Introduction to Computer Science Course Syllabus

I. College/School
 College of Engineering and Computer Science
 Department of Computer Science and Engineering

II. Course Information
 Course Title: Introduction to Computer Science
 Course Abbreviation and Number: CS 1150
 Course Credit Hours: Lecture: 3 credit hours, Laboratory: 1 credit hour
 Course Cross Listing(s) Abbreviation and Number: none
 Check ("x") all applicable:
 General Education Course____ X ___ Writing Intensive Course____
 Laboratory Course____ X ___ Ohio TAG (Transfer Assurance Guide) Course____
 Ohio Transfer Module Course____ Others (specify)____

III. Course Registration
 Prerequisites: none
 Co requisites: none
 Restrictions: none
 Other: none

IV. Student Learning Outcomes
 6. Natural Science
 Introductions to the scientific understanding of physical and biological phenomena
 a. Understand the nature of scientific inquiry
 b. Critically apply knowledge of scientific theory and methods of inquiry to evaluate information from a variety of sources
 c. Distinguish between science and technology and recognize their roles in society
 d. Demonstrate an awareness of theoretical, practical, creative and cultural dimensions of scientific inquiry
 e. Discuss fundamental theories underlying modern science

 The students in the Introduction to Computer Science course will have an understanding of the nature of scientific inquiry and method. The students will use the scientific method as implemented in computer science as a problem-solving tool. Students will critically apply knowledge of scientific theory and methods of inquiry to evaluate information from a variety of sources. Students will be able to distinguish between science and technology and recognize their roles in society. Students will demonstrate an awareness of theoretical, practical, creative and cultural dimensions of scientific inquiry. Students will discuss fundamental theories and concepts underlying modern science and apply and extend the concepts in a laboratory setting. The concepts will include the advancement of science using computer simulations, how scientific discoveries have made computers smaller and faster and how new frontiers in physics and biology are being addressed using computer based techniques. Students will see the very close relationship that exists between the physical world and emerging science to better understand natural phenomena.

V. Suggested Course Materials (required and recommended)

VI. Suggested Method of Instruction
 Lecture and Laboratory
VII. Suggested Evaluation and Policy
The final grade is a combination of quizzes, exams, laboratory grades, research paper, and presentation grades.

VIII. Suggested Grading Policy
The grading scale is

- **A:** 100-90,
- **B:** less than 90-80,
- **C:** less than 80-70,
- **D:** less than 70-60,
- **F:** less than 60.

IX. Suggested Assignments and Course Outline

<table>
<thead>
<tr>
<th></th>
<th>The role/science of algorithms, abstraction, and social repercussions/issues of data stored forever on social networks. The question of data truth is discussed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Main & mass storage of data, data representations, numeral storage methods, data compression, and communication errors. The link to the physical properties of electromagnetism is made. Can data be stored differently?</td>
</tr>
<tr>
<td>3</td>
<td>Computer architectures, machine; assembly, high level languages; and other architectures. Recent scientific understanding which may fundamentally change today’s computer architecture.</td>
</tr>
<tr>
<td>4</td>
<td>Historic evolution and architecture of operating systems, coordination of activities and processors, and security. Implications of the availability of more computing power.</td>
</tr>
<tr>
<td>5</td>
<td>Network fundamentals and protocols, the Internet and World Wide Web, security, and social issues.</td>
</tr>
<tr>
<td>6</td>
<td>Algorithm concepts, discovery, and representations, iterative and recursive structures, and efficiency and correctness.</td>
</tr>
<tr>
<td>7</td>
<td>The historical and implementation of programming languages, traditional, procedural, and object oriented languages, and concurrent and declarative programming. The scientific method, as a problem solving tool, as implemented in computer science is explore.</td>
</tr>
<tr>
<td>8</td>
<td>Review and midterm</td>
</tr>
<tr>
<td>9</td>
<td>Software engineering and life cycle, modularity and design methodologies, testing, documentation, and ownership and liability issues.</td>
</tr>
<tr>
<td>10</td>
<td>Fundamentals and implementation of data structures, custom data types, creation of real word objects as abstractions.</td>
</tr>
<tr>
<td>11</td>
<td>Fundamentals, object oriented databases, relational databases, traditional file structures, data mining. The unexpected/unwanted reuse/linking of data sources.</td>
</tr>
<tr>
<td>12</td>
<td>Intelligence and machines, understanding images, neural networks, genetic algorithms. The link to further knowledge in geology, physics, and biology.</td>
</tr>
<tr>
<td>13</td>
<td>Functions and their computation, movement of toward natural (voice, text, sensor), programming (, non computable problems, problem complexity, and security of data storage</td>
</tr>
<tr>
<td>14</td>
<td>Course Review and Evaluation</td>
</tr>
</tbody>
</table>

X. Other Information

None