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Distribution models are used to predict the likelihood of occurrence or abundance of a species at locations where census 
data are not available. An integral part of modelling is the testing of model performance. We compared different schemes 
and measures for testing model performance using 79 species from the North American Breeding Bird Survey. The four 
testing schemes we compared featured increasing independence between test and training data: resubstitution, random 
data hold-out and two spatially segregated data hold-out designs. The different testing measures also addressed different  
levels of information content in the dependent variable: regression R2 for absolute abundance, squared correlation  
coefficient r2 for relative abundance and AUC/Somer’s D for presence/absence. We found that higher levels of indepen-
dence between test and training data lead to lower assessments of prediction accuracy. Even for data collected independently, 
spatial autocorrelation leads to dependence between random hold-out test data and training data, and thus to inflated 
measures of model performance. While there is a general awareness of the importance of autocorrelation to model build-
ing and hypothesis testing, its consequences via violation of independence between training and testing data have not 
been addressed systematically and comprehensively before. Furthermore, increasing information content (from correctly 
classifying presence/absence, to predicting relative abundance, to predicting absolute abundance) leads to decreasing 
predictive performance. The current tests for presence/absence distribution models are typically overly optimistic because 
a) the test and training data are not independent and b) the correct classification of presence/absence has a relatively low 
information content and thus capability to address ecological and conservation questions compared to a prediction of 
abundance. Meaningful evaluation of model performance requires testing on spatially independent data, if the intended 
application of the model is to predict into new geographic or climatic space, which arguably is the case for most applica-
tions of distribution models. 

Distribution models are used to predict the occurrence  
or abundance of a species at locations that have not been 
censused. Known occurrences or abundances are used  
as dependent variables to be explained by various environ-
mental variables (e.g. climate, land cover). Unlike informa-
tion about the distribution of species, we have extensive 
environmental data that has been interpolated to cover  
the entire globe. This allows distribution models to make 
predictions about the occurrence or abundance of a species 
at uncensused locations. More recently, distribution models 
built on present day environmental data have been used  
to predict future species distributions based on projections 
of future climates from global circulation models (Iverson 
and Prasad 1998, Skov and Svenning 2004). Distribution 
modelling has seen an unprecedented amount of attention 
in recent years (e.g. two special sections in journals in 2006: 
J. Appl. Ecol. 43 and J. Biogeogr. 33). It is a vital tool  
in species conservation and land management (Scott and 
Csuti 1997, Ferrier 2002) and relates to the most fun-
damental questions of ecology: the abundance and distribu-
tion of species (Krebs 1972, Andrewartha and Birch 1984).

Many authors have noted that distribution models omit 
ecological processes that are known to be important, such as 
species interactions and dispersal (Davis et al. 1998, Araújo 
et al. 2005a, Randin et al. 2006). But as Box (1976) noted 
‘All models are wrong, but some are useful’, which under-
scores the crucial importance of an objective, quantitative 
test of model performance rather than merely noting their 
many shortcomings. Objective tests of predictions 100 years 
in the future are clearly impossible. However, even tests of the 
predictive success of distribution models in the present day 
suffer from a confusing array of different approaches and an 
unclear relationship of performance to complicating factors 
such as presence/absence (P/A) versus abundance (Ab) mod-
elling and spatial autocorrelation. The goal of our paper is to 
clarify how the testing of distribution models is influenced 
by 1) the information content of the dependent variable  
(in increasing order: presence/absence (P/A) versus, relative 
abundance (rel.Ab) versus, absolute abundance (Ab)); and  
2) the relative independence of the testing data used  
(in increasing order: resubstitution versus, random hold-out 
versus, and truly independent (spatially segregated split)).
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Several aspects of input data and testing scheme poten-
tially influence the outcome of a model test. For example, 
the baseline probability for guessing correctly is very differ-
ent for P/A versus Ab data. If a species has a prevalence of 
50% of the cells of a study area then the probability to guess 
P/A correctly without any further knowledge is 50%. In 
contrast, the probability of guessing the abundance of a  
species in a cell correctly would be nearly 0%, if abundance 
was a truly continuous variable. This ease of prediction is 
related to the information content of the measure that is  
to be predicted. Ecologically, knowing the presence or 
absence of an organism tells us relatively little about the  
suitability of a location, as a presence could be from a sink 
population or equally as well a critically important source 
population (Pulliam 1988, 2000). Relative abundance can  
at least provide information on the relative suitability of dif-
ferent habitats, while abundance, the most information  
rich and difficult to predict measure, is linked to survival 
probability (Dennis et al. 1991).

