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Spatial autocorrelation in species abundances indicates a lack of independence between 
sample locations and causes problems in distribution modelling. Knowing the cause of 
such spatial autocorrelation is vital for selecting the best suited modelling methods. 
Most autocorrelation in distributions is caused by autocorrelation in the underlying 
environmental conditions. The aim of the study was to determine whether dispersal 
could be responsible for additional spatial autocorrelation. I used data from 107 species 
of the North American Breeding Bird Survey covering the conterminous United States 
to investigate this question. As is the case for most species, no direct information on 
the dispersal activity of the study species was available. Therefore, I derived dispersal 
indices from three ecological theories: the deviation from an abundance-occupancy 
relationship, the spatial exponent of Taylor’s power law, and density dependence. 
Spatial autocorrelation was captured in conditional autoregressive regression models 
(CAR) and measured with a standardized version of the regression coefficient ρ, the 
extent of the optimized neighbourhood, and the additional variance explained in CAR 
models over traditional regression models. No consistent association between these 
measures of autocorrelation and the indices for dispersal was found. Results indicated 
that the indirect ecological indices for dispersal carried too much noise and too little 
information for successful analysis. Future research on the effects of dispersal on 
autocorrelation need to be based on improved indirect indicators or direct, empirical 
dispersal information.

Introduction

Dependence between observations across geo-
graphic space has long been identified as a source 
of error in statistical analyses (Student 1914). In 
geography, the universal spatial dependence or 
autocorrelation in measurements of a variable 
collected at different spatial locations has been 
termed the First Law of Geography (Tobler 
1970). Ecologists have also recognized the 

problem for decades (Legendre 1993), but only 
recently has the number of studies addressing 
spatial autocorrelation proliferated (Augustin et 
al. 1996, Leathwick 1996, Overton 1996, Thom-
son et al. 1996, Koenig 1999, Lennon 2000, 
Koenig 2001, Trenham et al. 2001, Keitt et al. 
2002, Lichstein et al. 2002, Diniz-Filho et al. 
2003, Peakall et al. 2003).

In the field of distribution modelling, spatial 
autocorrelation has been widely identified in 
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species’ distributions and abundances (Legendre 
1993) and statistical techniques have been devel-
oped to address the problem (Dale et al. 2002, 
Dale & Fortin 2002, Keitt et al. 2002, Lichstein 
et al. 2002, Dormann et al. 2007). However, as 
Austin (2002) points out, an understanding of the 
ecological processes that underlie spatial auto-
correlation in species distributions is a prerequi-
site to the creation of adequate models. When all 
autocorrelation in a species’ abundance is due to 
autocorrelation in the underlying environmental 
factors, and all factors are included in a distribu-
tion model, spatially explicit modelling is unnec-
essary (Austin 2002). Only when a major envi-
ronmental factor is missing or when ecological 
processes lead to additional autocorrelation in a 
species’ abundance are spatial models necessary. 
The questions thus become which ecological 
processes could lead to spatial autocorrelation in 
species abundances, and is there any empirical 
evidence for the effects of such processes?

The ecological process most likely to cause 
spatial autocorrelation in species abundances is 
dispersal in the widest sense (Austin 2002). I use 
dispersal in the sense of Lidicker (1975), includ-
ing every movement that constitutes leaving 
the home area for breeding, but not short-term 
exploratory and “round-trip” migratory move-
ments. The exchange of individuals between pop-
ulations may synchronize population sizes (Para-
dis et al. 1998, Bjørnstad et al. 1999), an effect 
that is thought to decay with distance because 
dispersal strength also typically decays with dis-
tance. The behavioural motivations for dispersal 
vary widely (Stenseth & Lidicker 1992a). While 
it would be interesting and ultimately important 
to gain a detailed understanding of such motiva-
tions, I considered the motivation for dispersal 
a secondary question in this study and I focused 
solely on the consequences of dispersal.

Dispersal is difficult to study, particularly 
at large extents (Stenseth & Lidicker 1992b). 
Accordingly, very little information on long-
distance dispersal is found in the literature. I 
therefore developed an indirect approach to pre-
dicting the dispersal activity of bird species and 
compared this dispersal index to autocorrelation 
found in their abundances. Because some of 
the most prominent ecological fields and theo-
ries — for example metapopulation dynamics, 

island biogeography, and studies on population 
synchrony — have dispersal at their core, I used 
such theories to develop indirect predictors of 
dispersal. While such indirect predictors are not 
well-suited to determining unequivocal cause 
and effect, the use of several unrelated theories 
and approaches can still make a strong case 
(Levins 1966).

The goal of this study was to determine 
whether dispersal was related to spatial autocor-
relation in species abundances above and beyond 
what can be explained through spatial autocor-
relation in underlying environmental factors. To 
answer this question, it was necessary to find 
a way to predict dispersal activity consistently 
across a large number of species and to deter-
mine the amount of spatial autocorrelation in 
species abundances that could not be explained 
by autocorrelation in underlying environmental 
conditions.

