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a b s t r a c t

Compared to population growth regulated by local conditions, dispersal has been underap-

preciated as a central process shaping the spatial distribution of populations. This paper

asks: (a) which conditions increase the importance of dispersers relative to local recruits in

determining population sizes? and (b) how does dispersal influence the spatial distribution

patterns of abundances among connected populations? We approached these questions

with a simulation model of populations on a coupled lattice with cells of continuously vary-

ing habitat quality expressed as carrying capacities. Each cell contained a population with

the basic dynamics of density-regulated growth, and was connected to other populations by

immigration and emigration. The degree to which dispersal influenced the distribution of

population sizes depended most strongly on the absolute amount of dispersal, and then on

the potential population growth rate. Dispersal decaying in intensity with distance left close

neighbours more alike in population size than distant populations, leading to an increase

in spatial autocorrelation. The spatial distribution of species with low potential growth

rates is more dependent on dispersal than that of species with high growth rates; there-

fore, distribution modelling for species with low growth rates requires particular attention

to autocorrelation, and conservation management of these species requires attention to

factors curtailing dispersal, such as fragmentation and dispersal barriers.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Local population dynamics are determined by birth, death,
immigration, and emigration. A crucial, yet unanswered ques-
tion is: what is the relative importance of local recruitment
(birth and death) versus recruitment from elsewhere (immi-
gration and emigration, or dispersal) to population size locally
and distribution patterns over the whole range? The signifi-
cance of this question stems from its direct relation to a central
goal of ecology. Andrewartha and Birch (1954), and Krebs (1972)
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defined ecology as the study of the distribution and abundance
of organisms. Most attempts at explaining the distribution
and abundance of organisms have focused on the environ-
mental conditions that define the fundamental niche and the
biotic interactions that define the realized niche (Guisan and
Zimmermann, 2000). In terms of population dynamics, such
approaches focus solely on the birth and death components of
local population dynamics. The immigration and emigration,
or dispersal part of the dynamics equation has received much
less attention (Bullock et al., 2002), which might be explained
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by the difficulty of quantifying dispersal in the field (Stenseth
and Lidicker, 1992).

Dispersal connects populations across space and time,
influencing persistence, size and dynamics of local popula-
tions. In a niche model, the predicted local abundance of an
organism depends exclusively on the local conditions. In a
spatially explicit model that includes dispersal, the predicted
local abundance depends on the local conditions and the pop-
ulation sizes and conditions of neighbouring sites because
these neighbouring sites supply immigrants and receive emi-
grants from the local population. This paper determines the
conditions under which neglecting dispersal in distribution
models results in misleading conclusions.

This question is of particular importance when distribu-
tion models are used to predict into new areas or into new
conditions such as those expected under climate change.
The success of such extrapolation hinges on environmen-
tal conditions being a dominant and consistent determinant
of species distributions (Araujo and Luoto, 2007). If spatial
population dynamics linked by dispersal and dependent on
the spatial configuration of habitat played an important role
in the distribution of population abundances, environmen-
tal distribution models alone would not predict well into new
situations.

The effect of dispersal on the distribution of organisms
is at the core of some important ecological theories and
related research, namely metapopulation ecology (Hanski,
1999), island biogeography (MacArthur and Wilson, 1967), and
spatial synchrony or spatio-temporal autocorrelation research
(e.g., Bjørnstad et al., 1999; Blasius et al., 1999; Koenig, 1999;
Engen et al., 2002a). However, the present study differs funda-
mentally from these fields of research by focusing on a single
species, using abundance rather than presence/absence, using
a spatially explicit approach, and analyzing the long-term
effects of dispersal on distribution, rather than the resulting
dynamic synchrony among populations.

The model presented here combines a landscape with a
continuous distribution of habitat qualities and the simulation
of abundance of populations distributed across this landscape
to answer two specific questions. First, which population char-
acteristics increase the importance of dispersers relative to
local recruits in determining population sizes? Second, how

does dispersal influence the spatial distribution patterns of
abundances among connected populations?

