maximizing enrollment of a particular session as rated by
the reviewer as well as encompassing the time frame. Time preference of attendees is
incorporated as Wt which is a weighted matrix for the time-block allocated per session over all
the days required for the whole conference. The different entities which we take into
consideration are: People (p) consisting of presenters, attendees as well as track chairs and quazi
presenters; Discussions (d) referring to actual presentations; Sessions (s): the sessions that are
being scheduled (usually the number of discussions per session will vary but for the
consideration of this proof we will assume that we have a uniform number of discussions per
session); Time-Blocks (t): referring to the time period for which that session has been scheduled
and Rooms (r): the set of rooms.

The given formulation utilizes two sets of variables:

1. S variables which are scheduling variables in regards to sessions (s), time (t) and the room (r)
to which the session has been assigned.

2. E variables which are enrollment variables in regards to which presenter (p) is enrolled in
which session (s) in which time-block (t).

The constraints are set up as follows:

Equation 2: Maximizes participant utility.

Equation 3: Allows participants to be enrolled in sessions and within capacity constraints.

Equation 4: Requires each session to be scheduled in exactly one place.

Equation 5: Prevents any presenter from being in more than one place at a time, where s(p) is
the set of sessions where p is the presenter.

Equation 6 and Equation 7: Specify the binary decision variables.

 The second approach to the problem looks only at the reviewer’s “popularity” scores and
the time of the sessions. In this case, we have RPOPs (a preference matrix) which is a summation
over POPd which incorporates the reviewer’s “popularity” scores over discussions d. So,

� ∈
=

SDISd dS POPRPOP , where dbded BPwEVALwPOP += .

Given the above measure of session popularity, we can proceed with the CLP formulation as
follows:

Max. � tS tSSt SRPOPW
, ,)([Eq. 8]

 Subject to
 sS

rt rtS ∀=� , ,, 1 [Eq. 9]

 tpS
pSs ts ,1

)(, ∀≤� ∈
 [Eq. 10]

 rtsS rts ,,}1,0{,, ∀∈ [Eq. 11]

In this setting, there is only one set of variables – the S variables as before. Description of the
above constraint equations follow.

- 3165 -

Equation 8: The objective function which incorporates the reviewer’s “popularity” score is the
matrix RPOPs , Wt is a weighted matrix for the time-block allocated per session over all the days
required for the whole conference and Ss,t is the session variable for session s for a time-block t.

Equation 9 and 10: Similar to Eq. 4 and 5 before.

Equation 11: Specifies the binary decision variable S.

CLP SOLUTION

A direct solution to the formulation presented here is difficult because of the complexity of the
problem. However, we can consider some of the constraints to be hard (i.e., cannot be violated at
any cost), and some of the constraints to be soft (violation of such constraints should ideally be
avoided) [14]. We have in fact, used this principle in our first formulation, where the constraints
in [1] have been revisited for hardness and the soft constraints were removed. A complete CLP-
based solution is still not possible for this set of constraints, but a similar simulated annealing
technique can be used to create a good schedule. For the second approach, the problem is more
tractable, and an algorithmic solution is possible, which is presented next.

Algorithmic solution and Implementation

In the first formulation where user preferences are considered can be solved using the same
approach taken by [1] using a simulated annealing technique, where individual minima are
computed and iteratively improved on. Sampson shows why the problem of conference
scheduling is a conceptually hard problem and will need strategies in order to produce a solution.
However, if preference data collection is not possible, then the Sampson PBCS solution cannot
be used. The second formulation approach discussed above can still be used with fairly good
results. Here we present an algorithm to solve the second objective function, where no preference
data is collected, every session has a pre-computed popularity measure, and our objective is to
maximize the overall popularity measure. Figure 1 shows the algorithm, which uses a greedy
strategy [15] for maximizing the objective function and ensuring that there are no conflicts for
presenters at each step. The objective is to maximize the product of the popularity measure for a
time block and the popularity measure of the session scheduled at that time block. A greedy
approach is highly suitable here, since both popularity measures are positive, and the sum of
products of maximum values yields the maximum aggregate. In the case multiple sessions have
same popularity, the algorithm tries to spread them across time blocks with high popularity
instead of placing them in the same time block in multiple concurrent rooms. The algorithm
ensures completeness by ensuring all sessions are scheduled, and is conflict-free because of the
conflict-check before each session is scheduled.