Materials and methods

Empirical data

The species distribution data stemmed from the 
North American Breeding Bird Survey (BBS). I 
used averaged incidence values for each of 107 
bird species (see complete list in Appendix) in 
the conterminous USA. Criteria for the selec-
tion were good coverage over the conterminous 
USA (> 150 occupied routes) and sensitivity to 
coarse-scale predictors covered in my dataset (R2 
> 0.5 in initial regression tree models). Reasons 
for exclusion were extreme range shapes, such 
as long and narrow ranges along the border of 
the study area, or the extremely patchy distri-
butions. Such distributions prevent meaningful 
spatial modelling. One bird species was dropped 
from the previous analysis (Bahn et al. 2006b) 
because of lack of data.

Incidence values are more robust than abun-
dance measures (O’Connor et al. 1996) but 
are expected to correlate well with abundance 
(Wright 1991). Therefore, I used averaged inci-
dence values over 10 years (1981 to 1990) in the 
distribution models and deviation from abun-
dance-occupancy relationship (see below) rather 
than abundance as dependent variable. Oyler 
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(1993) and Boone (1991) used the same BBS 
data for calculating their indices (see below). 
However, they used time-series running from 
1966 to 1990 rather than abundances averaged 
over 10 years. The data were summarized over 
1189 BBS routes with the highest reliability 
rating, which were mapped to a hexagonal grid, 
with cells approximately 620 km2 in size and 
27 km apart from centre to centre (White et al. 
1992).

The 207 independent variables comprised 
160 variables summarizing land cover informa-
tion, twelve climate variables (January and July 
temperatures, precipitation, and derived vari-
ables such as seasonality), four variables from 
digital elevation models, and thirty-one other 
variables characterizing the land cover in terms 
of spatial configuration and fragmentation indi-
ces. For more details on these variables see Bahn 
et al. (2006a).

The distribution of each bird species was 
modelled using the same procedure: first, vari-
ables were selected with regression tree models 
(Breiman 1984); second, these variables were 
included in third degree polynomial form in 
regular regression models; third, individual inde-
pendent variables or their polynomials were 
selected in an AIC-based stepwise backward 
selection method leading to ordinary regres-
sion models based on a selection of environ-
mental variables, henceforth called “traditional 
environmental models”; fourth, fully spatial 
CAR models were fit on these selected variables 
and their polynomials with a range of different 
neighbourhood sizes (in 50 km steps); fifth, the 
neighbourhood size leading to the model with 
the highest maximum likelihood was selected for 
the final model. All models were constrained to 
the ranges of the bird species as determined by 
the ranges published by NatureServe (Ridgely et 
al. 2003). These ranges are the typical filled-in 
polygons describing the maximum extent of spe-
cies occurrences within which lie many locations 
at which the species was actually absent.

The high number of independent variables 
may seem to pose a danger of creating spuri-
ous results in this multi-step analysis process. 
However, bear in mind that 160 of these 207 
variables were land cover variables that have 
zeros over most of the area. At any given loca-

tion, only few landcover variables will be rel-
evant and able to enter the model. In addition, 
in contrast to multiple regressions, regression 
trees are very good at variable selection and do 
not tend to pick up spurious effects in random 
variables (Bahn & McGill 2007). Averaged over 
the 107 included species, the pruned regression 
tree models included 4.9 ± 0.3 (SE) variables 
and 12.3 ± 0.74 splits, while the multiple regres-
sions retained 4.6 ± 0.29 variables resulting in 
14.3 ± 0.68 parameters given that variables were 
included up to a 3rd degree polynomial. The 
average sample size was 717 ± 28.7 routes per 
species (range: 161–1189), making the number 
of included parameters reasonable.

The methods of this study have two dis-
tinct components: First, the analysis of spatial 
autocorrelation patterns present in each species’ 
distribution, and second, indices of dispersal 
activity.

Measures of autocorrelation

The part of autocorrelation that was interesting 
in the context of this study was the part that went 
above and beyond the spatial autocorrelation 
stemming from the environment. Therefore, all 
measures of autocorrelation were based on fully 
spatial Conditional Autoregressive Regression 
(CAR) models (Cressie 1993) that included a 
comprehensive set of environmental variables. 
These models stemmed from previous research 
(Bahn et al. 2006b) and are described in detail 
there.

I derived three measures for autocorrela-
tion from these models described in more detail 
below. The first measure was the extent of the 
neighbourhood included in the spatial model 
(from here on called “Extent”), which I selected 
for best fit of the model during the modelling 
process (see above). The second measure was 
the variation in distribution identified as purely 
spatial effect during the partitioning of variation 
following Borcard et al. (1992), from here on 
called “Space.” The third measure was a stand-
ardized version of ρ (from here on called “Rho.
std”), which is the regression coefficient in front 
of the neighbourhood matrix in the CAR models 
(see Eq. 1).