2. Methods

We used a simulation model to investigate the effects of
dispersal on population dynamics and abundances in con-
nected populations. The simulation model consisted of 900
cells in a regular 30 × 30 grid, each containing a popula-
tion (Fig. 1a). The 900 populations experienced deterministic
density-dependent growth, immigration and emigration in
discrete time steps. Each population was operating with iden-
tical base rates in growth and emigration, and differed only in
carrying capacity (K). The change in population size per time
step was modelled with a logistic growth equation (Begon and
Mortimer, 1986) expanded by immigration and emigration:

�N = Nt

(
R

(1 + (R − 1) × Nt/K)
− 1

)
+ I − E;

where Nt = population size at time t, R = potential population
growth rate (birth minus death rate not adjusted for density-
dependent effects), K = carrying capacity (maximum number
of individuals supported at the location before the growth rate
falls to 1), I = immigration (number of individuals entering the
population), and E = emigration (number of individuals leaving
the population).

The potential net growth rate R is the multiplier by which
the population would grow in each time step if no density-
dependent effects were present. R combines birth and death
rates in one value (Begon and Mortimer, 1986). The realized
net growth rate is R divided by (1 + (R − 1) × Nt/K), a term that
approaches R when the population size Nt approaches the
carrying capacity K. Thus, the realized growth rate equals
one when K is reached. We covered values of R from one to
five in our research. As an exemplary relation to R values
found in empirical data, this range encompasses the range
of maximum possible R-values (1.32–5.23) for passeriform and
piciform birds in Saether and Bakke (2000). These maxima
were derived from fecundity values assuming absence of adult
or juvenile mortality and onset of reproduction within the first
time step after birth.

Fig. 1 – Distribution of population sizes before (a) and after (b) dispersal in a 30 × 30 matrix. Before dispersal, population size
equals the carrying capacity (K) of the patch. K is positively autocorrelated in space up to a range of 8 cells. The population
growth rate R was 1.05 and the dispersal rate in (b) was 10% of the population per time step.
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The carrying capacity (K) symbolized habitat quality anal-
ogous to how patch size symbolizes habitat quality and
environmental conditions in metapopulation models (Hanski,
2001). The concept of carrying capacity used here did not
impose a hard ceiling on the population size but only adjusted
the realized growth rate to one when K was reached and below
one when the population size was larger than K. Consequently,
it was possible that a population persisted at a size larger than
K, fed by higher immigration than emigration. We chose to
model K as a continuous variable because the reduction of the
landscape into a binary view of habitat and matrix may ham-
per the understanding of demographic processes (Wiegand et
al., 1999). K-values were selected at random for every cell from
a normal distribution with a mean of zero and a standard devi-
ation of 100. However, we used the absolute values of these
random values so that no negative K-values were present.

To introduce autocorrelation into the landscape, as is typ-
ically found in the environment (Legendre and Fortin, 1989),
we used the function rfsim in S-PLUS (Kaluzny et al., 1996,
pp. 117–119). It first calculated a covariance matrix based on a
spherical function of distance, which we gave a maximum dis-
tance of eight cells. Then the random vector of K-values was
multiplied with the Cholesky decomposition of this matrix.
The resulting distribution of K-values over the 30 × 30 matrix
was spatially positively autocorrelated up to a distance of
eight with similarities among neighbours decaying with dis-
tance according to a spherical function. Finally, we took the
absolute values of the generated K-values, resulting in a distri-
bution with many low carrying capacities and few large ones.
A distribution of abundances with most locations having small
populations and few locations having large populations is to
be expected in many organisms (Brown et al., 1995; McGill and
Collins, 2003).

In our default approach (but see alternative approaches
tested below), Emigration (E) was set as a fixed proportion of
the cell population in each time step. We used 10, 20, 30, and
40% dispersal rates in our trials with 10% being the default
value used in most simulation runs. The emigrants from each
population were distributed to the other cells in proportion to
their distance to the power of minus two, leading to a dispersal
function that declined rapidly with distance. The number of
immigrants for a given population in a time step was the sum
of all emigrants coming from other populations. Note that the
approach to modelling dispersal in this model is deterministic
and allows fractions of individuals.