Different schemes for model testing exist. The most basic 
scheme, resubstitution, is to judge the goodness-of-fit of  
a model using the same data the model was fit for (Fielding 
and Bell 1997). This scheme can inform the researcher 
about the ability of the chosen model to describe the  
given data, but it says little about the generality or transfer-
ability of the model (Phillips 2008), i.e. if the model can 
successfully predict onto new, independent data. This 
scheme is used in basic regression analyses, when a straight 
line or low-polynomial equation hardly permits overfitting 
and is often used when scarce data do not allow for a  
better testing scheme. A more advanced scheme is to ran-
domly hold-out data from the model building process and 
to test the predictions of the fitted model on this held- 
out test data (Fig. 1) that was not used in the model build-
ing and parameterizing process. This scheme can consist  
of holding out a fixed percentage of data only once, or  
holding out a small percentage of the data for testing  
but rotating the random selection and thus repeating the 
testing process several times, until each data point was in a 
test set once, and then averaging over the multiple test 
results (cross-validation). Splitting the data into training 
and test data not only gives an impression of the goodness-
of-fit of the model to the data but also of its capability  
to predict onto new data and therefore its generality and 
transferability. Finally, one can use a hold-out that is spa-
tially segregated. In contrast to the random hold-out, a  
spatially segregated hold-out prevents spatial intermin-
gling of training and test datasets and thus makes it more 
likely that the two datasets are truly independent (Peterson 
et al. 2007).

If the data have no spatial autocorrelation across the  
modelling extent then there is no difference between the last 
two approaches (random holdout versus spatially segregated 
holdout). However, environmental data and distribution 
data are virtually always autocorrelated in space, which adds 
a further complication to the model testing process. Spatial 
autocorrelation means that, on average, things closer together 
are more similar than things further apart, resulting in  
a dependence among locations that decays with distance. 
Autocorrelation is found in both the independent variables 

(here the environmental variables) and the dependent  
variable (the species distribution).

Spatial autocorrelation in dependent and independent 
variables may not only be a potential violation of many 
models’ assumption that input data and/or error terms be 
independent (Legendre and Fortin 1989), but may also  
lead to inflated test measures (Segurado et al. 2006).  
Consequences of spatial autocorrelation, such as an overes-
timation of degrees of freedom, a resulting underestimation 
of variance and overestimation of significance, as well as  
an influence on variable selection, have been investigated  
in detail (Legendre 1993, Lennon 2000, Dale and Fortin 
2002). However, the consequence of autocorrelation to  
a test of the predictive power of a model based on data  
hold-out techniques has received less attention. Several 
authors have identified this problem (Hampe 2004, Araújo 
and Guisan 2006, Araújo and Rahbek 2006) and conse-
quently many studies have been conducted testing models 
on allegedly independent data.

Three categories of ‘independent’ testing data are typi-
cally employed: 1) independently collected data (Elith  
et al. 2006), 2) temporally independent data (Martinez-
Meyer et al. 2004), and 3) spatially independent data  
(Peterson et al. 2007). We will focus on spatially indepen-
dent testing data (3), because independently collected  
data (1) introduce additional variability by potentially using 
different methods and/or censusing the organism during  
a different time with different population levels while still 
not guaranteeing spatial independence. And using tempo-
rally segregated testing data (2) suffers from the same draw-
backs as using independently collected data: temporal 

None Random

Strips Halves

Figure 1. Schematic representation of data splitting approaches. 
Black symbols indicate locations at which the species is present, 
grey symbols indicate locations at which it is absent, circles indicate 
locations used in the training dataset, and 3’s locations that were 
used for testing of the model. Splits for strips and halves were 
selected so that an equal number of occupied (black) locations fell 
into each part.
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autocorrelation potentially leads to dependence between 
training and test data leading to overly optimistic model 
evaluations, while natural population fluctuations may lead 
to an overly pessimistic model evaluation.

Searching the literature, we identified 32 studies  
using spatially independent data for model evaluation  
(Supplementary material Appendix 1 Table A1). This com-
pilation represents all such studies we could find, but we do 
not claim it is exhaustive. Given that most authors did  
not test for spatial independence, we inferred such indepen-
dence when training and test data were reasonably (depen-
dent on the focal organism) spatially separated. The results 
of the studies were varied, but more importantly, the inter-
pretation of the studies was varied. For example, Graf  
et al. (2006) interpreted AUC values between 0.83–0.94 
achieved when predicting occurrence in a new area as poor 
to moderate performance (Abstract, Table 3), while  
(Murray et al. 2011) labelled models challenged with  
the same task and achieving AUC values of 0.77–0.90  
as having excellent discriminative abilities (p. 82 and  
Table 2). All but one of the identified studies (Whittingham 
et al. 2003), used presence/absence or presence only,  
leaving the effect of autocorrelation on the evaluation of 
abundance-based models virtually unexplored in the litera-
ture. Twenty-three of the 32 studies used fewer than 10 spe-
cies, with only one based on abundance data (Whittingham 
et al. 2003), using only one species. The biggest challenge  
in synthesizing this literature is that studies typically only 
reported a measure of performance for prediction into  
a new area. As such, it is hard to say whether the distribu-
tion models predicting to the new area performed well  
or not. For example, is an R2 of 0.50 or an AUC of 0.7 
when predicting into a new area good or bad? Addressing 
these questions requires a more inferentially systematic way 
that allows for attributing drops in performance to different 
contributing factors. Thus, we believe it is important to 
implement an evaluation scheme spanning the typically 
used evaluation methods (resubstitution, random hold-out 
or CV, or spatial split) in a single study, so that a decrease  
in the determined performance can be seen relative to the 
original, goodness-of-fit based estimate of model perfor-
mance. Equally, we think it is important to run such com-
parisons across many species and in spatially different areas. 
None of the investigated studies provides such a complete 
comparison.