JNR EEB vol. 5 • Bahn: Dispersal and autocorrelation 4

 Y = Xβ + ρC(Y – Xβ) + ε (1)

where: Y is a vector of responses, X is a matrix of 
predictor variables, β is a vector of parameters, ρ 
is a parameter, C is a neighbourhood matrix, and 
ε is a vector of errors.

Extent is the maximum distance at which a 
significant autocorrelation effect can be meas-
ured. Extent does not give any indication of the 
strength of autocorrelation. Note that the way 
the maximum extent was determined here was 
not identical to the range of a variogram. In gen-
eral, the optimal extents of neighbourhoods were 
smaller than the range in variograms on the same 
data, an effect also observed by van Teeffelen 
and Ovaskainen (2007).

The spatial partition of variation in species 
distributions (Space) was the R2 of the full CAR 
model (including environmental variables and 
the neighbourhood matrix) minus the R2 of the 
traditional environmental model. It describes the 
variation explained in the CAR model that is 
attributable neither to the environmental predic-
tors nor to the spatial information implicit in the 
environmental predictors (which is also captured 
in the traditional environmental models). Thus, 
it does not necessarily measure spatial autocor-
relation per se, but is an indirect index for purely 
spatial variation in the distribution patterns that 
could not be explained through environmental 
variables or their spatial structure or expressed 
in a different way: autocorrelation in the spe-
cies’ distribution that goes above and beyond the 
autocorrelation in the distribution attributable to 
autocorrelation in the underlying environmental 
gradients.

The coefficient ρ (see Eq. 1) indicates the 
strength of inclusion of the neighbourhood 
matrix (which was distance weighted with a 
spherical model reaching a weight of zero at 
the specified neighbourhood extent) in the CAR 
model, and thus indirectly captures both the 
strength and the extent of spatial autocorrelation. 
However, as in other regression coefficients, 
ρ was also dependent on the magnitude of and 
variation in the dependent and independent vari-
ables, and the neighbourhood matrix. Therefore, 
I standardized ρ analogously to the standardiza-
tion of regular regression coefficients (Zar 1996: 
420): bi´ = bi ¥ sXi/sY where bi´ is the standard-

ized regression coefficient of the ith independent 
variable, bi is the non-standardized regression 
coefficient, sXi is the standard deviation of the 
independent variable Xi, and sY is the standard 
deviation of the dependent variable Y. In the case 
of the coefficient ρ in CAR regressions, X is not 
simply a variable but an expression describing 
neighbourhood effects: C(Y – Xβ), where C 
is the neighbourhood matrix, Y is the depend-
ent variable, X is a matrix of all independent 
variables and β is a vector of regression coeffi-
cients for the independent variables. In practice, 
I used the observed values of the dependent 
variable Y minus the predictions from the purely 
environmental part of the model Xβ minus the 
residuals ε to calculate the spatial signal ρC(Y 
– Xβ) (Kaluzny et al. 1996). Taking the standard 
deviation of the spatial signal is equal to the bi ¥ 
sXi part of the standardized coefficient equation 
because ρ is a constant multiplier. Therefore, I 
only needed to divide this value by the standard 
deviation of Y to arrive at the standardized coef-
ficient Rho.std.

Indices of relative dispersal activity

Density dependence

The first index of dispersal activity was based 
on density dependence. I hypothesized that an 
increase in density dependence would correlate 
with an increase in dispersal because disper-
sal was identified as one of the mechanisms 
through which density dependence is attained 
(Taylor & Taylor 1977). Boone (1991) derived 
density dependence scores for breeding birds 
of the conterminous United States using Pollard 
et al’s (1987) Monte Carlo randomization esti-
mate (from here called “Poll”). He used annual 
censuses at all locations available for a given 
species. He detected density dependence by cor-
relating changes in population size with popu-
lation size and comparing this against a theo-
retical expectation under density independence 
derived from Monte Carlo randomization. In 
this measure, higher values meant less density 
dependence. Therefore, I expected this measure 
to correlate negatively with my measures of 
autocorrelation.
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Spatio-temporal population dynamics

The second index for dispersal activity used 
population dynamics characterized by Taylor’s 
Power Law. McArdle et al. (1990) used Taylor’s 
power law to characterize species according to 
their spatial and temporal variation in population 
densities. In particular the spatial exponent is 
relevant to dispersal. This exponent is estimated 
by the equation: s2 = amb (Taylor 1961), where s2 
is the variance in abundance at all locations in a 
given year, a is a scaling coefficient thought to be 
related to sampling or computing, m is the mean 
in abundance across all locations in a given year, 
and b is the spatial exponent. The exponent b is 
determined as the slope of a log-log regression 
of variance vs. mean with individual data points 
stemming from different years.