Dispersal typically comes at a cost, which, among other fac-
tors, depends on the distance travelled and the local resistance
encountered. In the model presented here, distance implic-
itly signifies total costs, including resistance. Thus, a distance
in the model signifies the total difficulty for an individual to
move between two points, where a long geographic distance
with low resistance could be equivalent to a short geographic
distance with high resistance. Note that costs only influenced
the distribution of dispersal distances among emigrants. No
mortality was associated with dispersal. While this simplifi-
cation is unrealistic, systematic dispersal mortality would be
equivalent to a lower dispersal rate combined with a higher
local mortality, which are parameter variations covered in
our approach. Therefore, our experiments indirectly covered
death associated with dispersal.

We used two different measures to describe the effect
of dispersal on the distribution of population sizes in our
model. The first was based on the change in distribution
patterns brought about by dispersal. In the absence of disper-
sal, the carrying capacities (K-values) completely explain the
population sizes resulting from the simulation because the
simulation model is deterministic. Therefore, the change in
pattern brought about by dispersal can be directly quantified
as a disruption in this perfect relationship between K-values
and population size. We quantified this disruption in the rela-
tionship as the R2 of a linear regression of the population
sizes on the K-values. This measure can be seen as an indi-
cator of the relative importance of local versus immigrant
recruits. In the absence of dispersal, all population dynamics
are determined by local recruitment and the R2 is one. With
the introduction of dispersal, differential immigration over-
lays local recruitment, which is measured as the deviation of
the R2 from one because these effects are not explained in the
K-values. In addition, the deviation of the R2 from one gives
an indication of the amount of variation in population size
that would be missed in a distribution model based on habitat
characteristics and linear regression.

The second measure relates to the expected effect of
dispersal on the spatial distribution of population sizes—a cor-
relation in population sizes among neighbouring populations
that decays with distance. Such a correlation is called positive
spatial autocorrelation and can be measured with Moran’s I.
We used a standardized version of Moran’s I (Haining, 1990)
for cell pairs one to eight cell distances apart as a measure of
the effect of dispersal on autocorrelation in distributional pat-
terns. Note that the underlying K-values were autocorrelated
up to a range of eight cells as part of the landscape design,
and population sizes were correspondingly autocorrelated in
the absence of dispersal. We therefore measured Moran’s I
first in the absence of dispersal and then with the dispersal
being investigated. The increase of Moran’s I with dispersal
is then an indication of changes in distribution patterns and
increasing importance of dispersers versus local recruits.

We tested the model for sensitivity to assumptions and
approaches by modifying its structure, running the model on
100 randomly generated landscapes for each parameter set,
and averaging the results. The default model was on an auto-
correlated landscape as described above (Table 1, models 1–8).
First, we ran the model on landscapes without spatial autocor-
relation (Table 1, models 9 and 10). Second, we tested for edge
effects by implementing the 30 ×30 matrix as a torus, which
means that edges are eliminated by connecting them to the
opposite edges (Table 1, models 7 and 8). While real ranges
have edges this test was useful for finding out whether the
range edges played a part in the observed effects or whether
similar effects could be observed within the range of a species
far away from range edges. Third, we investigated the influ-
ence of our original dispersal function (Type I, models 2, 8,
and 10) on the simulation results by implementing four alter-
native functions: (1) uniform dispersal to the nearest eight
neighbours only (Type II, model 3), (2) uniform dispersal to the
nearest 24 neighbours only (Type III, model 4), (3) dispersal
with a spherical decay in intensity up to a maximum distance
of eight cells in distance (Type IV, model 5) and (4) density-
dependent dispersal (Type V, model 6). Finally, we provided
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Table 1 – Comparison of 10 different model structures

