Chapter 10 Closed orbits and Limit Sets

Consider nonlinear dynamical system
X' =F(X)

with flow ¢ (¢, X)), i.e., X (t) = ¢ (t, Xo) is the solution with the initial value
X (0) = X,
In this chapter, we study the limit behavior of flow ¢ (¢, X).

e Recall Liapunov Stability Theorem:

— A function defined in a neighborhood O of X satisfying
alL(Xy)=0 L(X)>0for X # Xy, X €O
b VL(X)-F(X)<0 for X € O\{Xo}

— Liapunov Stability Theorem: Let X, be an equilibrium for
X = F(X). The equilibrium is asymptotically stable if there
exists a smooth Liapunov function.

— Furthermore, for any X € O, ¢(t,X) — Xy as t — c0.
e Definition: Basin of Attraction of an equilibrium Xgis {X : ¢ (¢, X) — Xy as t — oo}

— In Liapunov Stability Theorem, the set O lies inside of the
Basin of Attraction of Xj.

Example . Consider, for parameter ¢,

o' =(-r+2)(z+1)
y=(-z—-y)(z+1)

Consider a Liapunov function in the form:
L(z,y,2) = az® + by + c2?
We see that

VL-F =2(ax,by,cz) - F
=2az (—z+2y) (2 + 1) + 2by (—z — y) (2 + 1) + 2cz (—2°)
=—2(az® +by®) (2 4+ 1)+ (2a — b) yx (2 + 1) — 2cz*



So if we choose a = 1,b = 2,¢ = 1. Then for all X = (z,y, 2)

VL -F(X)=-2(az®+by®) (z +1) — 2cz* <0
if z>—1

Hence, the entire half plane z > —1 lies in the Basin of Attraction of O.

Remark: By Choosing appropriate the Liapunov function, we may
find larger area inside Basin of Attraction, or even describe it precisely.

Closed orbit : Periodic solution. If ¢ (7', Xy) = X, then this solution
X (t) = ¢ (t, Xo) is periodic with period T

w— limit point of X : a point Y is called a w— limit if there is a
sequence t,, — 00 as n — oo such that

Y = lim ¢ (t,, X)

w(X): w— limit set of X = Set of all possible w— limit points of X

We also call w— limit set of X "w— limit set of the function ¢ (7, X)”.
In particular,

w — limit set of f (z) = {y cy = lim f(l‘n)}

Ty —00

Illustration about sequential limit
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y =sinx : w—limit = [—1,1]

2



e a— limit point of X : a point Y is called a a— limit if there is a
sequence t,, — —00 as n — oo such that

Y = lim ¢ (¢, X)

n——0o0

e a(X): a— limit set = Set of all possible a«— limit points of X
e Limit set means w (X) or a(X)

e Invariant set: A set G is called invariant if for any X € G, ¢ (¢t,X) € G
for all ¢.

e Positively Invariant set: A set G is called Positively invariant if for any

Xe@G, ¢(t,X)eGforallt>D0.

e Negatively Invariant set: A set GG is called Negatively invariant if for
any X € G, ¢(t,X) e G forall t <0.

e Any limit set is invariant:

— For instance, suppose Y € w (X) . If ¢ (¢, X) — Y, then ¢ (t + t,, X) =
¢ (t, ¢ (tn, X)) = & (t,Y). So ¢ (1,Y) € w(X)

Example 1: Consider the system

1 1
x'zﬁx—y—i(:ﬁ—kmy?)
y’:x+1y—1(y3+x2y)

2 2

Introducing the polar coordinate system x = rcosf,y = rsinf

' =1r"cosf — rf sinb

y = 1"sinf +r0 cosd
So

2’ cos@ = r' cos? 0 — r8 sinf cos

y'sin@ = ' sin? 0 + r#’ cos G sin 6



Adding together, we see

2’ cosf + 1y sinf = 1’ cos® 0 + 1’ sin? 0 = 1’

So
r' =2’ cosf + 1 sinf
= 1az:—y—l(:153+9L‘y2) cosf + x+1y—1(y3+x2y) sin
2 2 2 2
1 ) 1, 1 . 1, . )
= 57“0089—7”8111«9—57’ cos@ ) cosf + TCOS¢9+§TSIDQ—§T sind | sin @
1 2 . L5 5 . I . 5.5
= ircos 9—7‘811190089—57" cos” 0 | + Tcosﬁs1n9+§rsm 9—57“ sin” 0
1 3
25(7“—7")
Next, from

' =1r"cosf — rf sinb

Wwe see

L o) 2L i) st s
(237 Y 2(3: +my)>2(r r)cose rf sin 0
1

1 1 1
(57’(:059 —rsinf — 57”3 cos@) = 2rc059 — 57’3 cos@ — rf siné

—rsinf = —rf’ sin
0 =1
We thus arrive at
r' == (r - r3)
0 =1

r = 1,0 = t is an solution, which is the unit circle under the polar coordinate
system. We call it a closed orbit.