In this paper we systematically and comprehensively 
investigate the influence of input data (P/A versus Ab),  
and model testing scheme (resubstitution versus random 
reserved data design versus spatially segregated data design) 
on performance tests of distribution models, and show  
how the testing scheme needs to be matched to the intended 
purpose of the model to prevent overly optimistic results.

Material and methods

Data sources

We used data from the North American Breeding Bird  
Survey. This survey was initiated in 1966 and has been  
conducted yearly since by skilled volunteers under the  

auspice of the Canadian Wildlife Service and the US  
Geological Survey’s (USGS) Patuxent Wildlife Research 
Center. Surveys are conducted during the breeding season 
(mid-May through the first week of July, depending on  
the latitude of the route) at stops along routes placed on 
secondary roads. Each of the over 4100 survey routes in  
the USA and southern Canada is approximately 40 km 
(exactly 24.5 miles) long and contains fifty regularly spaced 
(every 0.8 km/0.5 miles) stops. At the stops observers  
conduct 3 min audio-visual point counts covering a circle 
with 0.4 km radius. The routes provide a fairly good and 
random coverage of the study area, albeit with varying den-
sity depending on population and road density (Bystrak 
1981). Variation among skills of observers introduces noise 
in the data (Sauer et al. 1994) but there is no indication  
or reason why this should systematically bias our results. 
Similarly, the road-side location of the stops and different 
detectability among species likely introduces more error  
for some species than for others, but given the large cover-
age of very different species in our research, there is no rea-
son why this should have generally biased our results.

We averaged counts of 79 selected bird species  
(Supplementary material Appendix 1 Table A2) at 1293 
routes which were sampled each of five years (1996–2000) 
and designated as high quality (good weather and observers) 
each of those five years. By averaging over several years,  
we excluded year-to-year population fluctuations for exam-
ple introduced by winter survival or disease (Sauer et al. 
1997) letting us focus on long-term habitat associations 
rather than dynamics and temporal variation. Fine scale  
temporal variation and coarse scale temporal trends are not 
investigated further in this study. The counts were pooled 
from stop to route level and square root transformed for 
abundance-based models or turned into binomial presence/
absence (non-zero/zero abundance) for P/A models. The 
resulting coarse spatio-temporal scale aims to exclude  
much fine scaled variability and fluctuations of bird abun-
dances and environmental variability that do not lend them-
selves well to modelling with high priority on generality.

The species had to fulfil the following criteria for  
inclusion in the study: 1) at least 400 occupied locations;  
2) land bird; 3) taxonomically stable. We selected the cut- 
off at a minimum of 400 occupied locations because at this 
level the positive correlation between model performance 
and sample size disappeared. All models were restricted to 
the birds’ ranges. Ranges were estimated with the Ripley– 
Rasson estimator (Ripley and Rasson 1977) based on occu-
pied locations. Consequently, the resulting sample size varied 
among the 79 bird species and was on average 1041  218 
locations (range 492–1365).

We used 27 environmental variables as independent  
predictors representing land cover (n  11), temperature  
and precipitation means (n  6), temperature and precipi-
tation extremes (n  2), seasonality in temperature and pre-
cipitation (n  4), year to year variation in temperature and 
precipitation (n  3), and the normalized difference vege-
tation index (NDVI), which is a measure of vegetation  
productivity. We used climate data from the CRU CL 1.0 
dataset (New et al. 1999) available at  www.cru.uea.ac.
uk/~ timm/grid/CRU_CL_1_0_text.html  and calculated 
weather variability variables from the United States Historical 
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in the literature (Elith et al. 2006) and were not a goal of 
our work.

For all 79 bird species we built distribution models on 
P/A and Ab data, using the full dataset (no split), a dataset 
randomly split in half, a dataset split into quarters along 
three longitudinal lines, and a dataset split in half along  
a longitudinal line (Fig. 1). We placed the splits in the longi-
tudinal approaches so that each resulting part contained  
the same number of occupied locations within the range of  
a given bird species. While the full dataset approach was 
tested on the same data that were used for building the  
models, the split designs built the models using one half of 
the data and tested it using the other half.

In the random selection we first randomly split all  
occupied locations and then all unoccupied locations. For 
splitting the range in half we found the median longitude  
of all occupied locations and split the dataset along this  
longitude. We then used one of the halves to build the mod-
els and the other to evaluate it and then switched the roles of 
the halves and averaged over the two sets of results. The quar-
ter splits (longitudinal) strips worked similarly. We first 
found the 25th, 50th and 75th percentile longitude of all 
occupied locations and then split the dataset into four parts 
along these lines, numbered 1–4 from west to east. We then 
used part 1 and 3 combined to build the models and part 2 
and 4 to evaluated them. Next we switched the roles of the  
4 parts and finally averaged over the two sets of results.

The four different approaches represented a progression 
from no segregation of training and test data (no split) to  
a more and more spatially segregated split between training 
and test datasets. Longitudinal splits were chosen because 
north–south splits would have led to more severe climatic 
differences between training and test data. 