Model Landscape type Dispersal Edge correction Moran’s I R2

1 Correlated None No 0.29 ± 0.10 1.00 ± 0.00
2 Correlated Type Ia No 0.44 ± 0.12 0.84 ± 0.02
3 Correlated Type IIb No 0.44 ± 0.12 0.83 ± 0.02
4 Correlated Type IIIc No 0.52 ± 0.11 0.78 ± 0.03
5 Correlated Type IVd No 0.55 ± 0.11 0.76 ± 0.03
6 Correlated Type Ve No 0.33 ± 0.11 0.98 ± 0.00
7 Correlated None Yes 0.22 ± 0.09 1.00 ± 0.00
8 Correlated Type I Yes 0.33 ± 0.10 0.88 ± 0.01
9 Uncorrelated None No 0.07 ± 0.04 1.00 ± 0.00

10 Uncorrelated Type I No 0.23 ± 0.05 0.73 ± 0.01

Means ± standard deviations of Moran’s I are given from runs on 100 randomly generated landscapes (see Section 2) with potential population
growth rate R = 1.05, and dispersal rate = 10%. See Section 2 for landscape generation, dispersal types, Moran’s I, and R2 calculations.
a Dispersal decays in intensity proportional to 1/distance2 without a maximum dispersal limit.
b Dispersal is uniform and only to the eight closest neighbours.
c Dispersal is uniform and only to the 24 closest neighbours.
d Dispersal decays with distance following a spherical function up to a maximum distance of eight cells.
e Density-dependent dispersal.

Fig. 2 – Dependence of dispersal on the ratio between
population size and carrying capacity in model 6
(density-dependent dispersal Type V). The exact functional
form is given in Section 2.

statistics for correlated and uncorrelated landscapes without
dispersal for comparison (Table 1, models 1, 6, and 8). Table 1
gives an overview of the investigated model structures.

We modelled density-dependent dispersal with a logistic
function that varied the proportion of dispersers from 10 to
40% depending on the ratio of population size to carrying
capacity (Nt/K). The equation was

Percent dispersers = 0.1 + 0.0001 × exp(10 × (Nt/K))
(1 + exp(10 × (Nt/K))/3000)

leading to the distribution of disperser proportions shown in
Fig. 2.

Simulations were run until an equilibrium was reached,
defined as a change from one time step to the next smaller
than 0.01 in the sum of all populations. Therefore, all results
presented here are based on the final balance between growth
and dispersal that the populations moved into, and not
dynamics or changes in populations between the start of the

simulation and the final equilibrium. The analyses varying
the model parameters R, and the proportion of dispersal were
based on a single typical random landscape. All simulations
and statistics were programmed in S-PLUS 6.2 (Insightful,
2003) (use of this product does not imply endorsement).

3. Results

Introducing dispersal in the population simulation model led
to a systematic deviation of population sizes from their under-
lying carrying capacities (K) (Figs. 1, 3 and 4) and an increase in
positive spatial autocorrelation (Fig. 5 and Table 1, model 1 and
2). Populations with below average K-values tended to exceed
K and turned into sinks, while cells with above average K-

Fig. 3 – Deviation of population size from underlying
carrying capacity (K) with and without dispersal. Without
dispersal population sizes are identical to K-values. With
dispersal populations with small K-value are larger than
expected, while populations with large K-value are smaller
than expected. The population growth rate R was 1.05 and
the dispersal rate was 10% of the population per time step.
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Fig. 4 – Effect of potential population growth rate R on
distribution patterns under a range of dispersal rates. The
regression R2 is the coefficient of determination of a linear
regression of the vector of 900 populations at equilibrium
after dispersal against the vector of carrying capacities (K)
underlying the populations. This coefficient is an
expression of how strongly local population sizes are
controlled by local carrying capacity rather than by
immigration and emigration. R is the potential population
growth rate or the factor by which the population can
maximally grow in each time step before adjustment for
density dependence.

values attained population sizes below K and acted as sources
(sensu Pulliam, 1988). Thus, dispersal led to a reduction in the
range and variance of population sizes (Figs. 1 and 3) and a
stronger correlation in population sizes among neighbours,
decaying with distance. With the default parameter values
(net potential local growth rate R = 1.05 and proportion of dis-
persers = 10%), Moran’s I increased by 0.15 ± 0.01 (SE) or 50%
when dispersal was introduced, while K-values lost 16.4 ± 2.0%
(SE) of their explanatory power (as measured by reduction
in R2 from models 1 to 2) in the distribution of population
sizes.

