Wright State University
2004-2006 Graduate Catalog
Table of Concents
about wsu


Graduate Programs

Back to Program List | Program Website

Computer Engineering


The Department of Computer Science and Engineering offers a program of graduate study leading to the Master of Science in Computer Engineering degree. The program balances theory, software, hardware, and practice with degree requirements concentrated in the areas of computer design and analysis. Most courses are offered in the late afternoon to allow practicing computer professionals to begin the program on a part-time basis.

The department also offers the Master of Science in Computer Science degree and the Ph.D. in Computer Science and Engineering, as well as graduate certificates in Database Management and Design, Software Engineering, and Software Management.


A student may be admitted to the Master of Science in Computer Engineering program with the equivalent of an ABET accredited bachelor's degree in computer engineering and satisfaction of the admission requirements as set forth by the School of Graduate Studies.

Specific prerequisites for admission to the Master of Science degree program in computer engineering are shown below. Students may be admitted conditionally while making up minor deficiencies.

1. An accredited bachelor's degree with an overall minimum grade point average of 3.0 for regular graduate status. Students may be admitted conditionally if they have an undergraduate grade point average of 2.7 or above and at least a 3.0 grade point average in all courses in items 2 and 3 below.

2. Computer Science and Engineering prerequisites: Data structures, digital circuits and circuit analysis, computer organization, digit system design, operating systems, linear systems, electronic devices. The material covered in these classes is equivalent to CS 600, CEG 260, CEG 520, CEG 560, CEG 633, EE 521, EE 531.

3. Mathematics and Science Prerequisites: One year sequence in calculus, matrix or linear algebra, ordinary differential equations, a one year sequence in calculus based physics, and probability and statistics.

4. The Graduate Record Examination (GRE-the general test): a minimum combined score of 1050 on the verbal and quantitative exams is expected.

NOTE: The GRE will be waived in the following cases: a) a person with a Wright State University BS or BA degree from the College of Engineering and Computer Science whose undergraduate GPA is above 3.3 and who is applying for a M.S. program, b) a person with a graduate degree in Engineering, Science, or Mathematics from an American institution who is applying for a M.S. program. The GRE is highly recommended for anyone who is or will be applying for graduate assistantships.

Degree Requirements

The program requires forty eight graduate credit hours in Computer Science or Computer Engineering that include the Computer Engineering Core and the completion of either the thesis or nonthesis option requirements.


Distributed Computing: CEG 730
Computer Architecture: CEG 720
Computer Networks: CEG 702
Computer Engineering Mathematics: CEG 770


Completion of forty-eight graduate credit hours in an approved program of study, including twenty hours of formal coursework at the 700-800 level (CEG 795, Independent Study, cannot be used to meet this requirement). Satisfactory completion of a Masters thesis is required in this option with a maximum of twelve hours of independent study and thesis work counted towards the degree.


Completion of forty-eight graduate credit hours in an approved program of study. The forty eight hours must include the core and at least sixteen additional hours of CS/CEG courses at the 700/800 level. A maximum of 4 hours of independent study may be counted toward the degree.

Courses: All CS and CEG graduate courses listed in the catalog (with the exception of CS 600, and CEG 633) and EE 701, EE 710, EE 761, EE 649 may be used to complete the credit hour requirements. Other courses may be used to satisfy the requirements only if they are listed in a program of study that has been approved by the department prior to enrollment in the course.

The Department of Computer Science and Engineering maintains a “three C policy” for graduate students. A graduate student who receives 9 or more credit hours of grades C, D, F, or U in computer science and computer engineering graduate courses will be recommended for dismissal from the degree program. Dismissal action will be taken by the School of Graduate Studies. The rule includes prerequisite courses taken for graduate credit (500/600 level), independent study, and thesis research. Note that repeating a course replaces the grade in the calculation of the GPA but does not remove it from consideration of this rule.

A maximum of 12 graduate credit hours may be transferred after admission to the computer engineering degree program by petitioning the Graduate Study Committee.

Students who have been employed as teaching or research assistants through the School of Graduate Studies are required to complete the thesis option.


A wide range of computing systems interconnected via the campus-wide network support all the degree programs in the department. Full Internet connectivity is provided from campus labs and from residence halls. A variety of high-end and special-purpose systems are available for research efforts through the Ohio Supercomputer Center. Wright State University is also an Internet 2 member. University and college systems include a variety of servers and workstations running current popular operating systems, including UNIX systems from SGI and Sun, and a variety of personal computer labs featuring current versions of Windows and Mac OS. Department facilities provide specialized systems and support equipment tailored to specific curriculum and research areas. These include a Linux-based Operating Systems and Internet Security lab, and a variety of workstations and personal computers providing software tools for project design and development. The program has laboratories dedicated to student and faculty study and research in the areas of assistive technology, RFID, vision interfaces and systems, medical image analysis, parallel and distributed computing, evolvable hardware, database systems, data mining, mobile information and communications, software engineering, artificial intelligence, adaptive vision, advanced computer networking, semantic web services oriented computing, scientific workflows, business process management, and bioinformatics.