Statistics calculated

P/A and Ab models necessitate different statistics for testing 
given the difference in variable structure. For P/A models,  
we reported the widely used area under the curve (AUC) of 
a receiver operating characteristic curve (ROC) (Fielding  
and Bell 1997), the square of the point-biserial correlation 
(r2

binom) calculated simply as a Pearson’s product moment  
correlation between predicted probability of occurrence  
and observed P/A squared, and Somer’s D (also known as 
Gini coefficient (Engler et al. 2004)), which can be derived 
from AUC as D  2 3 (AUC 2 0.5), representing a simple 
standardization of AUC to the more intuitive range of 0 to 
1. (Note, however, that AUC can be below 0.5 if the model 
prediction is worse than random chance and thus Somer’s  
D can go below 0.) For the Ab models, we used the familiar 
coefficient of determination (R2), based on proportion of 
variance explained, and the square of the Pearson correlation 
coefficient (r2) between predicted and observed abundances, 
somewhat analogous to the squared biserial correlation in 
P/A models. Note that for OLS linear models with only one 
predictor R2  r2 but this does not have to hold in the non-
linear random forest models. R2 describes the fit between 
predicted and observed in an absolute way (accuracy), while 
r2 describes fit in a relative way (relative abundance, preci-
sion). All models were fit in and statistics calculated in  

Climatology Network (HCN) Serial Temperature and  
Precipitation Data available at  www.ncdc.noaa.gov/ol/ 
climate/research/ushcn/ushcn.html . Furthermore, we used 
vegetation land cover data from the USGS Land Cover/Land 
Use categories available at  http://edcsns17.cr.usgs.gov/
glcc/glcc_version1.html#NorthAmerica . We collapsed the 
24 land use categories into 11 and calculated the percentage 
cover of each category in a 20 km radius circle around the 
BBS route midpoint. Finally, NDVI came from a NOAA/
NASA Pathfinder AVHRR 8 km resolution composite  
averaged over 1982–1992 for the month June. Given that 
the average distance between route midpoints in the BBS is 
42.4  30.9 km (SD) and that we averaged environmental 
variables over 20 km circles to meet the resolution of  
the routes, the resolution of the environmental data was  
sufficient. 

Statistical techniques

We used random forests (RF) as a very robust and objective 
method for building the P/A and Ab models (Breiman  
2001, Garzon et al. 2006, Prasad et al. 2006). RF are a  
resampling and subsampling extension of regression trees 
(RT). We grew 500 trees based on bootstrap samples of the 
original data and subsamples of the independent variables. 
RF are not as easily interpreted as RT or multiple regressions, 
because the final prediction is the model average over 500 
individual trees, but this drawback was inconsequential for 
our study – we were examining the usefulness of predictions 
from distribution models, not their ability to explain distri-
butions. RF are recognized as one of the best distribution 
modelling techniques as measured by predictive power  
(Garzon et al. 2006, Prasad et al. 2006) including specifi-
cally in the context of niche modelling (Elith et al. 2006).

Depending on the data, situation, and circumstances, 
different statistical techniques can perform differently and 
can come to very different predictions (Pearson et al. 2006, 
Araújo and New 2007, Thuiller et al. 2009). Therefore,  
we implemented additional statistical techniques to make 
sure that our results were not contingent on the use of RF. 
Our goal was to conduct our comparisons on both, pres-
ence/absence and abundance data. Therefore, the included 
techniques had to be able to handle both types of data, 
which some popular approaches such as MaxEnt (Phillips 
et al. 2006) and GARP (Peterson 2001) cannot. In addition 
to RF we used boosted regression trees (BRT implemented 
in the R package gbm), general additive models (GAM 
implemented in the R package mda), and multivariate  
adaptive regression splines (MARS implemented in the R 
package mda). We closely followed the methodology 
described in Elith et al. (2006) for all techniques. Note that 
explanatory variables were reduced to eight climatic vari-
ables and NDVI for GAM and MARS, because the full  
set of 27 variables caused convergence problems and dete-
riorated the performance of GAM and MARS due to  
intercorrelation among predictors. BRT performed statisti-
cally indistinguishably from RF. All other techniques per-
formed worse than RF, especially in the geographically split 
dataset approaches. Therefore, we will focus results and dis-
cussion on RF because statistical model comparisons abound 
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and test data were interspersed in four longitudinal strips, 
the models’ tests led to slightly better results (0.79  0.009 
and 0.2  0.016, respectively).

Tests of abundance (Ab) models followed similar  
patterns through the different types of data splits (Fig. 2). 
The squared correlation coefficients (r2) were very similar for 
P/A and Ab models throughout the four testing schemes, 
indicating that the performances of these two types of  
models were actually quite similar when tested using a com-
parable measure. However, the coefficient of determination, 
R2, or as colloquially known ‘the percentage of variance 
explained’ deviated from the r2s: it was substantially lower 
for the schemes with geographically segregated training  
and test data (Fig. 2). For the quarter split the R2 remained 
barely above zero (0.07  0.032), while it dipped below  
zero when the dataset was split into longitudinal halves 
(20.09  0.051). An R2 below zero indicates that using the 
average abundance from the training data as prediction over 
all test locations (analogously to an intercept-only null model 
in regression models) would have been closer to the truly 
observed abundances than the model predictions. This means 
while models retained some capability to predict relative 
abundance or the relative suitability of locations in spatially 
segregated test areas, their ability to predict the absolute 
abundance at new locations was virtually non-existent.