When the mean and variance are independ-
ent, the expected spatial exponent is two (McAr-
dle et al. 1990). That means that the variance 
quadruples when the mean doubles across sites. 
If the exponent is larger than two, the variance 
more than quadruples, which means that the 
high-density sites must be extremely packed and 
the low density sites must stay disproportionately 
sparsely populated in a good year. In contrast, if 
the exponent is lower than two, the variance 
across space increases less than expected with 
mean abundance meaning that high-density sites 
are not very high and low density sites are higher 
than expected. Taylor and Taylor (1977) and 
Taylor et al. (1983) attributed the variation in the 
power coefficient to aggregation and dispersal. 
Accordingly, an exponent smaller than two sug-
gests a reduction in variance among sites poten-
tially through more dispersal from high-density 
sites to low-density sites than an exponent larger 
than two. Alternatively, a similar reduction in 
variance among sites could be achieved with 
other mechanisms of density dependence such as 
reduced birth or increased death rates, weakening 
the connection between the exponent and disper-
sal. Nevertheless, my hypothesis was that spe-
cies with a spatial exponent > 2 will have lower 
indicators of autocorrelation than species with 
a spatial exponent ≤ 2. I used the spatial expo-
nent (from here called “Bspatial”) calculated by 
Oyler (1993) for birds of the United States and 
correlated them with the three measures of auto-

correlation using Spearman’s rank correlation 
and expecting a negative correlation.

Hanski’s deviation from abundance-
occupancy relationship

The third indirect index for dispersal activity was 
derived according to a hypothesis put forward by 
Hanski et al. (1993). They presented possible 
explanations for the positive abundance-occu-
pancy relationship, which is a widely docu-
mented macroecological pattern within homoge-
nous taxonomic assemblages (Gaston et al. 2000, 
Holt et al. 2002). One of the explanations was 
based on metapopulation dynamics and, in addi-
tion to explaining the relationship, it led to the 
expectation of a deviation from the relationship. 
According to their equations, they expected that 
species with low dispersal activity (i.e., a rela-
tively low percentage of individuals dispersing 
over a relatively low average distance) would be 
above the predicted abundance-occupancy rela-
tionship, while those with high dispersal (i.e., a 
relatively high percentage of individuals dis-
persing over a relatively high average distance) 
would fall below. This hypothesis is supported 
by Boehning-Gaese et al. (2006).

I turned the relationship around so that abun-
dance was on the x-axis and range size was 
on the y-axis (Fig. 1) because high average 
abundance causing a large range is more plau-

Fig. 1. Relationship between average abundance and 
occupancy (here labelled distribution). While the main 
relationship is attributed to niche width, deviations 
from it are caused by rates of dispersal. Adapted from 
Hanski et al. (1993).
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sible than a large range causing high average 
abundance. In my version, species that failed to 
achieve large ranges despite high average abun-
dances were assumed to be poor dispersers while 
species that had unusually large ranges compared 
to their average abundances were assumed to be 
very active dispersers (Fig. 1). In this theory and 
layout of the relationship, positive residuals sig-
nified active dispersers, while negative residuals 
stood for poor dispersers. Therefore, the working 
hypothesis was that the residuals of a simple 
linear regression between abundance and range 
size (from here called “Ao.resid”) would corre-
late positively with measures of spatial autocor-
relation.

I used incidence values over 10 years rather 
than abundance in the calculation of Ao.resid. I 
calculated the average incidence values for each 
species only across sites with non-zero incidence 
values (Gaston et al. 2000). Range size was 
derived from the NaturServe maps (Ridgely et 
al. 2003), also used in the range determination 
for the distribution models.

Confounding variables

Two variables deserved attention because of their 
potentially confounding effects on the relation-
ship between dispersal and autocorrelation. The 
first one was the number of sampling locations. 
Species with larger ranges also had more sam-
pling locations and thus larger sample sizes. Sev-
eral of the independent and dependent variables 
described above were substantially correlated 
with sample size. These correlations were taken 
into consideration by using partial correlations, 
controlling for sample size. The second poten-
tially confounding variable was the potential 

population growth rate R. Bahn et al. (2006a) 
showed that R influences the effect of dispersal 
on spatial patterns species distributions. Here 
clutch size (hereafter called “Max.clutch”) taken 
from Ehrlich et al. (1988) was used as a proxy 
for R.

All statistics were programmed in S-PLUS 
6.2 (Insightful 2003). Rather than presenting 
hypothesis tests on the Spearman rank corre-
lations I calculated bootstrap bias-corrected, 
adjusted 95% confidence limits (Efron & Tib-
shirani 1998) to give the reader an impression 
of the uncertainty in the regression coefficients. 
The number of bootstrap resamples was 10 000.

Results

The three measures of autocorrelation only 
showed partial agreement (Table 1). While the 
standardized regression coefficient for neigh-
bourhood inclusion (Rho.std) and the pure spa-
tial partition (Space) correlated fairly well (r = 
0.513, 95% CI = 0.366–0.641), the two measures 
did not correlate meaningfully with the maxi-
mum neighbourhood extent. This result under-
scores the lack of any systematic relationship 
between the overall strength of autocorrelation 
and its extent.