Consider any solution (7 (¢) , € (t))with the initial value (19, 6p) : (7 (0),6(0)) =
(ro,00) . If 0 < rg < 1, then

7"(0):%7"(1—7“2) :%TO(I—T(%) >0
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So ' (t) will stay positive for all ¢ > 0. Hence, r (t) will increases towards
r = 1ast — oo. Otherwise, if initially 7o > 1, 7' (0) < 0, and it will decreases
to r = 1. So w— limit set of any nonzero solution is this orbit r = 1.

e Properties of limit sets:

— Any limit set is closed and and invariant

— If X and Z lie on the same solution, then they have the same limit
sets: w(X) =w (Z), a(X)=a(Z2)

— If G is closed, positively invariant set, and Z € G, then w (Z) C G.
— If G is closed, negatively invariant set, and Z € G, then a (Z) C G,

e Local Sections

— Transverse line [ (X,) at an non-equilibrium point X, is a line
passing Xy and is perpendicular to F' (Xj) (assume F' (Xy) # 0 )

— Transverse line may be parametrized using vector for of line equa-
tion:

X = h(u) = Xo+uVp, Vis a unit vector in the direction of [ (Xy), Vo-F (Xo) =0

— Local section - A line segment S on [ (Xj) containing X, and is
not tangent to the vector field.

— At each point on S, there is a solution curve passing through it.

— One may "straighten" the local section and flows nearby to form
"flow box"

e Flow Boxes

— Define mapping
¥ (s,u) = ¢ (s,h(u))

— This mapping maps a rectangular box [—¢, €| x [—4, §] to a neigh-
borhood of local section S.

— The image ¢ (|—¢, €| x [=6,4]) is called a flow box

— 1 (s,u) is a local conjugacy between the constant vector field and
nonlinear vector field F' (X))
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e (Closed orbit

— A periodic solution is called a closed orbit

— A closed orbit « is called Stable if there exists a neighborhood
G of v and a sub-neighborhood GG; C G such that any solution
initiated from G4 will remain in G.

— A closed orbit v is called Asymptotically Stable if it is stable and
w— limit set w (X,) C v, for any Xy near . In other words, all
solution will tend to ~.

e The Poincaré Map

— Definition: Given a closed orbit v and X, € 7. Let S = (X))
be a local transverse section at Xy. For any X € S near X,
the flow ¢ (¢, X) may hit S at same time s = ¢ (X). The map
X — ¢ (s,X) is called the Poincaré Map

P(X)=¢(s,X), sis the first time the flow ¢ (¢, X') hit S

— Note that P (Xy) = Xo.

— In R? a transverse section S may be represented by h(u) =
Xo + uVy. So when restricted on S, The Poincaré Map induces
a mapping P, : R — R! as

Py (u) = v, where v is the first time ¢ (¢, h (u)) hits S at h (v) :
P (h(u)) =h(v), P(0)=0.

— If |P](0)] < 1, then P, (u) = au + O (u?), a = P{(0), |a| < 1.
This means that after the first passage across S, for any point X
near Xy, its distance to X, decreases. Continuing, we see that
¢ (t, X) — Xo. Therefore, 7 is asymptotically stable.

e Theorem: Let v be a closed orbit and X, € v. Let P be a Poincaré
Map defined in a neighborhood of Xy. If |P'(X)| < 1, then ~ is
asymptotically stable.



Example: Consider system in the polar coordinate system

r=r(1-r)
0 =1
We know that r = 1 is the closed orbit. The corresponding solution in
xy — plane is (cost,sint) . Let Xy = (1,0) € ~. The positive x-axis is a local
transverse section. For any X = (z,0), z > 0,

P(z)=¢(X,2m).

In fact, we can solve r by separation of variables:

J (e )o it o

Inr—In(1—r)=60+C

or

! T — e =Cet (since 6’ = 1)
—r
Since initially
r(0)=+vx2+y’==x
we have .
O —
1—=x

So

T

Ce! 1— 2 xe!
1+ Cet 1T 1—ztae

1—=z

Therefore,
:L.€27r

1 —x+ xe?r

P, (x) _ i xe27r _ e27r
dr \1 —x + ze?r (er” —x+ 1)2

In particular at Xy = (1,0), P’ (1) = 1/e?™ < 1. So the orbit is asymptoti-
cally stable.




e Poincaré-Bendixson Theorem: Suppose that 2 is a closed and
bounded limit set of a planar dynamical system. If 2 contains no
equilibrium solution, then (2 is a closed orbit.

e Applications:

— Limit cycle - a closed obit ~ that is included in a limit set.
% w— limit cycle 7 if v C w (X) for some X
x a— limit cycle 7 if v C a (X) for some X
— Limit cycle theorem: Let v be a w— limit cycle, and v = w (X)

for some X ¢ . Then the set {Y : w(Y) =~} \v is an open set.
In other words, for Y near X, v =w (Y).

— Any closed and bounded positively (or negatively) invariant set
contains either a limit cycle or an equilibrium.

— Let v be a closed orbit and G be the open region inside and
bounded by v.Then GG contains either an equilibrium.

e Homework: labc, 2, 5, 6 (for 6¢, see the example in at the bottom of
page 207)