In our tests, boosted regression trees (BRT) performed vir-
tually identical to RF while general additive models (GAM) 
and multivariate adaptive regression splines (MARS) were 
clearly outperformed (Fig. 3). Note that these results are for 
abundance-based modelling only. R2 values in resubstitution 
evaluation closer to R2 in random splits for GAM and  
MARS versus RF and BRT suggest that MARS and particu-
larly GAM were not as overfit as RF and BRT. Going by  
the random split evaluation, we might have concluded that 
only a small performance gap exists between RF/BRT and 
GAM/MARS. However, the poor performance of GAM 
and MARS in the geographic split evaluations (Fig. 3) sug-
gests that these techniques have much more trouble predict-
ing into new areas than do RF and BRT.

Discussion

Our results illustrate how important the selection of a test-
ing scheme is when judging the predictive performance of  
a distribution model. Resubstitution – i.e. using the same 
data for model building as for testing – provides unrealistic 
estimates of performance of modern, flexible models that 
are prone to overfitting and should be avoided. Doubtlessly, 
the extremely high measures of performance of RF as  
judged by resubstitution indicate overfitting. Nobody in  
the machine learning community would ever suggest  
judging the fit of a model by resubstitution and RF are  
typically tested on ‘out-of-bag’ data that were randomly 
excluded during bootstrap. This default measure of RFs is 
analogous to a random-hold out testing scheme and sup-
plies very similar estimates of performance. However,  
even if RF seem to overfit as judged by resubstitution they 
have been shown to generalize well (Breiman 2001) and 
compare very favourably to other methods in prediction  
on held out data (Garzon et al. 2006, Prasad et al. 2006, 

R ver. 2.2.1 (R Development Core Team) with the exten-
sions randomForest 4.5-18 and ROCR (1.0-2).

Results

Random forests (RF) led to near perfect discrimination in 
the presence/absence (P/A) models when tested on the  
same data they were trained on (Fig. 2): the average AUC 
scores of the 79 bird species were indistinguishable from 1. 
Even the squared point-biserial correlation reached very  
high values (0.95  0.001), showing that while a point- 
biserial correlation reaching a value of 1 is close to impossi-
ble (the continuous variable would have to be distributed 
perfectly bimodally to match the binary one), it can reach 
very high values.

When we split the data randomly into halves of equal 
sample size and trained the RFs on one half and tested  
predictions on the other (which is spatially interleaved  
with the training data), the discrimination rate dropped 
(AUC  0.90  0.006, r2  0.43  0.015; Fig. 2).

Introducing geographically segregated data splits led to 
much lower performance measures (Fig. 2). For a complete 
split into east and west halves, average AUC and r2 dropped 
to 0.73  0.012 and 0.12  0.016, respectively. When training 

Data split type for evaluation
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None Random Strips Halves

AUC
Somer's D
r 2

binom
r2

R2

Figure 2. Influence of model testing scheme and choice of  
performance measure on perception of performance of distribution 
models. The average over models for 79 bird species is shown. 
Dependent variables were either bird presence/absence (P/A;  
solid lines and open symbols) or abundance (Ab; dashed lines and 
closed symbols). The statistics for the P/A models were area  
under the curve (AUC) of a receiver operating characteristic curve, 
Somer’s D (2(AUC 2 0.5)), and squared point-biserial correlation 
(r2

binom). The statistics for the Ab models were squared Pearson’s 
correlation coefficient (r2) and the coefficient of determination 
(R2). Models were built on training data and tested on progressively 
more independent test data implemented by different splitting 
schemes: none (training data  test data), random (dataset split in 
half randomly), strips (dataset quartered into longitudinal strips, 
interspersed as training and test data), halves (dataset split in lon-
gitudinal halves). Standard errors  0.011 are shown as error bars.
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people at different times by different methods but in the 
same area (interspersed) with the training data (Edwards 
et al. 2006, Guisan et al. 2007). Just because collection of 
the data was independent does not automatically lead to 
independence in data values.

The overly optimistic testing results of models with ran-
domly held-out but not fully independent test data is  
illustrated well by the large drop in performance measures 
we observed when we tested our models on truly indepen-
dent, spatially segregated data. The models fared slightly  
better in the interspersed four-split approach than in the 
halves approach, which could either be an indication of a 
remaining effect of autocorrelation along the segregation 
lines (only one segregation line in the halves approach  
but three in the strips approach) or a reduced problem of 
models predicting into new climatic and biotic space  
which may include extrapolation to climates not encoun-
tered at the training locations or a violation of the assump-
tion of stationarity of environmental associations of the 
species (i.e. that the same functional relationships with  
the environment govern the abundance of species anywhere 
in the range, which is expected if a single model is built for 
the whole range) (Whittingham et al. 2007).