The confounding variables had few effects 
on the three measures of autocorrelation (Table 
2). The only moderately strong correlation was 
between extent and the sample size of locations 
(n). Larger n occured in larger ranges, which can 
accommodate larger neighbourhoods. In addi-
tion, larger n allowed better models, which were 
more capable of profiting from small effects 

Table 1. Spearman rank correlation coefficients among 
three different measures of autocorrelation. Confidence 
intervals are bootstrap bias-correct, adjusted 95% prob-
ability limits. N = 107.

Variable 1 Variable 2 r Lower CI Upper CI

Space Extent 0.111 –0.081 0.297
Space Rho.std 0.513 0.366 0.641
Extent Rho.std 0.124 –0.086 0.320

Table 2. Spearman rank correlation coefficients among 
three confounding variables and three measures of dis-
persal. Confidence intervals are bootstrap bias-correct, 
adjusted 95% probability limits. N = 107.

Variable 1 Variable 2 r Lower CI Upper CI

n Space –0.030 –0.218 0.168
n Extent 0.376 0.175 0.538
n Rho.std 0.025 –0.190 0.233
Max.clutch Space 0.098 –0.097 0.292
Max.clutch Extent 0.042 –0.161 0.231
Max.clutch Rho.std 0.210 0.008 0.381
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caused by distant neighbours. Another weak but 
interesting positive correlation existed between 
the maximum clutch size (Max.clutch) and Rho.
std. When Max.clutch is seen as an index for 
potential population growth rate, such a correla-
tion is predicted by Bahn et al. (2008).

The three indices for dispersal were only 
weakly correlated with each other, with some 
of the correlations having the opposite sign than 
expected (Table 3). I hypothesized that Ao.resid 
would correlate positively with dispersal, while 
Poll and Bspatial were hypothesized to cor-
relate negatively with dispersal. According to 
these expectations, Poll and Bspatial should have 
correlated positively, but correlated negatively 
instead. Poll and Ao.resid should have correlated 
negatively, but did not show any consistent cor-
relation pattern within the confidence limits. 
Bspatial and Ao.resid were expected to corre-
late negatively. While the point estimate for the 
regression coefficient was consistent with this 
expectation, the direction of the correlation was 
inconclusive within the confidence interval. The 
abundance-occupancy relationship held up fairly 
well in the Breeding Bird Survey data (R2 = 0.11, 
F1,105 = 12.33, p = 0.0007).

The three indices of dispersal showed some 
correlations with confounding variables (Table 
4). All three indices correlated with sample size 
(n), but only Ao.resid correlated strongly. Poll 
and Bspatial had different signs in front of 
their correlation coefficients with n, which may 
partly explain why they unexpectedly correlated 
negatively with each other. Maximum clutch size 
(Max.clutch) did not show strong correlations 
with the three indices.

No meaningful correlations between meas-
ures of autocorrelation and indices of dispersal 
were found (Table 5). I found only one mod-
erately strong correlation, which was between 
Extent and Ao.resid. The most likely cause for 
this positive correlation was, however, the posi-
tive correlation of both variables with n. Partial 
correlations controlling for n lowered regression 
coefficient in this relationship but left the other 
correlation coefficients virtually unchanged 
(Table 6).

Discussion

This study was unable to find a connection 
between autocorrelation and indirect indices 
of dispersal. The absence of correlations pre-
vented conclusions about a possible relationship 
between dispersal and spatial autocorrelation in 
species distributions above and beyond what can 
be explained through spatial autocorrelation in 
underlying environmental factors. The failure 
to find the predicted correlations could have had 

Table 3. Spearman rank correlation coefficients among 
three different indices for dispersal derived from three 
different ecological theories. Confidence intervals are 
bootstrap bias-correct, adjusted 95% probability limits. 
N = 107.

Variable 1 Variable 2 r Lower CI Upper CI

Poll Bspatial –0.221 –0.378 –0.039
Poll Ao.resid 0.140 –0.060 0.313
Bspatial Ao.resid –0.114 –0.292 0.085

Table 4. Spearman rank correlation coefficients among 
three confounding variables and three measures of dis-
persal. Confidence intervals are bootstrap bias-correct, 
adjusted 95% probability limits. N = 107.

Variable 1 Variable 2 r Lower CI Upper CI

n Poll 0.321 0.120 0.490
n Bspatial –0.234 –0.414 –0.033
n Ao.resid 0.787 0.688 0.858
Max.clutch Poll 0.009 –0.178 0.197
Max.clutch Bspatial 0.033 –0.158 0.228
Max.clutch Ao.resid 0.013 –0.185 0.207

Table 5. Spearman rank correlation coefficients among 
three measures of spatial autocorrelation and three 
indices of dispersal. Confidence intervals are bootstrap 
bias-correct, adjusted 95% probability limits. N = 107.