The magnitude of these effects depended on the poten-
tial population growth rate R and the proportion of dispersers
(Figs. 4 and 5) but was not strongly influenced by the under-
lying model structure (Table 1). The influence of the potential
population growth rate R on the changes in distribution pat-
terns under dispersal is shown in Figs. 4 and 5. With a dispersal
rate at 10%, only low values of R allowed for strong influences
of immigrants on the deviation of dispersal patterns from
underlying K-values. When R was 1.3 or above, 10% dispersal
changed distribution patterns by less than 1%. However, the
increase in autocorrelation was not as dependent on low R-
values as the deviation in patterns from underlying K-values
(Fig. 5). Moran’s I increased by 23% with R = 1.3 and dispersal
rate at 10%. Higher dispersal rates caused a larger deviation in
the distribution of population sizes from the pattern of under-
lying K-values (Fig. 4) and delayed the decrease in deviation
with higher R-values: the distribution pattern was changed

Fig. 5 – Effect of potential population growth rate R on
autocorrelation in distribution patterns under a range of
dispersal rates. Moran’s I is a measure of autocorrelation
based on all cell pairs with a maximum distance of eight
cells. This measure is an expression of the similarity
among population sizes within an eight-cell distance,
above and beyond the overall similarity among population
sizes in the whole range. Note that the lower bottom of the
graph is at the value of Moran’s I for the population size
distribution without dispersal. R is the potential population
growth rate or the factor by which the population can
maximally grow in each time step before adjustment for
density dependence.

by 6% and autocorrelation was increased by 34% with 40%
dispersal and R = 1.5.

Tests of the sensitivity of the model to its structure con-
firmed its adequacy. First, the variance in results introduced
through the random selection of K-values during landscape
creation was low (Table 1, see low standard deviations). Very
few generated landscapes led to extreme results, except when
all cells with high K-values were clumped around the edges of
the matrix. Second, the results were sensitive to the introduc-
tion of spatial autocorrelation in the landscape. Dispersal led
to a lower R2 and a larger increase in autocorrelation in uncor-
related landscapes than in correlated landscapes (Table 1,
compare change from models 1 to 2 vs. change from models
9 to 10). However, the total autocorrelation in the distribution
of population sizes was still higher in correlated landscapes
than in uncorrelated landscapes after dispersal. Third, edge
effects were observable in the simulation. When we imple-
mented the 30 × 30 matrix as a torus, the observed effects of
dispersal on the distribution of abundances decreased (Table 1,
model 2 vs. model 8). However, autocorrelation in the distri-
bution of K-values was also lower in the toroidal landscape
(Table 1, model 1 vs. model 7), indicating that the edge effects
were not solely due to dispersal anomalies at the edges but
also computational differences in the analyses of the disper-
sal patterns. The main effect of the toroidal correction was
to reduce outlying population sizes due to edge effects and
thus reduce the variance in population sizes. It did not change
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Fig. 6 – Deviation of population size from underlying
carrying capacity (K) with density-dependent dispersal. The
population growth rate R was 1.05 and the dispersal rate
varied between 10 and 40% of the population per time step.
The dispersal rate was dependent on the ratio between
population size and carrying capacity as shown in Fig. 2.

the main observed effect of dispersal in changing distribu-
tion patterns. Fourth, the three alternate dispersal functions
(Type II–IV) led to minor quantitative differences in the overall
results (Table 1, models 3–5), but did not influence the quali-
tative insights gained, so that a more detailed investigation or
a more complicated model were not justified.