What causes our results? One explanation for our results 
could be that generic land cover and climate variables  
at coarse scales have little predictive power for species distri-
butions. If true, it would be a gloomy assessment of our  
state of understanding and ability to predict the effects of 
global change at such a scale partly supported by Bahn and 
McGill (2007).

Two other causes for the drop of predictive power of  
distribution models when training and test datasets are  
split geographically include: 1) the effects of extrapolation 
to non-analog climates (Williams and Jackson 2007),  
2) non-stationarity which occurs when the relationship 
between climate and species presence changes across  
space (e.g. hot is good in the north but bad in the south) 
(Whittingham et al. 2007). These three factors are all con-
founded. To reach truly independent testing data we had  
to introduce a rather dramatic geographical segregation 
which effectively broke the dependence via spatial auto-
correlation but at the same time presented other problems 
to distribution models. For distribution models to be  
successfully applied for prediction into new regions one  
has to assume stationarity and that the range of combina-
tions of biotic and abiotic factors in the test region were 
covered in the training regions.

As for the possibility that non-stationarity caused our 
low success to predict to spatially independent areas, there 
are a number of threads of evidence for variables and rela-
tionships that determine abundance changing across the 
range of a species. Whittingham et al. (2007) showed  
that this was true at the landscape scale within Britain for 
birds. Similarly, in the few cases where the causes of species 
range boundaries have been worked out around the entire 
range (i.e. north, south, east and west) the limiting factors 
often change. For the Saguaro cactus Carnegia gigantii,  
the eastern and northern limits are set by frost tolerance,  
the western limit is set by the availability of summer pre-
cipitation (the main water source for this shallow rooted 
plant) and the southern limit is presumably set by being 
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Figure 3. Influence of modelling technique on performance of  
distribution models. The median coefficient of determination (R2) 
over models for 79 bird species is shown for four different  
modelling techniques: random forests (RF), boosted regression 
trees (BRT), general additive models (GAM) and multivariate 
adaptive regression splines (MARS). Models were built on training 
data and tested on progressively more independent test data imple-
mented by different splitting schemes: none (training data   
test data), random (dataset split in half randomly), strips (dataset 
quartered into longitudinal strips, interspersed as training and test 
data), halves (dataset split in longitudinal halves). Standard errors 
 0.011 are shown as error bars. Note that R2 is cut off at 20.4 in 
the graph because a negative R2 clearly indicates failed models and 
displaying even more negative values would have made the graph 
less appealing while not adding any valuable information.

Cutler et al. 2007). We verified this in our data by compar-
ing the results of RF to BRT, GAM and MARS models, 
which we will discuss below in the context of non-analog 
climate.

The currently most widespread, advanced method in  
the literature for testing distribution models is either a  
random hold-out of data, or data collected independently  
in the same area for testing purposes (Brotons et al. 2004, 
Elith et al. 2006, Maggini et al. 2006). This is often 
described as testing the models on ‘independent’ data. 
However, species distribution data typically exhibit spatial 
autocorrelation. When testing data are randomly held- 
out, the locations of these data points will be interspersed 
with the training data locations, in our case leading to aver-
age proximity of 42.4  30.9 km (SD) between training 
and test locations. However, spatial autocorrelation may 
range much further than this average distance (in our  
case over several hundred kilometres; Bahn unpubl.), lead-
ing to dependence between training and test data (Araújo 
et al. 2005a). The consequence is that models are already 
optimised to fit test data during parameterization because  
of the dependence between training and test data. There-
fore, the test data fit the model deceptively well – better 
than it would if test data were truly independent. This argu-
ment is unaltered if the test data were collected by different 
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models. Such predictions simply always carry the risk of 
predicting into non-analog climates or areas where climatic 
effects on a species differ from the training region. There-
fore, testing them on data that is interspersed with training 
data within the range of autocorrelation is misleading  
when the performance of prediction into a new area or into 
new conditions (e.g. climate change) is to be judged. Bahn 
and McGill (2007) showed for North American Breeding 
Bird Survey data that if new locations to be predicted  
upon are not truly independent in space (i.e. they are closely 
interspersed with surveyed locations), simple spatial  
interpolation from surveyed locations is as powerful for  
prediction as an environment-based modelling approach.  
And here we showed that if locations are truly independent, 
as in our geographically segregated split approaches, the 
environment-based models are not consistently useful. This 
conclusion may well be different at finer scales and using 
more direct resource gradients as explanatory variables 
(Vanreusel et al. 2007).