Variable 1 Variable 2 r Lower CI Upper CI

Space Poll 0.048 –0.146 0.227
Space Bspatial 0.082 –0.103 0.260
Space Ao.resid 0.051 –0.145 0.243
Extent Poll 0.107 –0.092 0.296
Extent Bspatial –0.144 –0.328 0.045
Extent Ao.resid 0.488 0.319 0.632
Rho.std Poll 0.123 –0.083 0.303
Rho.std Bspatial –0.094 –0.271 0.094
Rho.std Ao.resid 0.075 –0.128 0.262
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multiple causes, which can be broadly assigned 
to two categories: the hypothesized relationship 
did not exist, or, the relationship existed but the 
selected methods were unsuitable for detecting 
it. Given that the selected methods were very 
indirect and that a connection between dispersal 
and spatial patterning was shown in theory in 
Bahn et al. (2006a) and hypothesized by several 
authors (e.g., Paradis et al. 1998, Bjørnstad et 
al. 1999, Trenham et al. 2001), I interpret the 
results predominately as a failure of the methods 
and not as strong evidence for the absence of an 
effect.

Despite the failure to find meaningful corre-
lations, there are some lessons to be learned from 
this study. Therefore, I will discuss the methods 
in detail, and elucidate the parts that were most 
likely responsible for the failure and the parts 
that seemed to be valuable methodological con-
tributions and offer interesting insights.

A mismatch in scale between the observed 
effect and the investigated process can prevent 
meaningful results in ecology (Levin 1992). The 
data used for deriving the autocorrelation meas-
ures were of large spatial extent and coarse grain 
(the North American Breeding Bird Survey): 27 
km from centre to centre of the hexagons. Para-
dis et al. (1998) found the natal and breeding 
dispersal of many European birds to average in 
the few to tens of kilometres, with much further 
distance dispersal in the tails of the distance dis-
tributions, making the resolution of my analysis 
fine enough to be able to detect the effects of dis-

persal under the assumption that North American 
birds exhibit similar dispersal distances.

The first two indices of dispersal, density 
dependence (Poll) and the spatial exponent of 
Taylor’s power law (Bspatial) were calculated 
from the same dataset as the measures of auto-
correlation. Therefore, the scale should have 
matched, although sometimes the scale at which 
a phenomenon can be observed is coarser than 
the scale at which the underlying processes take 
place (Huston 2002). The last index for dis-
persal, the deviation from an abundance-occu-
pancy relationship, was not an unequivocal scale 
match. Abundance-occupancy relationships have 
been shown at coarse scales that would match the 
present study (Bock & Ricklefs 1983, Gaston et 
al. 1999, Gaston et al. 2000). However, Hanski et 
al.’s (1993) hypothesis concerning the relation-
ship between the residuals from the abundance-
occupancy regression and dispersal was based 
on metapopulation dynamics equations, which 
are typically concerned with smaller extents than 
covered here. At these smaller extents, consider-
able dispersal connects populations. However, 
overall, a mismatch in scale was likely not a 
major flaw of this study.

A more obvious weakness of the approach 
was the indirect nature of the indices of disper-
sal. How well did the selected measures express 
dispersal? In the case of dispersal being respon-
sible for the deviation from the abundance-occu-
pancy relationship hypothesized by Hanski et al. 
(1993), some support was found by Matter et al. 
(2002) and Boehning-Gaese et al. (2006), while 
Gaston and Blackburn (2003) failed to support 
this theory. Also in disagreement with Hanski et 
al.’s (1993) theory, Paradis et al. (1998) found in 
a study of dispersal that wide-spread and abun-
dant species exhibited lower dispersal activity 
than species with small ranges and low abun-
dances. In addition, the ranges of many of the 
bird species investigated were only partly in the 
study area of the conterminous United States. 
Therefore, some of the range sizes entered in 
the abundance-occupancy relationship were con-
siderably smaller than the species’ entire range. 
Hanski et al. (1993) considered this point but 
concluded that partial ranges should also work 
in this relationship. It remains unclear, though, 
whether the predicted dispersal is dependent on 

Table 6. Partial Spearman rank correlation coefficients 
among three measures of spatial autocorrelation and 
three indices of dispersal. The correlations are control-
led in respect to sample size n. Confidence intervals 
are bootstrap bias-correct, adjusted 95% probability 
limits. N = 107.

Variable 1 Variable 2 r Lower CI Upper CI

Space Poll 0.061 –0.146 0.246
Space Bspatial 0.077 –0.116 0.255
Space Ao.resid 0.121 –0.072 0.314
Extent Poll –0.016 –0.195 0.191
Extent Bspatial –0.062 –0.248 0.133
Extent Ao.resid 0.336 0.162 0.504
Rho.std Poll 0.121 –0.075 0.320
Rho.std Bspatial –0.091 –0.267 0.121
Rho.std Ao.resid 0.089 –0.078 0.254
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the proportion of range included in the relation-
ship. In addition, the relationship between disper-
sal and spatial autocorrelation may be dependent 
on the specific part of the range included in the 
study area.

