Green Labs

Laboratories are one of the main generators of waste at universities around the world. Laboratories use about four times more energy than offices of the same size; thus, laboratories have an enormous impact on a university's energy bill. Yet unfortunately, few resources have been available for laboratories to decrease their environmental footprint. Few Energy Star-rated laboratory equipment and few effective ways of recycling or reusing laboratory chemicals and supplies are available in the current market. Furthermore, research spaces are rarely designed in a way that facilitates conservation of energy and water.

I Need Information On:

Battery Recycling

electronics-recycling_jpg_475x310_q85-26b6e7q.jpgHelp us make our community a greener place - keep recyclables out of the landfills!

BATTERIES: Bring batteries to Biological Sciences Building 2, Room 047 during normal business hours for recycling. We accept all batteries, whether WSU purchased or personal. Cell phone, laptop, rechargeable, button cells, alkaline, etc...

ELECTRONICS: Bring your PC's, printers, TV's, Cell Phones, Chargers to the loading dock of Millett Hall during normal business hours for recycling. Whether WSU purchased or from home, we will accept these items and want to make it as easy as possible for you to do the right thing!

OTHER ITEMS: We encourage you to click here to find out where to recycle items such as Aerosols, Compact Fluorescent Lightbulb's (CFL), Fertilizers, Paints, Pesticides, etc...

Questions? Click here to contact Bill Palmer, our Environmental Compliance Officer.

Green Chemistry

Green Chemistry

“Green Chemistry is the utilization of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products.” Green Chemistry: Theory and Practice by Paul Anastas and John Warner

Green Chemistry is framed by 12 Principles which guide chemists in the design of materials and processes. 

The Twelve Principles of Green Chemistry


It is better to prevent waste than to treat or clean up waste after it has been created.


Atom Economy
Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product.


Less Hazardous Chemical Syntheses
Wherever practicable, synthetic methods should be designed to use and generate substances that possess little or no toxicity to human health and the environment.


Designing Safer Chemicals
Chemical products should be designed to effect their desired function while minimizing their toxicity. 


Safer Solvents and Auxiliaries

The use of auxiliary substances (e.g., solvents, separation agents, etc.) should be made unnecessary wherever possible and innocuous when used. 


Design for Energy Efficiency

Energy requirements of chemical processes should be recognized for their environmental and economic impacts and should be minimized. If possible, synthetic methods should be conducted at ambient temperature and pressure. 


Use of Renewable Feedstocks
A raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable.


Reduce Derivatives
Unnecessary derivatization (use of blocking groups, protection/ deprotection, temporary modification of physical/chemical processes) should be minimized or avoided if possible, because such steps require additional reagents and can generate waste.



Catalytic reagents (as selective as possible) are superior to stoichiometric reagents. 


Design for Degradation
Chemical products should be designed so that at the end of their function they break down into innocuous degradation products and do not persist in the environment. 


Real-time analysis for Pollution Prevention

Analytical methodologies need to be further developed to allow for real-time, in-process monitoring and control prior to the formation of hazardous substances. New step content goes here.


Inherently Safer Chemistry for Accident Prevention
Substances and the form of a substance used in a chemical process should be chosen to minimize the potential for chemical accidents, including releases, explosions, and fires. 

Contact:  Marjorie Markopoulos 937-775-2797

Shut the Sash

Shut the Sash

What is it:

  • Many universities have programs to lower chemical fume hood (CFH) sash heights for sustainability and safety improvements. Wright State University joined the effort in 2012. The "Shut the Sash" team took measurements on air flow, sash heights, and baseline energy costs. With this information we were able to predict and to achieve significant energy cost reductions while promoting safe lab practices.

Who was involved:

  • 10 Buildings
  • 5 Departments
  • 61 Constant Air Volume fume hoods
  • 118 Variable Air Volume fume hoods

What was measured:

  • Sash Heights
  • Face Velocity (Air Flow)
  • Use Data (Is the fume hood in use or not?)

What Are The Benefits

Type Savings % Estimated Cumulative Annual Savings $
VAV 35% $75,000
CAV 38% $55,000



The two types of chemical fume hoods at Wright State are variable air volume (VAV) and constant air volume (CAV).

A "variable air volume" or VAV fume hood will maintain the speed (foot per minute) of the air into the fume hood regardless of sash height, but its air volume (cfm) will vary. The more open the sash, the more volume of air is needed. Since most of the air is conditioned, it must also be heated or cooled. Some studies have shown that up to 60% energy savings are possible. A true VAV system ties the fume hood exhaust with the room's air supply and exhaust.

A "constant air volume" or CAV does not adjust its air volume. The energy use and air volume (cfm) remain constant. The hood should be set up to have 80-120 fpm at 18" sash height. A lowered sash is the safest position for fume hood operations. A shut sash protects the laboratory worker from mishaps within the hood and possible hood failures.

A single CFH operating 24 hours per day uses about as much energy as 3 single family homes.


Safety Tips

Shut the Sash

  1. If you have a spill in a fume hood;
  2. If room ventilation goes down;
  3. If you leave your fume hood unattended;
  4. If an alarm sounds on the fume hood;
  5. If the air flow is flowing into the lab instead of into the fume hood.

Best Fume Hood Practices

  1. Use a fume hood for all chemical experiments if possible.
  2. Do not use the fume hood for chemical storage.
  3. Do not lean into the fume hood.
  4. When in use, keep the sash opening to a maximum of 18"
  5. Maintain 80-120 fpm face velocity during operation
  6. Always work in the hood with the sash opened only as much as possible.