Our results require careful interpretation. First of all,  
the goal of our study needs to be clear. Our intention was  
to determine the influence of a gradient in dependence 
between training and test data on the outcome of model 
tests that are used to determine the models’ predictive  
power (R2 and other measures). There are many other  
current and important methodological questions for distri-
bution models which we do not address. We did not inves-
tigate the effects of autocorrelation on model building, 
parameter estimates, estimates of degrees of freedom, vari-
ance or hypothesis test statistics. This has all been covered  
in detail elsewhere (Legendre 1993, Lennon 2000, Dale  
and Fortin 2002, Dormann 2007). Also not the subject of 
our study and covered elsewhere are detailed comparisons  
of different modelling techniques (Elith et al. 2006,  
Garzon et al. 2006, Prasad et al. 2006, Cutler et al. 2007), 
influence of ecology/life-history on models (Austin 2007, 
McPherson and Jetz 2007), scale (Storch and Gaston 2004, 
Araújo et al. 2005b, Betts et al. 2006), and spatio-temporal 
variability/population dynamics/equilibrium (Johnson et al. 
1992, Maurer and Taper 2002, Svenning and Skov 2007), 
to name the most prominent distribution modelling issues. 
Instead, we focused on a top performing, robust modelling 
technique, averaged out spatio-temporal dynamics, and 
tried to match the scale of dependent and independent vari-
ables to the best of their availabilities. Moreover, to gain as 
much generality as possible, we included as many species as 
possible and used general environmental variables, doubt-
lessly sacrificing some explanatory power that could have 
been achieved by building individual models for each of  
the 79 bird species based on a detailed review of their eco-
logy (Austin 2002).

P/A models and Ab models performed very similarly  
in the different testing schemes according to a comparable 
test statistic: the squared correlation between predicted  
and observed values. However, why did the Ab models  
show a much worse performance when the coefficient of 
determination R2 was the test measure and the P/A models 
a seemingly better performance when the test measure  
was AUC or the equivalent but scaled to 0 to 1 Somer’s D 
(Fig. 2)? First, the difference between the squared correla-
tion coefficient r2 and R2 is that the former relies on relative 

outcompeted by larger columnar cacti (Niering et al. 1963). 
In another well worked out case along an elevational  
gradient (Randall 1982), the upper limit of a moth species 
is set by food availability (the host plant cannot tolerate  
the colder temperatures) while the lower limit is set by  
the increasing presence of a particular parasite at warmer 
temperatures. Finally, Jarema et al. (2009) have shown that  
climate provides a good predictor of the maximal achiev-
able abundance (90th percentile in quantile regression). 
However, abundances below that maximum right down to 
zero were also observed for any given value of any given 
environmental factor, suggesting that any particular envi-
ronmental factor is the limiting factor on abundance in  
a few of locations, while other factors are constraining  
elsewhere. On one level this non-stationarity makes good 
sense – ecology has been well known to be a discipline in 
which many factors are important with their relative  
importance changing frequently (Quinn and Dunham 
1983). Taking non-stationarity into account holds great 
promise for future improvements in distribution modelling 
but requires tremendous amounts of training data, as the 
effects of environmental variables on the distribution of a 
species will have to be determined for every combination of 
circumstances individually.

Another possibility is that prediction into non-analog 
climate caused our low performance measures. Supporting 
circumstantial evidence for this is the poor performance  
of GAM and MARS in split range evaluations. When  
confronted with climate values out of the range of training 
data, RF and BRT will apply the prediction from the closest 
value within the range of training data, also known as 
‘clamping’. All predictions made by RF and BRT are derived 
from an average of actual observations and thus will never 
be completely off the charts. In contrast, extrapolation from 
training data climatic values can lead to extreme predictions 
in GAM and MARS, as values are not clamped to the last 
value contained in the training range but are free to rise or 
fall strongly from there on. Therefore, a likely cause for the 
abysmal performance of GAM and MARS in our tests  
are regular occurring completely ‘off-the-charts’ predictions, 
strongly negatively influencing the R2 values. Despite this 
circumstantial evidence for climatic extrapolation happen-
ing, our evaluation is reasonable from a practical standpoint. 
Every location is climatically non-analog to any other loca-
tion if one only looks closely enough (uses enough variables 
and their interactions). The question thus is not whether 
prediction into non-analog conditions happened (it cer-
tainly has), but how far the models had to extrapolate in 
climate space and whether our tests are reasonable from  
a practical stand point of what these models are typically 
used for.

However, whether spatially segregated holdouts lead  
to such low predictive power due to the elimination of  
the effects of spatial autocorrelation on testing (i.e. a more 
rigorous evaluation) or the unintended effects of non- 
stationarity and predicting into non-analog climate (or a 
mixture of all), the conclusion of our research remains  
similar: coarse-scale environment-based distribution models 
predict weakly when they are forced to predict upon  
truly spatially independent (and thus segregated) locations 
and/or into new climates, which is often the goal of these 
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enthusiastically declaring an excellent predictive capability. 
For example Graf et al. (2006) predicted distributions  
of Tetrao urogallus based on models using training data  
from one region in other, spatially segregated regions in 
Switzerland, achieving AUC (area under the curve of a 
receiver operating curve) values of 0.83–0.94. However, 
they concluded that ‘[t]he regional models performed well 
in the region where they had been calibrated, but poorly to 
moderately well in the other regions’. In contrast, Murray 
et al. (2011) interpreted a discriminative ability of 0.77–
0.90 across a few different models used for predicting 
Petrogale penicillatato occurrence to adjacent areas as  
‘excellent’ (p. 82 and Table 2). We hope that our compre-
hensive study puts these results into a better perspective,  
on the one hand putting them into the full gradient of  
independence from resubstitution to spatial segregation, 
and on the other hand comparing them to the ecologically 
more interesting and statistically easier to interpret results 
from abundance models all well replicated on a large num-
ber of species covering different areas.

