
- 3161 - 

TRACS – TRACTABLE CONFERENCE SCHEDULING 
 

Malvika Gulati, Department of Operations and Decision Technologies, mgulati@indiana.edu 
Arijit Sengupta, Department of Information Systems, asengupt@indiana.edu 
Kelley School of Business, Indiana University, Bloomington, Indiana, USA 

 
ABSTRACT 

Conference scheduling requires presentations scheduled to minimize the conflict between 
sessions that participants are interested to attend. Sampson [1, 2] provides a solution wherein 
attendee preference information is used to maximize session attendance and minimize conflicts. 
We improve Sampson’s PBCS by developing a bi-criterion approach to set up two objective 
functions. One augments Sampson’s objective function by incorporating session times as well as 
reviewer evaluations. The second objective function incorporates only session time and 
reviewer’s evaluations in the scheduling process to maximize session coverage and minimize 
conflicts. This produces good schedules even in the absence of attendee preference data. 
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INTRODUCTION 

Academic conferences are the premier means for researchers to present and receive feedback on 
their research from the community.  In order for this process to be effective, however, 
conferences need to be properly scheduled to ensure that attendees are able to attend sessions 
that they are interested in, and also to ensure that merited papers get scheduled in time slots that 
are convenient for participants.  Creating schedules that suit attendees and presenters alike is a 
difficult task, and often an unmanageable one. In this paper we provide a general method for 
conference scheduling, which can be applied to the scheduling of most conferences and 
workshops, and we show that for conferences with a good paper review process the process of 
generating good schedules can be quite manageable. We call this process TRACS (Tractable 
Conference Scheduling).  The primary contribution of TRACS is the ability of generating quick, 
simple schedules without conflicts that maximize attendee participation. 

Let us take into consideration the specifics for scheduling a conference and discuss the factors 
that come into play. Scheduling a conference depends on: (i) the number of days it will run, (ii) 
the time-blocks that have been allocated, (iii) the number of rooms in which different sessions 
are being held, and (iv) the presenters, co-presenters, and chairs for each session. Also, like any 
other scheduling problem when a schedule is designed for a conference it should be catered for 
the attendees, as the main aim is to maximize the number of attendees attending each session. 

LITERATURE REVIEW 

We come across some kind of scheduling in our lives on a daily basis; whether it is organizing 
tasks that need to be completed, or classes that need to be attended for a particular day, chores 
need to be done around the house, etc. Therefore, there has been a great deal of research done on 
scheduling and developing algorithms and heuristics to solve such problems on both large and 
small scales.  

Scheduling and timetabling has been the topic of research in both Artificial Intelligence (AI) as 
well as the Operations community [3]. While research using AI techniques have used simulated 
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annealing [4], Tabu search [5] and Graph Coloring techniques [6, 7], the operations community 
uses logic programming and its variations to find optimal time schedules [8-11]. Although not 
much can be found in literature regarding the specific problem of conference scheduling, the 
problem is quite similar to the problem of university course timetabling, which has been 
extensively researched. Here we summarize some of the work in the literature on both of these 
problems. 

University timetabling has been a widely researched topic in scheduling literature. The typical 
problem of university scheduling involves assigning course sections to specific meeting times 
over the week. The problem of university course scheduling is a well-researched problem, and 
several solutions have been proposed [10-12]. Conference scheduling involves the placement of 
conference sessions in appropriate time blocks, ensuring that there are no conflicts for the 
presenters, when sessions are offered concurrently. The primary restrictions are the same – all 
sessions must be scheduled (completeness) and presenters cannot be scheduled in concurrent 
sessions (conflict-free). The differences lie in the fewer number of hard restrictions and inter-
dependencies between time blocks.  The absence of hard constraints and complex inter-
dependencies make conference scheduling more tractable, although in real life the problem is 
complicated by other factors such as time preferences requested by presenters and the presence 
of “special” sessions such as plenary sessions. 

Thompson differentiates between scheduling conferences from a “Presenter-based Perspective 
(PBP)” to an “Attendee-based Perspective (ABP)”, and posits that ABP scheduling can increase 
participants’ ability to attend their favorite sessions [13]. Sampson [1, 2] provides a novel way of 
using the preferences indicated by users to minimize conflicts and maximize session coverage. In 
this research, he uses a preference matrix (PREF) for every presentation, aggregated to a 
preference matrix (SPREF) for every session, and provides a mathematical optimization theory 
for minimizing conflicts and at the same time maximizing session attendance. However, 
Sampson points out that a truly optimal solution would have an exponential complexity, and uses 
simulated annealing techniques to heuristically provide an optimal solution. Sampson shows that 
post-conference surveys indicate higher user satisfaction, although these could be biased by the 
fact that the users’ preferences were actually used in the process. 