Nikolaos G. Bourbakis, (Director, Assistive Technologies Research Center), information security (encryption, information hiding, compression, forensics), computer systems (distributed, formal languages, processors, modeling), applied artificial intelligence (knowledge representation, planning, learning, autonomous agents, natural language processing), machine vision and image processing (architectures, languages, algorithms), Robotics (navigation, grasping, 3-D space maps, walking), assistive technology (blind, deaf, paraplegic), biomedical (bioimaging, cells modeling, neuromorphic systems, brain surgery, brain biometrics, endoscopy, human-eye)
Chien-In Henry Chen (Department of Electrical Engineering), computer aided design, verification and testing of VLSI circuits and systems, specifically in digital analog, mixed-signal designs, and system-on-a-chip (SoC), VLSI and FPGA implementation of signal processing and communication systems like GPS and digital wideband receivers
Soon M. Chung, database, data mining, Grid computing, parallel processing, XML, multimedia, computer architecture
Guozhu Dong, database systems, data mining and knowledge discovery, data warehousing and integration, data cubes and OLAP, bioinformatics, knowledge management, information and internet security
Forouzan Golshani, (chair) multimedia systems, digital video processing, image analysis, assistive technologies, information security
Arthur A. Goshtasby, computer vision, computer graphics, geometric modeling, medical image analysis
Jack Jean, high-performance computer architectures, RFID applications
Kuldip S. Rattan (Department of Electrical Engineering), fuzzy control, robotics, digital control systems, prosthetic/orthotics and microprocessor applications
Mateen M. Rizki, evolutionary computation, pattern recognition, image processing, machine intelligence
Amit P. Sheth, semantic web; information integration & analysis; services science; workflow management; data & knowledge intensive applications in biomedical, health care, and national security domain
Thomas A. Sudkamp (Director, CSE Ph.D. Program), fuzzy set theory, soft computing, approximate reasoning

Associate Professors
Travis E. Doom, bioinformatics, digital design automation, computer architecture and operating systems, optimization theory, and engineering education
John M. Emmert (Department of Electrical Engineering), physical VLSI design in nanoscale technologies, physical design automation for VLSI, mixed-signal design, built-in self-test, and fault tolerance for VLSI systems
John C. Gallagher, Adaptive and Evolvable Hardware, Autonomous Robotics, neural networks, machine intelligence, computational neuroscience
Prabhaker Mateti, distributed computing, Internet security, formal methods in software design
Michael L. Raymer, evolutionary computation, pattern recognition, bioinformatics, protein structure modeling, molecular evolution, forensic bioinformatics, computational toxicology
Krishnaprasad Thirunarayan, semantic web: knowledge representation and reasoning, programming languages: specification, design and implementation
Bin Wang, communication networks, wireless sensor and mobile networks, UWB, dynamic spectrum access, cognitive radio, information theory, network coding, algorithm design, quality of service, dense wavelength division multiplexing (DWDM) optical networks, network security, network modeling, analysis, simulation, protocol design and development

Assistant Professors
Natsuhiko Futamura, algorithms for high performance computing, parallel algorithms, computational biology, search algorithms, distribution independent spatial data structure and algorithms
Meilin Liu, embedded systems, compiler, loop transformation techniques, computer architecture, information security
Yong Pei, distributed computing, multimedia system and networking, sensor network, information theory, bio-networks, distributed signal processing
Shaojun Wang, machine learning, natural language processing, information theory
Thomas Wischgoll, scientific visualizations, biomedical imaging, flow visualization, information visualization, computer graphics, image processing and feature extraction

Graduate Assistantship

Teaching assistantships are available on a competitive basis for students who have established strong academic credentials and can demonstrate good communication and teaching skills. Departmental Graduate Research Assistantships are also available and are associated with research projects of the faculty. They are normally awarded by or based on the recommendation of individual faculty. Application forms for these assistantships are available from the department for students admitted to the graduate program. Assistantships are also available from the Dayton Area Graduate Studies Institute (DAGSI). Applications are available from DAGSI at http://www.dagsi.org.


A steadily increasing number of funded research projects support modern graduate research in such areas as medical imaging, multimedia systems and applications, biometrics, assistive technologies, soft computing and evolvable hardware, intelligent agents and robotics, data mining and databases, bioinformatics, networking and mobile computing, wireless and internet security, RFID applications, the semantic web, and services science. A strong research faculty in the Department of Computer Science and Engineering is assisted by qualified research faculty in mathematics, statistics, and electrical engineering.

Recent and current sources of research support include federal agencies, military agencies, and local industries. Research at Wright State University is not limited to on-campus laboratory facilities. Several industrial laboratories, Wright-Patterson Air Force Base laboratories, and the Major Shared Resource Center at Wright-Patterson Air Force Base are involved in joint research efforts with the university. In addition, the new Joshi Research Center and daytaOhio are focal points for new technologies that advance data management solutions and data management innovation.

Graduate School
E344 Student Union
Voice: (937) 775-2976
Fax: (937) 775-2453
E-mail: wsugrad@wright.edu
Page Divider
[ Graduate Catalog Home | Graduate School Home | WSU Home ]
Page Divider