The connection between density-dependence 
and dispersal has, to my knowledge, no direct 
empirical support. Population regulation depend-
ent on density is a well supported and univer-
sally documented phenomenon (Murdoch 1994). 
However, it is unclear whether the mechanisms 
of regulation are mostly local, through birth and 
death rates, or whether dispersal among popula-
tions, as in metapopulation dynamics, is mainly 
responsible for density-dependence (Murdoch 
1994). Although most models implement den-
sity-independent dispersal (Amarasekare 2004), 
organisms typically exhibit density-dependent 
dispersal (Sutherland et al. 2002). If dispersal 
is density-dependent, it is fair to assume that 
dispersal is also at least part of the population 
density regulation mechanism (Taylor & Taylor 
1977). Therefore, using density-dependence as 
a proxy for dispersal activity is likely not wrong 
but may be a weak approach dependent on how 
important local mechanisms of density-depend-
ence are compared to dispersal. For example, 
Rodenhouse et al’s (1997) theory of density-
dependence through site dependence relies on 
dispersal as the primary mechanism. However, 
the dispersal exhibited in the context of density-
dependence may be of relatively short range and 
thus may be a scale mismatch to the observed 
spatial autocorrelation. In addition, an improve-
ment to Pollard et al’s (1987) method became 
available (Link & Hoover 1991) after Boone 
(1991) used it to calculate density dependence 
indices for North American breeding birds.

My hypothesis on the negative correlation 
between the spatial exponent bs in Taylor’s 
power law and dispersal agrees with Taylor and 
Taylor’s (1977) view, although they called what 
I defined as dispersal “migration”. My approach 
agreed with their concept of dispersal as a proc-
ess generally counteracting aggregation and thus 
leading to more uniformly distributed popula-
tion sizes. However, Taylor and Taylor (1977) 
also introduced another form of dispersal that 
leads to more aggregation, which they called 
congregatory migration and which is caused by 

intraspecific attraction. In addition, they note that 
many behaviours, such as the search for food, 
mates and shelter, antagonistic interactions, and 
predator avoidance, can lead to movements that 
obscure the effects of dispersal. Other species-
specific characteristics that potentially influence 
bs independently of dispersal are the spatial and 
temporal patterns of relevant environmental con-
ditions, and population growth rate. Therefore, 
while the basic hypothesis was probably correct, 
there are many reasons why the connection could 
have been weak.

Another issue that could have caused the lack 
of meaningful correlations was the variability in 
sample size n among species. Each species had a 
different range size and accordingly a different 
number of included sample points. While I did 
consider correlations with n (Tables 2 and 4) and 
controlled for n where appropriate (Table 6), not 
all problems arising from differences in sample 
size were obvious or easily controlled. Most 
importantly, sample size influenced the quality of 
the models and thus variable selection, efficiency 
of models in differentiating between noise and 
signal, and parameter estimates. In brief, the 
uncertainty encompassed in the models of the 
different species varied because n varied, and 
this additional variation may well have weak-
ened existing correlations between indices of 
dispersal and measures of autocorrelation.

Another source of unexplained variation in 
measures of autocorrelation could have been 
environmental factors that were missed in the 
distribution models. While I used an extensive set 
of independent variables, they were all remotely 
sensed or interpolated and may have missed very 
fine-scaled and local ecological constraints on 
species. Conceivably, this effect could have been 
different for different species, thus introducing 
additional uncertainty in my estimation of spatial 
autocorrelation that went above and beyond the 
autocorrelation found in environmental factors.

Finally, the three measures of autocorrela-
tion showed some agreement, in contrast to the 
three measures of dispersal. In particular, the two 
measures aiming at a general “strength” of auto-
correlation, the standardized regression coeffi-
cient for neighbourhood inclusion (Rho.std) and 
the pure spatial partition (Space), correlated well. 
However, the extent of autocorrelation did not 



JNR EEB vol. 5 • Bahn: Dispersal and autocorrelation 10

agree well with these two measures. This sug-
gests that strong effects of autocorrelation do not 
necessarily coincide with a large extent of auto-
correlation. Assuming that the autocorrelation 
in the underlying environmental determinants 
is similar across species, one can only speculate 
that the relative independence of autocorrelation 
strength and extent stems from variations among 
species in the shape of dispersal kernels with the 
extremes being some species having low overall 
dispersal but very long tails and others having 
strong local dispersal, but short tails. Alterna-
tively, biotic interactions such as interspecific 
competition or brood parasitism could be respon-
sible for spatial autocorrelation and a decoupling 
between autocorrelation strength and extent.

In conclusion, the selected indices for dis-
persal were likely neither inappropriate, nor at 
a wrong scale. The most likely explanation for 
the absence of results was the indirect nature 
of the ecological indices. While each relation-
ship of the three indices to dispersal may have 
some merit, other processes than dispersal may 
have been more influential, with each of these 
being quite different in the three indices. Thus, 
the noise or unwanted variation in the indi-
ces may have overwhelmed the information in 
these approaches, a conclusion supported by the 
absence of correlation among the three indices. 
Future research needs to be based on direct, 
empirical dispersal information such as used for 
British birds in Paradis et al. (1998).
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Appendix. List of common and scientific names of the 108 bird species used in this study. Names from the 7th edi-
tion of the Checklist of North American Birds (American Ornithologists’ Union, 1998, Washington, DC, USA).