Although conference scheduling techniques in the literature have used the shift towards the APB 
approach in order to increase participants’ satisfaction, the process of collecting participants’ 
preferences is a time consuming task. Moreover, the process requires knowing the potential 
group of attendees in advance. Typically the request for preferences is sent to members of the 
academic society that organizes the conference, many of whom actually do not end up attending 
the conference. This results in data that is often inadequate and potentially inaccurate. 

FORMULATION 

The preference-based conference scheduling (PBCS) [1] problem revolves around scheduling 
sessions for a conference based on the preferences sent in by the attendees as well as the 
presenters. We present a solution for this formulation using a bi-criterion approach with two 
separate but related objective functions, with slightly different goals. The first objective function 
is based on the one provided by Sampson, and augmented by adding a few new additional 
constraints to incorporate session times as well as reviewer’s evaluation. The second objective 
function deals with only the session times and the reviewer’s evaluation (without attendee 
preferences), with the assumption that attendee preference data cannot be obtained. For any 
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conference, there are typically some very well-attended sessions, whereas some sessions are 
highly under-attended. For instance, the 2003 DSI annual meeting attendance record shows an 
average of 11.38, although the actual attendance of individual non-plenary sessions varied 
between as low as 4 to as high as 30, clearly showing attendance anomalies based on meeting 
times. The other aspect which has been incorporated into the first approach is the reviewer’s 
evaluation. In this approach, we propose asking the reviewer one additional question as part of 
the review, in which he evaluates his view of the “popularity” of the paper on a 5 point Likhert 
scale.  

Bi-Criterion Approach  

In the first approach of the formulation we build on Sampson’s PBCS model. We add to the 
reviewer’s evaluation a question on the potential “popularity” of the paper, which will then be 
incorporated in the objective function as a popularity matrix (SPOPp,s), which builds on the 
SPREF matrix by Sampson and incorporates the “popularity” score by the reviewer. Here, we 
define SPOPp,s to be a summation over  all the discussion over all the sessions covered with 
respect to presenters as well as discussions. To compute SPOPp,s we first compute DPOPp,d 
which is a weighted sum of all available evaluations for a discussion d. The available evaluations 
include any acceptance or evaluation scale and award nominations. In addition to the standard 
reviewer comments, we propose that reviewers be asked to evaluate the perceived “popularity” 
of the presentation on a Likhert 5 point scale (1=lowest, 5=highest). Further, if attendee 
preferences are available, they are also included. So, we have,  

dpdbdedp DPREFBPwEVALwDPOP ,, . ++= , 

where EVAL is the available reviewer evaluations, }1,0{∈BP indicates whether the 
discussion d was nominated for a best paper award, and DPREF is the cumulative discussion 
preference as in [1]. The weights we and wb are constant weights given to these evaluations, 
based on perceived importance of reviewer evaluations over attendee data.  

Given the above set up, we can now come up with the primary measure of “popularity” of a 
session (SPOPp,s) defined as follows: 

� ∈
=

SDISd dpsp DPOPSPOP ,,  

We now define our objective functions and the constraints to satisfy this CLP formulation: 
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The main objective function aims at maximizing enrollment of a particular session as rated by 
the reviewer as well as encompassing the time frame. Time preference of attendees is 
incorporated as Wt which is a weighted matrix for the time-block allocated per session over all 
the days required for the whole conference. The different entities which we take into 
consideration are: People (p) consisting of presenters, attendees as well as track chairs and quazi 
presenters; Discussions (d) referring to actual presentations; Sessions (s): the sessions that are 
being scheduled (usually the number of discussions per session will vary but for the 
consideration of this proof we will assume that we have a uniform number of discussions per 
session); Time-Blocks (t): referring to the time period for which that session has been scheduled 
and Rooms (r): the set of rooms.  

The given formulation utilizes two sets of variables:  

1. S variables which are scheduling variables in regards to sessions (s), time (t) and the room (r) 
to which the session has been assigned.   

2. E variables which are enrollment variables in regards to which presenter (p) is enrolled in 
which session (s) in which time-block (t). 

The constraints are set up as follows:   

Equation 2: Maximizes participant utility. 

Equation 3: Allows participants to be enrolled in sessions and within capacity constraints. 

Equation 4: Requires each session to be scheduled in exactly one place. 

Equation 5: Prevents any presenter from being in more than one place at a time, where s(p) is 
the set of sessions where p is the presenter. 

Equation 6 and Equation 7:  Specify the binary decision variables. 

  The second approach to the problem looks only at the reviewer’s “popularity” scores and 
the time of the sessions. In this case, we have RPOPs (a preference matrix) which is a summation 
over POPd  which incorporates the reviewer’s “popularity” scores over discussions d. So,  

� ∈
=

SDISd dS POPRPOP , where dbded BPwEVALwPOP += .  