The only alternate scenario that led to a substantial change
in results was the introduction of density dependence in
dispersal (Table 1, model 6 and Fig. 5). Density dependence
in dispersal reduced the maximum deviation of populations
from their carrying capacity and thus led to a much straighter
distribution of abundances (Fig. 6) and thus a higher R2

(Table 1, model 6). Morin’s I decreased but was still substan-
tially higher than in no-dispersal scenarios.

4. Discussion

The approach presented here takes a process-based rather
than habitat-centred view of spatial distributions (Thomas
and Kunin, 1999) by incorporating immigration and emigration
into the population dynamics. The core insight of the model
is that dispersal is less important for shaping the distribu-
tion of abundances in species with a large potential population
growth rate than those with a small potential growth rate. In
other words, the population dynamics of species that have the
potential to grow quickly are dominated by local recruitment.
Immigrants cannot contribute much to the local abundances
of such species. In contrast, in species with low potential
population growth rates, migrants can play a very important
role in the distribution of abundances. Typical species falling
in this category have low numbers of offspring and a high
parental investment, such as large mammals and many large
birds. This result is consistent with Söndgerath and Schröder
(2002), who, with a different goal and methodology, concluded
that increasing the connectivity of a landscape has a notewor-

thy effect on spatial spread only when reproductive rates are
low.

How low must the reproductive rate of a species be for dis-
persal to have an important influence on distribution? Due to
the necessary omission of some ecological complexities, the
results of this model should not be taken as numerical predic-
tions for the parameter combinations under which dispersal
has ecologically significant effects on distribution patterns.
However, the model could give a rough indication for which
species dispersal effects could be important. For example,
Thompson (1987) gives estimates of intrinsic rate of natural
increase (rm) for 42 mammals. When translated into the dis-
crete time R used here, the average rate of increase for large
mammals (over 5 kg, N = 25) was 1.61 ± 0.06 (SE). Such a rate
would allow for significant dispersal-caused deviations in the
distributions of these species from what would be expected
if environment was the only determinant (Figs. 3 and 4). It
is also important to note that Thompson’s estimates assume
zero mortality until after the physical maximal reproduc-
tive age is reached, which makes this type of rm estimate
an absolute maximum estimate similar to the estimate of
bird R-values given in Section 2 (1.32–5.23 for passeriform
and piciform birds). In reality maximum attained intrinsic
rates of increase could be considerably lower than those pre-
sented above and thus dispersal could be considerably more
important to species’ distributions than the above figures sug-
gest.

Several complications influence our results, not all of which
we were able to address in the presented model. We did not
include local extinctions or environmental and demographic
stochasticity. Both effects would likely increase the impor-
tance of migrants to overall population distribution because
migrants would assume more pivotal roles by recolonising
locally extinct populations, by rescuing populations on the
brink of extinction, and by spreading the risk of extinction
by local environmental fluctuations (Engen et al., 2002b). In
contrast, the presented effects of dispersal may be weakened
slightly by introducing dispersal mortality into the model,
which could decrease the connection among populations.
Thus, the combinations of growth and dispersal rate would
have to be more extreme to come to the same effects on
distribution patterns as without dispersal mortality. Another
simplification of the model is the assumption of reaching
an equilibrium in population dynamics (Pickett et al., 1994;
Guisan and Zimmermann, 2000). The simulation model pre-
sented here works on the assumption that an equilibrium is
reached through logistic growth. We contend that the intro-
duction of stochastic, non-equilibrial elements would not
have changed the fundamental insights gained by this model
and would thus have been an unnecessary complication. As
long as the system is not continuously growing or shrink-
ing, the population dynamics would have averaged out over
the simulation duration of several 100 time steps and would
not change the fundamental effects of dispersal on spa-
tial distribution patterns posed as the core question of this
research.