Common name Scientific name

Little blue heron Egretta caerulea
Cattle egret Bubulcus ibis
Green heron Butorides virescens
Common snipe Gallinago delicata
Northern bobwhite Colinus virginianus
California quail Callipepla californica
Black vulture Coragyps atratus
Burrowing owl Athene cunicularia
Yellow-billed cuckoo Coccyzus americanus
Black-billed cuckoo Coccyzus erythropthalmus
Downy woodpecker Picoides pubescens
Yellow-bellied sapsucker Sphyrapicus varius
Pileated woodpecker Dryocopus pileatus
Red-headed woodpecker Melanerpes erythrocephalus
Red-bellied woodpecker Melanerpes carolinus
Chuck-will’s-widow Caprimulgus carolinensis
Common nighthawk Chordeiles minor
Chimney swift Chaetura pelagica
Western kingbird Tyrannus verticalis
Western wood-pewee Contopus sordidulus
Acadian flycatcher Empidonax virescens
Least flycatcher Empidonax minimus
Blue jay Cyanocitta cristata
Fish crow Corvus ossifragus
Bobolink Dolichonyx oryzivorus
Yellow-headed blackbird Xanthocephalus xanthocephalus
Eastern meadowlark Sturnella magna
Western meadowlark Sturnella neglecta
Orchard oriole Icterus spurius
Bullock’s oriole Icterus bullockii
Brewer’s blackbird Euphagus cyanocephalus
Common grackle Quiscalus quiscula
Evening grosbeak Coccothraustes vespertinus
Purple finch Carpodacus purpureus
House finch Carpodacus mexicanus
American goldfinch Carduelis tristis
Lesser goldfinch Carduelis psaltria
Pine siskin Carduelis pinus
Vesper sparrow Pooecetes gramineus
Savannah sparrow Passerculus sandwichensis
Grasshopper sparrow Ammodramus savannarum
Lark sparrow Chondestes grammacus

Common name Scientific name

White-throated sparrow Zonotrichia albicollis
Chipping sparrow Spizella passerina
Clay-colored sparrow Spizella pallida
Field sparrow Spizella pusilla
Song sparrow Melospiza melodia
Swamp sparrow Melospiza georgiana
Eastern towhee Pipilo erythrophthalmus
Northern cardinal Cardinalis cardinalis
Rose-breasted grosbeak Pheucticus ludovicianus
Black-headed grosbeak Pheucticus melanocephalus
Blue grosbeak Passerina caerulea
Indigo bunting Passerina cyanea
Painted bunting Passerina ciris
Dickcissel Spiza americana
Lark bunting Calamospiza melanocorys
Western tanager Piranga ludoviciana
Scarlet tanager Piranga olivacea
Summer tanager Piranga rubra
Purple martin Progne subis
Tree swallow Tachycineta bicolor
Violet-green swallow Tachycineta thalassina
Northern rough-winged
  swallow Stelgidopteryx serripennis
Cedar waxwing Bombycilla cedrorum
Loggerhead shrike Lanius ludovicianus
Red-eyed vireo Vireo olivaceus
Warbling vireo Vireo gilvus
White-eyed vireo Vireo griseus
Black-and-white warbler Mniotilta varia
Prothonotary warbler Protonotaria citrea
Nashville warbler Vermivora ruficapilla
Orange-crowned warbler Vermivora celata
Yellow warbler Dendroica petechia
Magnolia warbler Dendroica magnolia
Chestnut-sided warbler Dendroica pensylvanica
Blackburnian warbler Dendroica fusca
Black-throated green warbler Dendroica virens
Pine warbler Dendroica pinus
Prairie warbler Dendroica discolor
Ovenbird Seiurus aurocapilla
Mourning warbler Oporornis philadelphia

continued
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Common name Scientific name

MacGillivray’s warbler Oporornis tolmiei
Common yellowthroat Geothlypis trichas
Yellow-breasted chat Icteria virens
Hooded warbler Wilsonia citrina
Canada warbler Wilsonia canadensis
American redstart Setophaga ruticilla
Northern mockingbird Mimus polyglottos
Gray catbird Dumetella carolinensis
Brown thrasher Toxostoma rufum
Carolina wren Thryothorus ludovicianus
Bewick’s wren Thryomanes bewickii
House wren Troglodytes aedon
Winter wren Troglodytes troglodytes

Common name Scientific name

Sedge wren Cistothorus platensis
White-breasted nuthatch Sitta carolinensis
Red-breasted nuthatch Sitta canadensis
Brown-headed nuthatch Sitta pusilla
Tufted titmouse Baeolophus bicolor
Black-capped chickadee Poecile atricapillus
Carolina chickadee Poecile carolinensis
Blue-gray gnatcatcher Polioptila caerulea
Wood thrush Hylocichla mustelina
Veery Catharus fuscescens
Hermit thrush Catharus guttatus
American robin Turdus migratorius
Eastern bluebird Sialia sialis

Appendix. Continued.