In general, we encourage a greater distinction between 
interpolation and extrapolation (see also Peterson et al. 
2007). Interpolation uses distribution models to fill in  
holes within the geographic and environmental space of the 
original data (unsampled sites surrounded by sites which 
were sampled) which actually benefit from the autocorrela-
tion in the data (Bahn and McGill 2007). Extrapolation 
uses distribution models to make predictions about a time 
or place geographically or environmentally distinct from 
where the measurements (training data) were taken. This is 
commonly done both for predicting the new ranges of  
invasive species (Higgins et al. 1999, Thuiller et al. 2005) 
and for predicting the ranges of species in the future  
under global warming (Peterson et al. 2002, Oberhauser 
and Peterson 2003, Thomas et al. 2004). When extrapola-
tion is the intended goal for a model, model testing on 
resubstituted or randomly held-out data will make the 
model appear more successful at prediction than it will be 
under the new conditions.

How widespread are these extrapolation types of  
applications of SDM’s for which our results are relevant? 
Araújo and Peterson (2012) recently reviewed applications 
of bioclimatic envelope models and ‘suggest that criticism 
has often been misplaced, resulting from confusion between 
what the models actually deliver and what users wish that 
they would express’. A first differentiation they make is 
between models that aim to explain relationships between 
environmental conditions and an organism and models that 
aim at predicting the potential distribution of an organism. 
However, a failure to evaluate a model rigorously on inde-
pendent data can lead to overfitting. An overfit model  
may give misleading conclusions on the importance of 
explanatory variables and thus fail to achieve the goal of 
understanding relationships between an organism and the 
environment. Further, Araújo and Peterson (2012) list six 
common applications for climate envelope models: 1) dis-
covery of new populations or species; 2) reserve selection 
and design; 3) restoration, translocation, or reintroductions; 
4) evaluating risk of species invasions and disease trans-
mission; 5) climate change impacts on biodiversity; and  

abundance (i.e. areas of higher abundance must be predicted 
to have a relatively higher abundance than areas of low 
abundance, but the absolute value of abundance need  
not be right – it could be strongly biased high or low), while 
R2 describes the absolute accuracy and precision of the pre-
dictions. Thus, the probability of occurrence generated by 
P/A models was an equally successful predictor of relative 
abundance as the abundance estimates generated by the Ab 
models – a result which concurs with Pearce and Ferrier 
(2001). However, relative abundance cannot be translated 
into absolute abundance without additional information. 
Second, AUC and Somer’s D take us even one step below  
r2 in terms of information content of the dependent vari-
able, namely, to the predicted classification into presence 
and absence. Therefore, they give seemingly better test 
results. This is further amplified in the case of AUC by  
being scaled to 0.5 to 1 rather than 0 to 1 as most other 
statistics used for model testing. Thus, the higher values of 
AUC and Somer’s D than r2 and of r2 than R2 have to be 
seen in the light of the differences in information content in 
the dependent variable. From an ecological and conserva-
tion point of view, knowledge on the absence or presence of 
an organism at a location is less useful than an estimate  
of its relative abundance which is in turn less useful than an 
estimate of absolute abundance (or density). After all, a 
presence could stem from an extinction prone sink popu-
lation just as well as from a very high density population  
of core importance to the species (Pulliam 1988, 2000).

We reached these conclusions using a dataset that is of 
outstanding quality and quantity, and a selection of species 
with high quality and quantity of data. Our test of P/A  
models on independent data was well in line with other 
studies (Manel et al. 1999, Betts et al. 2006, Elith et al. 
2006). In addition, using the longitudinal split, we tried  
to avoid extrapolating in environmental space (e.g. predict-
ing for a high-temperature region based on a model derived 
from a low-temperature region), although some applications 
of these models, such as global warming scenarios, try to  
do exactly that. Given that the BBS data has a good spatial 
coverage and that we had true absences and did not have  
to generate absences from background conditions, we also 
had a low danger of sample selection bias (Phillips 2008).

Our results corroborate and extend the results of previ-
ous work. Several studies tested predictions from distribu-
tion models on spatially segregated data (Supplementary 
material Appendix 1 Table A1) (Fielding and Haworth 
1995, Peterson 2003, Randin et al. 2006, Segurado et al. 
2006, Peterson et al. 2007, Phillips 2008) or temporarily 
segregated data (Martinez-Meyer et al. 2004, Araújo et al. 
2005a). All but one (Whittingham et al. 2003) of these 
studies exclusively dealt with presence–absence or presence 
only data and most were only based on a few species. 
Although there was some variation in results and the  
difference in methods and criteria makes a rigorous com-
parison difficult, we concluded that within this segment  
of our study (presence–absence tested on segregated data) 
our results were similar (AUCs in the range of 0.7–0.8) to 
other studies. Interpretation of these results varied wildly, 
though, with some researchers concluding that species dis-
tributions are rather complex and unpredictable and others 
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