Given the above measure of session popularity, we can proceed with the CLP formulation as 
follows: 

Max.  � tS tSSt SRPOPW
, ,)(      [ Eq. 8] 
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In this setting, there is only one set of variables – the S variables as before. Description of the 
above constraint equations follow. 
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Equation 8:  The objective function which incorporates the reviewer’s “popularity” score is the 
matrix RPOPs , Wt is a weighted matrix for the time-block allocated per session over all the days 
required for the whole conference and Ss,t is the session variable for session s for a time-block t.  

Equation 9 and 10: Similar to Eq. 4 and 5 before. 

Equation 11:  Specifies the binary decision variable S. 

CLP SOLUTION 

A direct solution to the formulation presented here is difficult because of the complexity of the 
problem. However, we can consider some of the constraints to be hard (i.e., cannot be violated at 
any cost), and some of the constraints to be soft (violation of such constraints should ideally be 
avoided) [14]. We have in fact, used this principle in our first formulation, where the constraints 
in [1] have been revisited for hardness and the soft constraints were removed.  A complete CLP-
based solution is still not possible for this set of constraints, but a similar simulated annealing 
technique can be used to create a good schedule. For the second approach, the problem is more 
tractable, and an algorithmic solution is possible, which is presented next. 

Algorithmic solution and Implementation 

In the first formulation where user preferences are considered can be solved using the same 
approach taken by [1] using a simulated annealing technique, where individual minima are 
computed and iteratively improved on. Sampson shows why the problem of conference 
scheduling is a conceptually hard problem and will need strategies in order to produce a solution. 
However, if preference data collection is not possible, then the Sampson PBCS solution cannot 
be used. The second formulation approach discussed above can still be used with fairly good 
results. Here we present an algorithm to solve the second objective function, where no preference 
data is collected, every session has a pre-computed popularity measure, and our objective is to 
maximize the overall popularity measure. Figure 1 shows the algorithm, which uses a greedy 
strategy [15] for maximizing the objective function and ensuring that there are no conflicts for 
presenters at each step. The objective is to maximize the product of the popularity measure for a 
time block and the popularity measure of the session scheduled at that time block. A greedy 
approach is highly suitable here, since both popularity measures are positive, and the sum of 
products of maximum values yields the maximum aggregate. In the case multiple sessions have 
same popularity, the algorithm tries to spread them across time blocks with high popularity 
instead of placing them in the same time block in multiple concurrent rooms. The algorithm 
ensures completeness by ensuring all sessions are scheduled, and is conflict-free because of the 
conflict-check before each session is scheduled. 

CONTRIBUTION, CONCLUSION AND FUTURE WORK 

TRACS improves on Sampson’s PBCS method by including reviewer evaluations as well as 
session timings. The GreedyTracs algorithm presented here can be easily shown to be complete 
and conflict-free. However, whether or not it produces a good schedule should be empirically 
determined, although several arguments can be made towards the quality of schedules generated 
by TRACS. First, it can be argued that the reviewers are typically the only people to read papers 
completely before publication, and therefore can judge a paper in its entirety. In addition, we 
posit that papers that are recommended for a best paper award, or are given remarkably good 
evaluations from the reviewers deserve more attention from conference participants. Moreover, 
timing of sessions play a significant role in participant attendance, since late sessions and last 
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days of conferences are often ill-attended. The above factors view the TRACS approach in a 
different light as compared to PBCS, and make the TRACS approach highly suitable for 
generating quick conference schedules inclusive of the reviewers “popularity” of the papers. We 
are in the process of implementing the algorithm and incorporating it into the new Conference 
Information System (CIS) currently under development for the Decision Sciences Institute. 

Figure 1. The “Greedy” TRACS Algorithm. Note that all arrays in this algorithm are associative arrays – 
actual implementation can use Hashtables. 
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Algorithm GreedyTracs (s: Array of Sessions, t: Array of TimeBlocks, 
r: Array of Rooms, W: Array of popularity for each t, 
RPOP: Array of combined popularity for each s) { 

 Create Array Sch(s,t,r) = 0 for all s, t, r; 
      /* Step 1 – Sort inputs with highest values up front – the greedy strategy */ 
 Sort W in descending order of popularity value; 
 Sort RPOP in descending order of popularity value; 
 Create Queue Q; /* Queue for temporary unscheduled sessions */ 
      /* Step 2 – Main algorithm stage for matching  
 While (All sessions are not scheduled) { 
  TR = subset of RPOP with highest RPOP(s) values; 
  TW = subset of W with highest W(t) values; 
  for each ct in TW { 
       if TR is empty then break; 
         remove first st from TR; 
      if (conflicts(st, ct, Sch))  
      then add st  to Q; 
      else { 
          Pick rt  from r which is available at time ct  with highest capacity; 
          Set Sch(st, ct, rt)  = 1; 
          Remove st from TR and RPOP 
      } 
      Remove all s in Q and add back to TR; 
  } 
 } 
         Return Sched as output. 
} 