Introducing density-dependent dispersal as a complication
to the model reduced the effects of dispersal substantially.
Under this scenario, sources that fall well below carrying
capacity because of emigration experience lower rates of
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emigration than sinks, which are above carrying capacity.
This density dependence of dispersal weakens the source-
sink pattern arising from dispersal and brings populations
closer to the expected abundance equalling carrying capacity
(Fig. 6). In particular, extreme deviations from carrying capac-
ity (above or below) were prevented in this scenario. We could
not find data on density dependence of dispersal that would
have allowed us to gauge how important this effect could be
in natural populations.

Other complications not considered in this model were
directional bias in dispersal towards good habitat (e.g.,
Schooley and Wiens, 2003), and differential mortality associ-
ated with movement through different quality habitats (e.g.,
Amarasekare, 1998). These complications have the potential
to influence the presented results but are beyond the scope of
this investigation.

In contrast to other studies (e.g., Pulliam, 2000; Keitt, 2003),
we did not designate source and sink populations a priori.
Instead, we specified carrying capacities. A fixed percentage
of dispersal led to a source-sink structure because the popula-
tions in cells with high K-values supplied more dispersers and
the cells with low K-values accepted more dispersers. Under
this scenario the logistic growth function led to higher real-
ized population growth rates in the source cells and lower or
zero growth in the poorer habitats because the population size
was closer to or even at or above K in the latter populations,
although the fundamental potential population growth rates
were identical. Given the fixed death rate, the cells with pos-
itive net immigration then turned into functional sinks and
the ones with negative net immigration turned into sources.

The simulation approach presented here differs from the
approach taken by several other ecological theories that are
centred on the effects of dispersal. Island biogeography uses
dispersal for colonisation rates and subsequently to predict
biodiversity but does not deal with abundances of individual
species (MacArthur and Wilson, 1967). In addition, it requires
an unchanging mainland population supplying a constant
stream of immigrants, which is not a model applicable to
many terrestrial situations (Hanski, 2001). Metapopulation
ecology uses dispersal as a connection between populations
for recolonisations and rescue effects, but does not analyze the
spatial consequences of dispersal on the distribution of abun-
dances. Such an approach is appropriate for discrete habitat
patches such as islands or highly fragmented landscapes
but is of questionable value for a landscape of continuous
habitats (Hanski, 1999, 2001). The study of synchrony in pop-
ulation dynamics of neighbouring populations, brought about
by environmental synchrony (the Moran effect) or by dispersal,
investigates the spatio-temporal consequences of dispersal
but not how these consequences change distributions over
many generations (e.g., Bjørnstad et al., 1999).

The results presented here are important for the fields of
distribution modelling and conservation management. Many
authors assert that spatial models are a significant advance
in distribution modelling and should be used whenever pos-
sible and appropriate (e.g., Legendre, 1993; Thomson et al.,
1996; Keitt et al., 2002; Lichstein et al., 2002; Segurado et
al., 2006). However, it is important to understand the source
of spatial structure in distributions to properly apply spatial
models (Austin, 2002). If the only source of a spatial pattern

in the form of positive spatial autocorrelation stems from
the autocorrelation in the underlying environmental gradi-
ents, a model including all gradients will implicitly model
the spatial structure, and more explicit spatial modelling will
be an unnecessary complication (Diniz-Filho et al., 2003). If,
however, another process, such as dispersal, causes spatial
patterns, it is important to understand under which con-
ditions this process may be influential enough to warrant
inclusion in a distribution model.

Our results show that species with low to moderate
potential population growth rates and density-independent
dispersal are most likely to exhibit ecologically significant
spatial autocorrelation above and beyond the spatial autocor-
relation caused by environmental gradients. These species
are the most likely candidates to require spatially explicit
models, whether all environmental gradients are included
or not. In addition, these species will be least successfully
modelled with climate envelope models and the predictions
of their future distributions under climate change will likely
be unreliable.

The spatial patterns in the distribution of species and the
relative importance of dispersal to these patterns are also
important to the field of conservation biology. Species with
a high potential population growth rate are less dependent on
dispersal than species with a low rate. Therefore, conservation
efforts for species with low growth rates will likely require
more connectivity in the landscape and larger conservation
areas than efforts for species with high growth rates.
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