CONTRIBUTION, CONCLUSION AND FUTURE WORK

TRACS improves on Sampson’s PBCS method by including reviewer evaluations as well as
session timings. The GreedyTracs algorithm presented here can be easily shown to be complete
and conflict-free. However, whether or not it produces a good schedule should be empirically
determined, although several arguments can be made towards the quality of schedules generated
by TRACS. First, it can be argued that the reviewers are typically the only people to read papers
completely before publication, and therefore can judge a paper in its entirety. In addition, we
posit that papers that are recommended for a best paper award, or are given remarkably good
evaluations from the reviewers deserve more attention from conference participants. Moreover,
timing of sessions play a significant role in participant attendance, since late sessions and last

- 3166 -

days of conferences are often ill-attended. The above factors view the TRACS approach in a
different light as compared to PBCS, and make the TRACS approach highly suitable for
generating quick conference schedules inclusive of the reviewers “popularity” of the papers. We
are in the process of implementing the algorithm and incorporating it into the new Conference
Information System (CIS) currently under development for the Decision Sciences Institute.

Figure 1. The “Greedy” TRACS Algorithm. Note that all arrays in this algorithm are associative arrays –
actual implementation can use Hashtables.

REFERENCES

1. Sampson, S. DSI 2001 Preference-Based Scheduling Part I: PBCS Intruduction and Data Collection. in Decision Sciences Institute Annual

Meeting (DSI '2002). 2002.
2. Sampson, S. DSI 2001 Preference-Based Scheduling Part II: Session Composition and Timetabling. in Decision Science Institute Annual

Meeting (DSI '2002). 2002.
3. Schaerf, A., A survey of automated timetabling. 1995, Computer Science Department of Software Technology.
4. Saleh Elmohamed, M.A., P. Coddington, and G. Fox, A Comparison of Annealing Techniques for Academic Course Scheduling. Lecture

Notes in Computer Science, 1998. 1408: p. 92-114.
5. Costa, D., A Tabu Search Algorithm for Computing an Operational Timetable. European Journal of Operational Research, 1994. 76(1): p.

98-101.
6. Lotfi, V. and S. Sarin, A Graph Coloring Algorithm for Large Scale Scheduling Problems. Computers & Operations Research, 1986. 13(1):

p. 27-32.
7. Mehta, N.K., The Application of a Graph Coloring Method to an Examination Scheduling Problem. Interfaces, 1981. 11(5): p. 57-64.
8. Frangouli, H., V. Harmandas, and P. Stamatopoulos. UTSE: Construction of Optimum Timetables for University Courses - A CLP Based

Approach. in 3rd International Conference on the Practical Applications of Prolog (PAP'95). 1995. Paris.
9. Caseau, Y. and F. Laburthe. Improved CLP Scheduling with Task Intervals. in 11th International Conference on Logic Programming, ICLP

'94. 1994: The MIT Press.
10. Goltz, H. and D. Matzke, University Timetabling Using Constraint Logic Programming. Lecture Notes in Computer Science, 1999. 1551: p.

320-334.
11. Rudova, H. and L. Matyska. Constraint-based timetabling with student schedules. in PATAT 2000 - 3rd International Conference on the

Practice and Theory of Automated Timetabling. 2000.
12. Mooney, E., R.L. Rardin, and W.J. Parmenter, Large-scale classroom scheduling. IIE Transactions, 1996. 28: p. 369-378.
13. Thompson, G.M., Improving conferences through session scheduling. Cornell Hotel and Restaurant Administration Quarterly, 2002. 43(3): p.

71-76.
14. Schiex, T. Possiblilistic Constraint Satisfaction Problems or "How to Handle Soft Constraints?" in Proceedings of the Eighth Internation

Conference on Uncertainty in Artificial Intelligence. 1992. Stanford, CA.
15. Curtis, S.A., The classification of greedy algorithms. Science of Computer Programming, 2003. 49(1-3): p. 125-157.

Algorithm GreedyTracs (s: Array of Sessions, t: Array of TimeBlocks,
r: Array of Rooms, W: Array of popularity for each t,
RPOP: Array of combined popularity for each s) {

 Create Array Sch(s,t,r) = 0 for all s, t, r;
 /* Step 1 – Sort inputs with highest values up front – the greedy strategy */
 Sort W in descending order of popularity value;
 Sort RPOP in descending order of popularity value;
 Create Queue Q; /* Queue for temporary unscheduled sessions */
 /* Step 2 – Main algorithm stage for matching
 While (All sessions are not scheduled) {
 TR = subset of RPOP with highest RPOP(s) values;
 TW = subset of W with highest W(t) values;
 for each ct in TW {
 if TR is empty then break;
 remove first st from TR;
 if (conflicts(st, ct, Sch))
 then add st to Q;
 else {
 Pick rt from r which is available at time ct with highest capacity;
 Set Sch(st, ct, rt) = 1;
 Remove st from TR and RPOP
 }
 Remove all s in Q and add back to TR;
 }
 }
 Return Sched as output.
}

